Lightning distribution with respect to the monsoon trough position during the Indian summer monsoon season

Similar documents
Lecture 20. Active-weak spells and breaks in the monsoon: Part 1

Lecture 14. Heat lows and the TCZ

Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon

Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon

SERIES ARTICLE The Indian Monsoon

LONG- TERM CHANGE IN PRE- MONSOON THERMAL INDEX OVER CENTRAL INDIAN REGION AND SOUTH WEST MONSOON VARIABILITY

Effect of sea surface temperature on monsoon rainfall in a coastal region of India

Effect of Orography on Land and Ocean Surface Temperature

Analysis of 2012 Indian Ocean Dipole Behavior

Interannual variation of northeast monsoon rainfall over southern peninsular India

An ocean-atmosphere index for ENSO and its relation to Indian monsoon rainfall

Abrupt seasonal variation of the ITCZ and the Hadley circulation

Spatio-temporal variability of summer monsoon rainfall over Orissa in relation to low pressure systems

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes

Role of Mid-Latitude Westerly Trough Index at 500 h Pa and its Association with Rainfall in Summer Monsoon over Indian Region

Some characteristics of low pressure systems and summer monsoon rainfall over Orissa

Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events

Understanding El Nino-Monsoon teleconnections

Goal: Describe the principal features and characteristics of monsoons

Lecture 7. The Indian monsoon: is it a gigantic land-sea breeze?

3. Climatic Variability. El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves

Module 3, Investigation 1: Briefing 1 What are the effects of ENSO?

The Effects of Gap Wind Induced Vorticity, the ITCZ, and Monsoon Trough on Tropical Cyclogenesis

A possible mechanism effecting the earlier onset of southwesterly monsoon in the South China Sea compared to the Indian monsoon

ENSO and monsoon induced sea level changes and their impacts along the Indian coastline

Changes of The Hadley Circulation Since 1950

Lecture 33. Indian Ocean Dipole: part 2

Effect of late 1970 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO

Section 3: Atmospheric Circulation

Prof. Geraint Vaughan. Centre for Atmospheric Science School of Earth, Atmospheric and Environmental Sciences. Bogdan Antonescu

Climate variability and changes in the marginal Far-Eastern Seas

SUPPLEMENTARY INFORMATION

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO

The Monsoon and Its Variability Prof. Sulochana Gadgil Centre for Atmospheric & Oceanic Sciences Indian Institute of Science Bangalore

Report on Severe Weather Events for the Period July-September 2017

Response of tropical cyclone potential intensity over the north Indian Ocean to global warming

GEOS 201 Lab 13 Climate of Change InTeGrate Module Case studies 2.2 & 3.1

A Wet-Season Rainfall Climatology to Support Airline Arrivals at Key West Matthew Bloemer and Andy Devanas NWS WFO Key West, FL

GLOBE Data Explorations

Physical mechanisms of the Australian summer monsoon: 2. Variability of strength and onset and termination times

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture!

Historical Analysis of Montañita, Ecuador for April 6-14 and March 16-24

J4.2 AUTOMATED DETECTION OF GAP WIND AND OCEAN UPWELLING EVENTS IN CENTRAL AMERICAN GULF REGIONS

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter

Atmospheric Rossby Waves in Fall 2011: Analysis of Zonal Wind Speed and 500hPa Heights in the Northern and Southern Hemispheres

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010

On some aspects of Indian Ocean Warm Pool

Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events

National Weather Service

MONTHLY ANTICYCLONICITY AND CYCLONICITY IN THE SOUTHERN HEMISPHERE: AVERAGES FOR MARCH AND SEPTEMBER

2.2 Southwest Monsoon

INTRA-SEASONAL, INTER-ANNUAL AND DECADAL SCALE VARIABILITY IN SUMMER MONSOON RAINFALL OVER INDIA

CHANGE OF THE BRIGHTNESS TEMPERATURE IN THE MICROWAVE REGION DUE TO THE RELATIVE WIND DIRECTION

SERIES ARTICLE The Indian Monsoon

The Morphology of the Subtropical Anticyclone. By Y. Neyama

Increasing trend of break-monsoon conditions over India - Role of ocean-atmosphere processes in the Indian Ocean

The Setting - Climatology of the Hawaiian Archipelago. Link to Video of Maui Waves


Chapter 10: Global Wind Systems

Intermountain West Climate Summary

The Great Paradox of Indian Monsoon Failure (Unraveling The Mystery of Indian Monsoon Failure During El Niño)

An ITCZ-like convergence zone over the Indian Ocean in boreal late autumn

Propagation of planetary-scale zonal mean wind anomalies and polar oscillations

NOTES AND CORRESPONDENCE. Variations of the SO Relationship with Summer and Winter Monsoon Rainfall over India:

McKnight's Physical Geography 11e

Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon

Atmospheric Circulation

SST 1. ITCZ ITCZ. (Hastenrath and Heller 1977; Folland et al. 1986; Nobre and Shukla 1996; Xie and Carton 2004). 2. MIROC. (Namias 1972).

EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS FOR CLIMATE VARIABILITY OVER THE INDONESIA-PACIFIC REGION

Lecture 24. El Nino Southern Oscillation (ENSO) Part 1

UNIFIED MECHANISM OF ENSO CONTROL ON INDIAN MONSOON RAINFALL SUNEET DWIVEDI

Pacific Climate Variability

Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño?

Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models

INDIA METEOROLOGICAL DEPARTMENT (MINISTRY OF EARTH SCIENCES) SOUTHWEST MONSOON-2010 END OF SEASON REPORT

Typhoon Vamei: An Equatorial Tropical Cyclone Formation

Northward propagation of the subseasonal variability over the eastern Pacific warm pool

THE COMPARISON BETWEEN SUMMER MONSOON COMPONENTS OVER EAST ASIA AND SOUTH ASIA

Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes

The atmospheric circulation system

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña -

2.4. Applications of Boundary Layer Meteorology

Atmosphere Circulation

Aerosol-cloud interactions and the effects on orographic precipitation

N.V. Nanda Kumar, A. Nagarjuna and D.C. Reddy

THE ATMOSPHERE. WEATHER and CLIMATE. The Atmosphere 10/12/2018 R E M I N D E R S. PART II: People and their. weather. climate?

Synoptic features of orographically enhanced heavy rainfall on the east coast of Korea associated with Typhoon Rusa (2002)

Two dominant subseasonal variability modes of the eastern Pacific ITCZ

Onset of Indian summer monsoon over Gadanki (13.5 N, 79.2 E): Study using lower atmospheric wind profiler

SEA SURFACE TEMPERATURE RETRIEVAL USING TRMM MICROWAVE IMAGER SATELLITE DATA IN THE SOUTH CHINA SEA

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007

Appendix E Mangaone Stream at Ratanui Hydrological Gauging Station Influence of IPO on Stream Flow

Chapter 8 Air Masses

Ocean Inter-annual Variability: El Niño and La Niña. How does El Niño influence the oceans and climate patterns?

AT350 EXAM #2 November 18, 2003

The Amplitude-Duration Relation of Observed El Niño Events

Long period waves in the coastal regions of north Indian Ocean

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012

Atmospheric Waves James Cayer, Wesley Rondinelli, Kayla Schuster. Abstract

Transcription:

JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 8, 4780 4787, doi:0.00/jgrd.508, Lightning distribution with respect to the monsoon trough position during the Indian summer monsoon season Ramesh Kumar Penki and A. K. Kamra Received October ; revised February ; accepted March ; published 9 May. [] The location and shift in the position of the maximum lightning activity with respect to the position the of monsoon trough has been investigated in the region of N N and 75 E 95 E during the Indian summer monsoon seasons of 0 and 0 from the lightning imaging sensor (LIS) data from the Tropical Rainfall Measuring Mission (TRMM) satellite. The polynomial curve fitting the maximum lightning activity followed the position of the monsoon trough in both the normal monsoon and drought years. Observations of the maximal lightning activity in the TRMM-LIS data collected during a period of years, from 998 to 0, confirm these findings in the monsoon season. When the seasonal position of the monsoon trough moved from the plains to the submontane region of the Himalayas during a monsoon break period, the polynomial fitting of the maximum lightning activity also moved from the central Indian plains to that region. An empirical orthogonal function (EOF) analysis is applied to two different data sets of precipitation and observed high lightning flash rates over the monsoon trough region for the period of 995 05. The first and second components, EOF and EOF, of precipitation values are out of phase with those of the flash rates. Our results imply that deep electrified convective systems during monsoon periods are responsible for the lightning activity in the monsoon trough region and that the lightning activity in this region can be used as a proxy for the location and shift of the seasonal monsoon trough. Citation: Penki, R. K., and A. K. Kamra (), Lightning distribution with respect to the monsoon trough position during the Indian summer monsoon season, J. Geophys. Res. Atmos., 8, 4780 4787, doi:0.00/jgrd.508.. Introduction [] Measurements of global lightning from the ground and from space in the last few decades have greatly increased the application and integration of lightning in climate studies. Several efforts have been made to find out the correlations between lightning activity and related meteorological properties. These studies suggested strong connections between lightning and thunderstorm updraft growth [Goodman et al., 988], rainfall rate [Petersen and Rutledge, 998; Tapia et al., 998], cloud-top height [Williams, 985; Price and Rind, 99], and mesocyclone occurrence [MacGorman et al., 989; Williams et al., 999]. In an interesting study in the subtropical southern hemisphere, Ortega and Guignes [07] found a correlation between lightning activity and the position of the South Pacific Convergence Zone (SPCZ). Their study showed that location of the maximum lightning activity in this zone roughly coincides with the monthly mean position of the SPCZ. Following this study, in this paper, we examine whether similar relationship exists in the monsoon trough region over India, which is the Indian Institute of Tropical Meteorology, Pune, India. Corresponding author: R. K. Penki, Indian Institute of Tropical Meteorology, Pashan, Pune, Maharashtra, 4008, India. (penki5@gmail.com). American Geophysical Union. All Rights Reserved. 9-897X//0.00/jgrd.508 semipermanent feature of the Indian southwest monsoon season and is also characterized by the low pressure and moist convection over the surface. [] During the Indian summer monsoon season, the trough of low pressure in the lower and middle tropospheric westerlies is one of the most significant features over central India. This trough is fully developed in the months of July August and, on the mean, its axis at sea level runs from west-northwest (with its western end over west Rajasthan and Pakistan) to east-southeast (with its eastern end over northern Bay of Bengal), almost parallel to and ~0 km south of the Himalayas [Normand, 94]. The position of the monsoon trough varies on different temporal and spatial scales, which has definite bearing on the Indian summer monsoon activity [Rao, 976; Sikka and Narsimha, 995]. Rainfall weakens over most of north India when the trough moves north of its normal position and lies close to the Himalayas. On the other hand, there are heavy rains in the north Indian plains when the trough moves back to its normal position. The location of the axis of the monsoon trough is responsible for variations in the intensity of monsoon rainfall over northern India [Raghavan, 97]. Paul and Sikka [976] showed that the mean position of the trough moved between.9 N at 7.5 E and.6 N at 9.75 E during the July August period of 946 965. Large differences exist in the dynamical and convective characteristics of the eastern and western parts of the monsoon trough. Sikka and Narsimha [995] have reviewed 4780

June 0 8 8 July 0 8 Aug 0 Sep 0 8 June 0 8 July 0 8 August 0 8 Sep 0 8 Figure. Spatial distributions of the maximum lightning flash activity along the longitude and the corresponding polynomial fitting (), monthly location of the monsoon trough (), and its average position () during different months of the Indian summer monsoon in 0 and 0. and summarized some characteristics as those shown below. The western end of the monsoon trough is characterized by the heat low with very shallow ascent with limited convergence in the lowest half kilometer or so and clear sky above whereas the eastern end is characterized by the dynamic trough with convergence up to midtroposphere and moist ascent throughout the troposphere with intense convection and clouding. Deep moist convection and unsaturated moist processes occur alternatively in the middle region of the trough. The trough, a region of instability associated with vortices on the scales of 500 00 km, forms and moves within the trough with quasi regularity. [4] The objective of this study is to analyze the relation between lightning activity, precipitation, and the position of the monsoon trough during the Indian summer monsoon season from June to September for two years, 0 (a drought year) and 0 (a normal monsoon year) from the data obtained from the lightning imaging sensor (LIS) mounted on the Tropical Rainfall Measuring 478

8.Polynomial fit.normal position of trough line 66 68 70 7 74 76 78 80 8 84 86 88 90 9 94 Figure. Spatial distribution of the maximum lightning flash activity along the longitude and the corresponding polynomial fitting () and the average position of the monsoon trough () during the monsoon break period of July 0. Mission (TRMM) satellite. The monthly distributions of the maximum lightning activity are compared with the monthly mean position of the monsoon trough. The monsoon trough data during July 0, when the monsoon trough shifts to foothills of the Himalayas, is also studied. An empirical orthogonal function (EOF) analysis is performed on the lightning flash rates and precipitation data in the study region. The first two dominant modes of lightning flash rates along with those of the precipitation are analyzed in the monsoon trough region for the 995 05 period.. Data Sets [5] In this study, we use the lightning imaging sensor (LIS) data (version ) from the Tropical Rainfall Measuring Mission (TRMM) satellite. The lightning flash locations are available on a monthly basis. From the monthly distribution of global lightning data, the lightning activity distribution in the study region ( N N latitude and 70 E 95 E longitude) can be drawn. The LIS data allows us to locate the spots of maximum lightning activity in the area covered by the monsoon trough. The lightning flash rate is obtained from the NASA website for the period 995 05. The lightning flash count data for the 998 0 period is obtained from the same website. The Indian Daily Weather Report (IDWR) provides the daily position of the sea level monsoon trough for the year 0 and 0. Precipitation data is obtained from the National Centers for Environmental Prediction reanalysis data sets (http://nomads.ncep.noaa.gov) for the study region. June July.Polynomial fit.normal trough line 8.Polynomial fit.normal trough line 8 August September.Polynomial fit.normal trough line 8.Polynomial fit.normal trough line 8 Figure. Spatial distributions of the mean values of the maximum flash count positions along the longitude and the corresponding polynomial fitting () for the 998 0 period and the average position of the monsoon trough (). Vertical bars on each M L point show the standard deviation of each mean position over the 998 0 period. 478

Figure 4. The first and second modes of EOF of the monthly averaged values of lightning flash activity during the 995 05 period.. Methodology [6] The region of our study ranges from N N and 70 E 95 E and is divided into meshes of constant size 0.5. The LIS can provide flashes in the 0.5 grid size. Broadly, we follow the method of analysis described in detail by Ortega and Guignes [07] and summarized below. The maximum lightning (M L ) grid at a fixed longitude (in a column) is located. Thus, average position of the maximum lightning activity is obtained by taking the latitudinal average of the maximum lightning activity along a fixed longitude. Thus, a spatial distribution of M L with longitude is obtained in the study region. The best polynomial function of p degree fitting the M L distribution is drawn and compared to the monthly position of the monsoon trough, which is obtained from the day average and standard deviation for each month of the period June September in 0 and 0. To confirm our findings with larger statistics, we use the year (998 0) flash count data obtained from the TRMM-LIS. Monthly distribution of M L for the summer monsoon months is obtained separately for each year during the 998 0 period. Mean values of the M L positions are calculated as the average of annual values over the 998 0 period. The data when the monsoon trough shifts close to the Himalayas, e.g., during July 0, are also obtained from the IDWR. [7] The band of the maximum lightning activity is represented by the polynomial function P a (x), where the residues of the fitting remain relatively small. The correlation of the monsoon trough position and the polynomial function is optimized by increasing the mesh size from 0.5 to, i.e., from 50 km to,00 km. To choose the polynomial curve of the best fitting, the degree of the polynomial function is varied from to 5. A minimum value of M L is imposed in order to avoid large residual values. This threshold value of M L cannot be a constant and is expressed as Th ¼ Tnf=X :Y () where X and Y are the number of meshes along the latitude and longitude, respectively, and Tnf is the total number of monthly flashes detected in the study region. 478

Figure 5. Time series of the first and second EOF modes of the monthly averaged values of lightning flash activity during the 995 05 period. 4. Results and Discussion [8] Our analysis provides an interesting description of lightning activity in the region of study. Figure shows the M L distributions during the summer monsoon months (June September) of 0 and 0. The maximal lightning activity is located in the rectangle formed by N N and 70 E 95 E. The monthly mean position of the monsoon trough, the normal position of the trough, and the polynomial fitting of the M L distribution are plotted in each panel for comparison with one another. All the three curves are very close to each other in both the normal monsoon and drought years. Position of P a (x) and the monsoon trough position are observed to follow each other during the whole monsoon period. The distribution of M L is represented by a P a (x) (degree ) in Figure. It can be seen that the position of the polynomial fitting of the M L distribution moves to the north in the month of July and August and to the south in the month of September along with the seasonal monsoon trough. This northward shift of the polynomial fitting of the M L distribution and the seasonal monsoon trough is more prominent in the extreme eastern and western parts of the area of study. [9] Particularly noteworthy is the northward shift of the position of P a (X) and monsoon trough in July 0 as compared to that in July 0 (Figure ). It is noteworthy in this respect that drought in 0 occurred mainly due to a long monsoon break during the month of July. July is normally the wettest month in a normal monsoon year but turned out to be the driest month in the 0 monsoon season. In Figure, we plot the position of P a (X), which also shifted when the monsoon trough shifted to the foothills of the Himalayas during the July 0 period. It clearly indicates that the position of P a (x) varies with the position of the seasonal monsoon trough and is not much sensitive to the normal position of the monsoon trough. Therefore, similar to the result of Ortega and Guignes [07] in the region of the SPCZ in the southern hemisphere, our results in the region of the monsoon trough during the Indian summer monsoon season in the northern hemisphere also show that the position of polynomial function fitting the lightning maximum follows the seasonal mean position of trough. 4784

Figure 6. The first and second modes of the monthly averaged values of precipitation during the 995 05 period. [0] To check the validity of our results with larger statistical data, we studied the above relationship from year (998 0) observations of the TRMM-LIS data. Figure shows the mean M L distributions during the summer monsoon months averaged for the 998 0 period. A polynomial function (degree ) fitting the M L distribution and the normal position of the trough are also plotted in Figure. Vertical bars on each M L point show the standard deviation of each position in the annual mean M L values over the 998 0 period. The agreement between the positions of normal trough and mean maximal lighting is very good in the middle portion of the trough. However, the deviation between the two somewhat increases in opposite directions on the extreme western and eastern ends of the normal trough. It is worth noting in this context that there are major differences in the convective and dynamical characteristics of the eastern and western parts of the trough. The western end corresponds to a heat low with very shallow ascent and convergence limited to the lowest half kilometer or so and clear skies above [Sawyer, 947]. On the other hand, the eastern end is a dynamic trough. In this part, convergence occurs up to the midtroposphere and moist ascent occurs throughout the troposphere with intense convection and clouding. In the middle portion of the trough (70 E 80 E), the deep moist convection and unsaturated moist processes keep alternating. [] We have examined the relationship between flash rates and precipitation in terms of their seasonal variations by applying the empirical orthogonal function (EOF) analysis to their data sets for the period of 995 05. Figures 4 and 5 show the spatial distribution and time series, respectively, of the first two EOF modes, EOF and EOF, of the flash rate. The first EOF mode (EOF) is characterized by high flash rates over the western part of the monsoon trough and extends over the whole region up to the eastern end of the monsoon trough in the premonsoon months of April June, and it accounts for 80% of the variance. The second EOF mode (EOF), accounting for % of the total variance, is characterized by the variation in flash rate in the western part of the monsoon trough in the month of July August, indicating the high flash rate values in this region during the monsoon season. 4785

Figure 7. Time series of the first and second EOF modes of the monthly averaged values of precipitation during the 995 05 period. [] Figures 6 and 7 show the first two modes of EOF and the corresponding time series, respectively, as applied to precipitation. Contrary to the spatial and temporal distributions of flash rate, the first mode (EOF) of precipitation appears in the eastern part of the monsoon trough and extends to the western end of the monsoon trough. It peaks in the June August months during the monsoon season and accounts for 78% of the variance. The second EOF mode (EOF) of precipitation, accounting for 8% of the total variance in the eastern part of the monsoon trough and the central India region, peaks in the month of August September. [] Thus, the first modes in flash rate and precipitation are out of phase with each other and have opposite tendencies in their spatial distributions in the area of study. Thus, the variance in precipitation alone cannot account for the variance in the lightning activity in this region. This result in this tropical area of our study is in contrast with the studies of Goodman and Buechler [990] and Chèze and Sauvageot [997] in midlatitudes asserting that flash rate and precipitation are in phase with each other. 5. Conclusions [4] The position of a polynomial function fitting the maximal lightning activity in the region of the monsoon trough during the Indian summer monsoon season of 0 (a drought year) and 0 (a normal monsoon year) reasonably matches the position of seasonal monsoon trough throughout the monsoon season in both the normal monsoon and drought years. The TRMM-LIS data collected over a period of years (998 0) confirm such matching of normal position of trough with the position of maximum lightning activity during the monsoon season. The correlation can be optimized by the choice of the size of the mesh 4786

grid and the definition of the limits of the rectangle. The curve of the polynomial function representing the maximal lightning activity shifts to the monsoon trough position in the foothills of the Himalayas during a monsoon break. This polynomial curve, representing the maximal lightning activity, can therefore be used as a proxy to locate the mean position of the monsoon trough in this area. The EOF analysis of flash rates and precipitation clearly shows that the spatial distribution of flash rate is out of phase with the precipitation in the first mode of the EOF. Thus, the variance in the flash rate in this region cannot be associated with the variability in precipitation. [5] Acknowledgments. PRK is thankful to the Director of the Indian Institute of Tropical Meteorology, Pune, for a Research Fellowship and the necessary facilities to do this work. AKK acknowledges the support under the INSA Senior Scientist program. We acknowledge NASA for making the global lightning data available on their website (http://ghrc.msfc.nasa. gov) and NOAA for making the precipitation data available through theirs (http://nomads.ncep.noaa.gov). References Chèze, J.-L., and H. Sauvageot (997), Area-average rainfall and lightning activity, J. Geophys. Res., 0, 707 75. Goodman, S. J., and D. E. Buechler (990), Lightning-rainfall relationships, paper presented at 6th Conference on Severe Local Storms, Am. Meteorol. Soc., Kananaskis Park, Alberta, Canada. Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust (988), Lightning and precipitation history of a microburst producing storm, Geophys. Res. Lett., 5, 85 88. MacGorman, D., D. W. Burgess, V. Mazur, R. W. D.,. W. L. Taylor, and B. C. Jhonson (989), Lightning rates relative to tornadic storm evolution on May, 98, J. Atmos. Sci., 46, 50. Normand, C. W. B. (94), Climatological Atlas for Airmen, pp. 00, India Meteorol. Dept., New Delhi. Ortega, P., and T. Guignes (07), Lightning activity analyses with respect to the SPCZ location, Geophys. Res. Lett.,, L807, doi:0.09/ 07GL097. Paul, D. K., and D. R. Sikka (976), Extended range forecasting-categorization of weather charts, Part I: Monsoon sea level pressure field, Proj. Rep. ERF/,, pp., Indian Inst. of Tropical Meteorol., Pune, India. Petersen, W. A., and S. A. Rutledge, (998), On the relationship between cloud-to-ground lightning and convective rainfall, J. Geophys. Res., 0, 405 4040. Price, C., and D. Rind (99), A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97,999 99. Raghavan, K. (97), Break-monsoon over India, Mon. Weather Rev., 0 (), 4. Rao, Y. P. (976), Southwest Monsoon, Meteorological Monograph, 66 pp, India Meteorol. Dep., New Delhi. Sawyer, J. S. (947), The structure of the intertropical front over N.W. India during the S.W. Monsoon, Q. J. R. Meteor. Soc., 7, 6 69. Sikka, D. R., and R. Narsimha (995), Genesis of the mosoon trough boundary layer experiment (MONTBLEX), Proc. Indian Acad. Sci. (Earth Planet. Sci.), 04, 57 87. Tapia, A., J. A. Smith, and M. Dixon (998), Estimation of convective rainfall from lightning observations, J. Appl. Meteorol., 7, 497 509. Williams, E. R. (985), Large scale charge separation in thunderstorms, J. Geophys. Res., 90, 60 605. Williams, E., R. Boldi, A. Matlin, M. Weber, S. Hodanish, D. Sharp, S. Goodman, R. Raghavan, and D. Buechler (999), The behavior of total lightning activity in severe Florida thunderstorms, Atmos. Res., 5, 5 5. 4787