c p t T + c p v T + ω p s = Q c + S net + R net + SH, (1)

Similar documents
SUPPLEMENTARY INFORMATION

Effect of Orography on Land and Ocean Surface Temperature

An Evolution of the Asian Summer Monsoon Associated with Mountain Uplift Simulation with the MRI Atmosphere-Ocean Coupled GCM

Mechanical impact of the Tibetan Plateau on the seasonal evolution. of the South Asian monsoon

Mechanism of the Asymmetric Monsoon Transition as. Simulated in an AGCM

Changes of The Hadley Circulation Since 1950

The Mechanical Impact of the Tibetan Plateau on the Seasonal Evolution of the South Asian Monsoon

The atmospheric circulation system

Mechanism of the Asymmetric Monsoon Transition as Simulated in an AGCM

The rapid geographic expansion of Chinese

Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon

Why is the ITCZ in the Northern Hemisphere? Role of the AMOC

A possible mechanism effecting the earlier onset of southwesterly monsoon in the South China Sea compared to the Indian monsoon

Reexamining the barrier effect of the Tibetan Plateau on the South Asian summer monsoon

The Air-Sea Interaction. Masanori Konda Kyoto University

What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau?

Tropical Circulation Changes Across Forcing Agents. Timothy M. Merlis McGill University

The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon

SCIENCE CHINA Earth Sciences. Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian Summer Monsoon

Lecture 14. Heat lows and the TCZ

Meteorology. Circle the letter that corresponds to the correct answer

On the Role of the African Topography in the South Asian Monsoon

Air Pressure and Wind

SCIENCE CHINA Earth Sciences

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts

Lecture 5: Climate Tapestry. Sea/Land Breeze. Thermal Energy to Kinetic Energy

Chapter. Air Pressure and Wind

THE COMPARISON BETWEEN SUMMER MONSOON COMPONENTS OVER EAST ASIA AND SOUTH ASIA

Influence of the Anticyclonic Anomaly in the Subtropical Jet over the Western Tibetan

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

A new mechanism of oceanatmosphere coupling in midlatitudes

Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability

Effects of the Tibetan Plateau on the onset of the summer monsoon in South Asia: The role of the air-sea interaction

The Morphology of the Subtropical Anticyclone. By Y. Neyama

Winds and Ocean Circulations

Atmospheric & Ocean Circulation-

ATMS 310 Tropical Dynamics

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams

Precipitation variability over the South Asian monsoon heat low and associated teleconnections

Haibo Hu Jie He Qigang Wu Yuan Zhang

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon

Temporal and Spatial Evolution of the Asian Summer Monsoon in the Seasonal Cycle of Synoptic Fields

A Mechanism of the Onset of the South Asian Summer Monsoon

The Origin of the Subtropical Anticyclones

Chongyin Li Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

Interference of the Equatorial Waves on the 2017 Indian Monsoon Northward Progression

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer

Atmospheric & Ocean Circulation- I

Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea

SST 1. ITCZ ITCZ. (Hastenrath and Heller 1977; Folland et al. 1986; Nobre and Shukla 1996; Xie and Carton 2004). 2. MIROC. (Namias 1972).

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter

Effects of the Tibetan Plateau

Lecture 18: El Niño. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B

Understanding El Nino-Monsoon teleconnections

Andrew Turner Publication list. Submitted

ESCI 107 The Atmosphere Lesson 11 Global Circulation

Propagation of planetary-scale zonal mean wind anomalies and polar oscillations

SIO20 - Midterm Examination 2 v1 Winter Section A. Circle the letter corresponding to the best answer. (1 point each)

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation

The Earliest Onset Areas and Mechanism of the Tropical Asian Summer Monsoon

CHARACTERISTICS, EVOLUTION AND MECHANISMS OF THE SUMMER MONSOON ONSET OVER SOUTHEAST ASIA

Summer monsoon onset in the subtropical western North Pacific

A Tropical Influence on Global Climate

Wind Driven Circulation Indian Ocean and Southern Ocean

Goal: Describe the principal features and characteristics of monsoons

Lecture The Oceans

Review for the second quarter. Mechanisms for cloud formation

The East Asian Subtropical Summer Monsoon: Recent Progress

El Nino-Southern Oscillation (ENSO)

Causes of the Intraseasonal SST Variability in the Tropical Indian Ocean

T he monsoon is generally considered an atmospheric response to seasonal changes in land sea thermal

The impacts of explicitly simulated gravity waves on large-scale circulation in the

Abrupt seasonal variation of the ITCZ and the Hadley circulation

C.-P. Chang and Tim Li 1 Department of Meteorology, Naval Postgraduate School, Monterey, CA Abstract

An ITCZ-like convergence zone over the Indian Ocean in boreal late autumn

Monsoon. Arabic word mausim means season. Loose definition: a wind/precipitation pattern that shifts seasonally

Dynamical constraints on monsoon circulations

Atmosphere Circulation

MIRAGES MONSOON. Overview. Further Reading. See also

Second peak in the far eastern Pacific sea surface temperature anomaly following strong El Niño events

Wednesday, September 20, 2017 Reminders. Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4

THE ATMOSPHERE. WEATHER and CLIMATE. The Atmosphere 10/12/2018 R E M I N D E R S. PART II: People and their. weather. climate?

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 07. Lecture 14. Global Scale Winds. Simple Introductory Examples:

Symmetry and Asymmetry of the Asian and Australian Summer Monsoons

Atmospheric Circulation

DUE TO EXTERNAL FORCES

Intra-seasonal variations in the tropical atmospheric circulation. Climate Prediction Division Yayoi Harada

Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability

CHAPTER 6 Air-Sea Interaction

Meteorology I Pre test for the Second Examination

Lecture 33. Indian Ocean Dipole: part 2

McKnight's Physical Geography 11e

Tianjun ZHOU.

Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes

The Role of the Wind-Evaporation-Sea Surface Temperature (WES) Feedback in Tropical Climate Variability

An Extreme Oceanic & Atmospheric Event in the South Pacific & Western Antarctica Associated With the El Niño

The slab ocean El Niño

Scripps Institution of Oceanography, La Jolla, California. (Manuscript received 3 March 2009, in final form 15 June 2009) ABSTRACT

Agronomy 406 World Climates

Evaluation of ACME coupled simulation Jack Reeves Eyre, Michael Brunke, and Xubin Zeng (PI) University of Arizona 4/19/3017

Transcription:

The EASM, unlike other tropical monsoons, is characterized by mixed tropical and midlatitude influences with frontal systems and jet stream effects (Ding and Chan, 2005; Molnar et al., 2010). Previous studies have emphasized land-sea thermal contrast and heating over the Tibetan Plateau (TP) as primary drivers of the EASM (e.g., Chou et al., 2001; Wu et al., 2007), with the subtropical westerly jet possibly advecting downstream warm air originating over and south of the TP and sustaining rainfall in the EASM region (Sampe and Xie, 2010). Quantitative studies of regional hydrological budgets can be performed by considering the vertically integrated DSE and moisture equations in pressure coordinates, c p t T + c p v T + ω p s = Q c + S net + R net + SH, (1) L v t q + L v v q + L v ω p q = Q q + LH, (2) where T is temperature, q is specific humidity, s is dry static energy (c p T +gz, z is geopotential height and g is gravitational acceleration) and indicates a vertical mass integral (i.e., dp/g). The vertically integrated change of internal energy and work done by the atmosphere is balanced by the energy fluxes at the boundaries of the atmospheric column, that is, the net shortwave radiation S net, the net longwave radiation R net and the sensible heat SH, and the latent heating Q c. The vertically integrated change of moisture in the atmospheric column is balanced by the evaporation LH/L v and precipitation Q q /L v, where LH is the surface latent heat flux, Q q is moistening and L v is latent heat of vaporization. The sum of convective heating and moistening must be zero in the atmospheric column because precipitation P = Q q /L v = Q c /L v, so that by summing Eqs. 1 and 2, one obtains the MSE equation: E t = F net v E ω h, (3) p with moist enthalpy E = c p T + L v q, moist static energy h = E + qz and net energy flux through the top and bottom of the atmospheric column F net = S net + R net + SH + LH. The horizontal advection term, as discussed in details in (Chen and Bordoni, 2014), can be further decomposed into stationary and transient eddy fluxes: v E = [v] [ E] + [v] E + v [ E] + v E + v E. (4) The first term on the right side is the zonal-mean energy advection by the zonal-mean flow; the second term is the advection of the stationary eddy energy by the zonal-mean flow; the third term is the advection of the zonal-mean energy by the stationary eddy velocity; the fourth term is the advection of the stationary eddy energy by the stationary eddy velocity; the fifth term is the advection of the transient eddy energy by the transient eddies. Conventionally, ( ) and ( ) denote deviations from the time ( ) and zonal [ ] mean, respectively. These stationary and transient eddy fluxes provide insights into the regional hydrological pattern associated with zonal asymmetries. We study the dynamics of the EASM with an comprehensive approach that makes use of satellite observations, reanalysis and model simulations. Observations include GPCP daily data and Obs4MIPs standard outputs (http://obs4mips.llnl.gov:8080/wiki/) project hosted 1

Figure 1: Vertically integrated MSE budget. Net energy flux into the atmospheric column F net (left), vertical integral of horizontal moist enthalpy advection hv Ei (middle) and i (right) for the MB season. Contours are vertical integral of vertical MSE advection hω h p 2 in W m. Figure 2: Eddy decomposition of the vertical integral of the horizontal moist enthalpy advection hv Ei (left), the horizontal dry enthalpy advection hcp v T i (middle) and the latent energy advection hlv v qi (right) during the MB season. Rows indicate the total advection hv ( )i (first), the advection of the stationary eddy energy by the zonal-mean flow h[v] ( ) i (second), the advection of the zonal-mean energy by the stationary eddy velocity hv [ ( )]i (third), the advection of the stationary eddy energy by the stationary eddy velocity, or pure stationary eddy hv ( ) i (fourth) and the advection of the transient eddy energy by the transient eddy velocity hv 0 ( )0 i (fifth). Contours are in W m 2. 2

Figure 3: Anomalies (TP - notp experiments) in horizontal dry enthalpy advection c p v T (color contours) and vertically integrated (normalized, not mass-weighted) meridional stationary eddy velocity divergence y v (line contours, contour interval 10 6 s 1 ) (a), latent energy advection L v v q (b), the advection of the stationary eddy dry enthalpy by the zonal-mean flow c p [v] T (c), the advection of the zonal-mean dry enthalpy by the stationary eddy velocity c p v [ T ] (color contours) and vertically integrated (normalized, not mass-weighted) stationary eddy wind fields (vectors) with reference vector 3 m s 1 (d). on the Earth System Grid Federation (http://esgf.org). Reanalysis data are primarily obtained from the European Center for Medium-Range Weather Forecasts (ECMWF) ERA- Interim products. Numerical simulations are performed with the AM2.1 AGCM developed at the Geophysical Fluid Dynamics Lab (GFDL, Anderson et al. 2004), in which two different model integrations are performed with different topography over Asia, one where full topography at present-day height is retained (control) and one where the TP and Himalaya mountains are removed (experiment). The following text brief summarizes the findings in Chen and Bordoni (2014). Using the MSE budget (Eq. 3), we find that positive horizontal moist enthalpy advection, and primarily dry enthalpy advection, sustains the MB rainfall band in a region of otherwise negative net energy input into the atmosphere column (Fig. 1). Both F net and horizontal moist enthalpy advection are important in sustaining the rainfall in the Meiyu region; however, in the Baiu region and northwestern Pacific, energy input into the atmosphere is negative, and the horizontal moist enthalpy advection alone sustains the rainfall. Given that the horizontal moist enthalpy advection plays an essential role in positioning the stationary MB rainfall band, heuristically we expect the stationary eddy fluxes to be the dominant terms in the horizontal moist enthalpy advection. By using Eq. 4, stationary eddy fluxes due to zonal thermal gradient x T and the meridional stationary eddy velocity v are shown to be dominant in creating the pattern of total dry enthalpy advection in the MB region (Fig. 2). Numerical simulations with and without the TP are designed to explore how the presence of the TP modifies the MSE and moisture budgets, and, hence, influences the EASM. The presence of the TP is shown to affect significantly the formation of the EASM through 3

changes in the meridional stationary eddy velocity v as well as its meridional gradient y v, while changes in the meridional thermal gradient due to zonal asymmetries x T have a lesser impact and are confined to the near downstream of the TP (Fig. 3). This result is different from that of Sampe and Xie (2010) in that the meridional temperature advection by the meridional stationary eddy velocity, rather than the zonal temperature advection from the TP, is shown to be the primary contribution to the energetics of the MB fronts. The moisture budget, directly relating the net precipitation to the moisture flux convergence, is also examined to better quantify the contribution to the rainfall intensity by evaporation and circulation (moisture advection and/or wind convergence). It is found that the largest contribution to the moisture flux convergence sustaining the MB rainfall arises from stationary eddy convergence v, which is consistent with the other findings. Novel results emerging from this study include: Positive horizontal moist enthalpy advection, and primarily dry enthalpy advection, sustains the MB rainfall band in a region of otherwise negative net energy input into the atmosphere; The zonal thermal gradient due to zonal asymmetries x T and the meridional stationary eddy velocity v are the dominant stationary terms creating the pattern of total dry enthalpy advection in the MB region; The largest contribution to the moisture flux convergence sustaining the MB rainfall arises from stationary eddy convergence v ; The numerical experiments with and without the TP show that the TP primarily influences the formation of the MB front through changes in the meridional stationary eddy velocity v as well as its meridional gradient y v. Changes in the meridional thermal gradient due to zonal asymmetries x T have a lesser impact and are confined to the near downstream of the TP. References Anderson, J., et al., 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17 (24), 4641 4673. Chen, J. and S. Bordoni, 2014: Orographic Effects of the Tibetan Plateau on the East Asian Summer Monsoon: an Energetic Perspective. J. Climate, doi:10.1175/jcli-d-13-00479.1. Chou, C. and J. Neelin, 2003: Mechanisms Limiting the Northward Extent of the Northern Summer Monsoons over North America, Asia, and Africa. J. Climate, 16 (3), 406 425. Chou, C., J. Neelin, and H. Su, 2001: Ocean-atmosphere-land feedbacks in an idealized monsoon. Quart. J. R. Met. Soc., 127 (576), 1869 1891. Dao, L. and S. Chen, 1957: The structure of general circulation over continent of Asia in summer [J]. Acta Meteorol. Sin., 3, 005. Ding, Y. and J. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89 (1), 117 142. 4

Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. R. Met. Soc., 129 (587), 157 178. Flohn, H., 1957: Large-scale aspects of the summer monsoon in South and East Asia. J. Meteor. Soc. Japan, 75, 180 186. Kitoh, A., 2004: Effects of Mountain Uplift on East Asian Summer Climate Investigated by a Coupled Atmosphere-Ocean GCM. J. Climate, 17 (4), 783 802. Li, C. and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast. J. Climate, 9 (2), 358 375. Liu, X. and Z.-Y. Yin, 2002: Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 183 (3), 223 245. Molnar, P., W. Boos, and D. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77 102. Neelin, J., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 267 301. Park, H., J. Chiang, and S. Bordoni, 2012: Mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoon. J. Climate, 25 (7), 2394 2407. Rodwell, M. and B. Hoskins, 2001: Subtropical Anticyclones and Summer Monsoons. J. Climate, 14 (15), 3192 3211. Sampe, T. and S. Xie, 2010: Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet. J. Climate, 23 (1), 113 134. Schiemann, R., D. Lüthi, and C. Schär, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22 (11), 2940 2957. Suda, K. and T. Asakura, 1955: A study on the unusual Baiu season in 1954 by means of northern hemisphere upper air mean charts. J. Meteor. Soc. Japan, 33, 1 12. Wu, G., W. Li, H. Guo, H. Liu, J. Xue, and Z. Wang, 1997: Sensible heat driven air-pump over the Tibetan Plateau and its impacts on the Asian Summer Monsoon. Collections on the Memory of Zhao Jiuzhang, Y. Duzheng, Ed., Chinese Science Press, 116 126. Wu, G., Y. Liu, B. He, Q. Bao, A. Duan, and F. Jin, 2012: Thermal Controls on the Asian Summer Monsoon. Scientific Reports, 2, 404. Wu, G., L. Sun, Y. Liu, H. Liu, S. Sun, and W. Li, 2002: Impacts of land surface processes on summer climate. Selected Papers of the Fourth Conference on East Asia and Western Pacific Meteorology and Climate. In: C. P. Chang et al. (eds), World Scientific, 64 76. Wu, G., et al., 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrol., 8 (4), 770 789. Yanai, M. and G. Wu, 2006: Effects of the Tibetan Plateau. In: B. Wang (ed.). The Asian Monsoon, B. Wang, Ed., Springer Praxis, 513 549. Yeh, T. C., S. W. Lo, and E. C. Chu, 1957: On the heat balance and circulation structure in the troposphere over the Tibetan Plateau and its vicinity. Acta Meteor. Sinica, 28, 108 121. 5