Electronic Supplementary Information for

Similar documents
Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Supporting Information for

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supporting Information

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Supporting information

Supporting Information

Electronic Supplementary Information

Supporting Information

Supporting Information for

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Supplementary Material

Electronic Supplementary Information (ESI)

Electronic Supplementary Information

Supporting Information

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Supporting Information

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

noble-metal-free hetero-structural photocatalyst for efficient H 2

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supporting Information

Supplementary Information

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Electronic Supplementary Information (ESI)

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supporting information

Supporting Information

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Supporting Information

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Electronic Supplementary Information (ESI)

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Supporting Information

Supplementary Information

Supporting Information

Supporting Information

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Supplementary Information

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Electronic Supplementary Information

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

state asymmetric supercapacitors

Supporting Information

Supplementary Information

Electronic Supporting Information (ESI)

Supporting Information

Supplementary Information

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Supporting Information

Supporting Information

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Curriculum Vitae. Yu (Will) Wang

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Supporting Information

Electronic Supplementary Information

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Electronic Supplementary Information

Supporting Information. High-performance nonfullerene polymer solar cells based on fluorinated wide

Electronic Supplementary Information (ESI) for. MnOOH/Nitrogen-Doped Graphene Hybrid Nanowires. Sandwiched by Annealing Graphene Oxide Sheets for

Highly enhanced performance of spongy graphene as oil sorbent

Supporting Information

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

Supporting Information

Supporting information

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Supporting Information

Complex Systems and Applications

Publication List: ( 华中科技大学 ): <2017>

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

RSC Advances.

Supporting Information. Highly simple and rapid synthesis of ultrathin gold nanowires with

Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm:CLNGG laser with MoS 2 saturable absorber mirror

Electronic Supplementary Information

Flexible Nb 4 N 5 /rgo Electrode for High-Performance Solid State Supercapacitors. Huazhong University of Science and Technology Wuhan , China

A tribute to Guosen Yan

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

Hydrophilic Sponges for Leaf-Inspired Continuous Pumping of Liquids

Preliminary Audition

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information for Al-doping to Synchronously Improve Conduction Band and Electron Lifetime for Photoanode to Enhance Dye-Sensitized Solar Cells Performances Yandong Duan, ab Jiaxin Zheng, a Nianqing Fu, bc Yanyan Fang, b Tongchao Liu, a Qian Zhang, d Xiaowen Zhou, b Yuan Lin, *ab and Feng Pan *a a School of Advanced Materials, Peking University, Peking University Shenzhen Graduate School, Shenzhen 518055, China. E-mail: linyuan@iccas.ac.cn; panfeng@pkusz.edu.cn; Tel: 86-0755-26033200. b Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. c Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. d State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China. Y. D. Duan and J. X. Zheng contributed equally to this work. S1

Fig. S1 IPCE of the fabricated DSSCs with, Sn 0.98 Al 0.02 O 2, and Sn 0.98 Al 0.02 O 2 /TiCl 4 as photoanodes. Fig. S2 EIS spectra of the and the Al-doped DSSCs. The inset of EIS plots represents the equivalent circuit for EIS. Table S1 Comparison for the photovoltaic performance of the DSSCs based on different photoanode structures (, /TiO 2, and /ZnO composites). DSSCs based on photoanode Ref. Morphology or structure Diameter Synthetic method or manufacturer Film thickness η (%) (No surface treatment) η (%)(After surface treatment) a S1 10-30 NanoTek, SNW15WT%-G02 6 μm 2.3 --- S2 3-5 Alfa Aesar 10 μm 1.74 MgO/7.21 S3 nanowire 20-200 reactive vapor transport 25-30 μm 2.1 TiCl 4 /4.1 S4 hollow 1-2 μm hydrothermal 10 μm 1.4 TiCl 4 /5.65 S5 coral-like 300 2 μm wet-chemical --- 1.04 --- S6 15 Alfa Aesar 4 μm 0.76 Al 2 O 3 /3.7 S7 meso- 20 pores hard template method 3 μm 1.1 TiCl 4 /3.8 S8 nanoflower 1 μm hydrothermal 8-10 μm 3.00 TiCl 4 /6.78 S2

S9 15 Alfa Aesar 5 μm 1.14 NiO/1.85 S10 15 Alfa Aesar --- 1.7 CaCO 3 /5.4 4 />100 Alfa Aesar S11 nanoporous /Aldrich 1-5μm 2.27 --- S12 nanocrystals 100 microwave solvothermal 10-12μm 3.16 --- S13 nanoarborous --- electrodeposition 15μm 0.47 --- structure S14 nanopowder <100 Sigma-Aldrich 8μm 3.65 MgO/6.40 S15 nanotube 110 electrospinning 13μm 0.99 TiCl 4 /5.11 S16 nanowires 75±25 electrospinning 19±2 μm 2.53 --- S17 Zn-doped nano-echinus 1 μm solvothermal 11μm 4.15 --- S18 100 hydrothermal --- 0.85 4.15 S19 hollow nanospheres 200 hydrothermal --- 0.86 TiCl 4 /6.02 S20 octahedra 0.5-1.8 μm sonochemical 13.2 μm --- TiCl 4 /6.8 S21 nanosheet thickness:4-6 hydrothermal 4.1μm 0.23 TiCl 4 /1.79 S22 S23 mesoporous agglomerates N- mesoporous 200-600 molten salt method 8 μm 3.05 TiCl 4 /6.23 1.2-1.5 μm one-pot solvothermal --- 2.3 --- S24 Sb-doepd aerogels --- sol-gel 10μm 0.7 ALD TiO 2 /3.5 S25 cauliflower-like hollow 500-2 μm hydrothermal 11μm --- 3.6 S26 nanofibers 200 --- 8.7 μm -- TiCl 4 /4.63 S27 microwave 11.2-26.2 hydrothermal 13-15 μm 1.35 --- S28 nanoflower 1μm hydrothermal -- 1.05 TiCl 4 /5.6 Our work Al- nanocrystals 11.6-15.9 hydrothermal 8 μm 3.56 TiCl 4 /6.91 DSSCs based on /TiO 2 and /ZnO composites S26 /TiO 2 composite (1:1) --- mechanical blend 7.5 μm --- TiCl 4 /6.17 S3

S29 nanorod@tio 2 150 40 flame spray pyrolysis 12 μm 3.95 TiCl 4 /6.98 6-10 hydrothermal/metal S30 /ZnO /40 500 vapor transport- 6 μm 6.31 --- nanotetrapods oxidation method ---/103-291 3 μm +4.4 S31 nanoparticle-zno hydrothermal 2.62 --- 7μm μm nanorod 150+1 S32 NRs-TiO 2 50 5 solution method 8.61 --- 0μm hollow solvothermal S33 spheres-tio 2 500 8μm 8.2 --- reaction nanosheets a Surface treatment method and the corresponding photon-to-electron conversion efficiency. References: S1. Y. Fukai, Y. Kondo, S. Mori and E. Suzuki, Electrochem. Commun., 2007, 9, 1439-1443. S2. M. K. I. Senevirathna, P. Pitigala, E. V. A. Premalal, K. Tennakone, G. R. A. Kumara and A. Konno, Sol. Energy Mater. Sol. Cells, 2007, 91, 544-547. S3. S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, Adv. Funct. Mater., 2008, 18, 2411-2418. S4. J. F. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. L. Cao, X. P. Ai and H. X. Yang, Adv. Mater., 2009, 21, 3663. S5. J. Y. Liu, T. Luo, T. S. Mouli, F. L. Meng, B. Sun, M. Q. Li and J. H. Liu, Chem. Commun., 2010, 46, 472-474. S6. C. Prasittichai and J. T. Hupp, J. Phys. Chem. Lett., 2010, 1, 1611-1615. S7. E. Ramasamy and J. Lee, J. Phys. Chem. C, 2010, 114, 22032-22037. S8. X. C. Dou, D. Sabba, N. Mathews, L. H. Wong, Y. M. Lam and S. Mhaisalkar, Chem. Mater., 2011, 23, 3938-3945. S9. M. H. Kim and Y. U. Kwon, J. Phys. Chem. C, 2011, 115, 23120-23125. S10. K. Perera, S. G. Anuradha, G. R. A. Kumara, M. L. Paranawitharana, R. M. G. Rajapakse and H. M. N. Bandara, Electrochim. Acta, 2011, 56, 4135-4138. S11. Z. Tebby, T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, C. Labrugere and L. Hirsch, ACS Appl. Mater. Interfaces, 2011, 3, 1485-1491. S12. A. Birkel, Y. G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M. J. Choi, Y. S. Kang, K. Char and W. Tremel, Energ. Environ. Sci., 2012, 5, 5392-5400. S13. Z. Chen, Y. F. Tian, S. J. Li, H. W. Zheng and W. F. Zhang, J. Alloy. Compd., 2012, 515, 57-62. S14. P. Docampo, P. Tiwana, N. Sakai, H. Miura, L. Herz, T. Murakami and H. J. Snaith, J. Phys. Chem. C, 2012, 116, 22840-22846. S15. C. T. Gao, X. D. Li, B. G. Lu, L. L. Chen, Y. Q. Wang, F. Teng, J. T. Wang, Z. X. Zhang, X. J. Pan and E. Q. Xie, Nanoscale, 2012, 4, 3475-3481. S16. T. Krishnamoorthy, M. Z. Tang, A. Verma, A. S. Nair, D. Pliszka, S. G. Mhaisalkar and S. Ramakrishna, J. Mater. Chem., 2012, 22, 2166-2172. S17. Z. D. Li, Y. Zhou, T. Yu, J. G. Liu and Z. G. Zou, Crystengcomm, 2012, 14, 6462-6468. S18. H. C. Pang, H. B. Yang, C. X. Guo and C. M. Li, ACS Appl. Mater. Interfaces, 2012, 4, 6261-6265. S19. H. Wang, B. Li, J. Gao, M. Tang, H. B. Feng, J. H. Li and L. Guo, Crystengcomm, 2012, 14, 5177-5181. S4

S20. Y. F. Wang, K. N. Li, C. L. Liang, Y. F. Hou, C. Y. Su and D. B. Kuang, J. Mater. Chem., 2012, 22, 21495-21501. S21. J. Xing, W. Q. Fang, Z. Li and H. G. Yang, Ind. Eng. Chem. Res., 2012, 51, 4247-4253. S22. P. N. Zhu, M. V. Reddy, Y. Z. Wu, S. J. Peng, S. Y. Yang, A. S. Nair, K. P. Loh, B. V. R. Chowdari and S. Ramakrishna, Chem. Commun., 2012, 48, 10865-10867. S23. Z. D. Li, Y. Zhou, J. C. Song, T. Yu, J. G. Liu and Z. G. Zou, J. Mater. Chem. A, 2013, 1, 524-531. S24. J. P. Correa Baena and A. G. Agrios, J. Phys. Chem. C, 2014, 118, 17028-17035. S25. V. Ganapathy, E. H. Kong, Y. C. Park, H. M. Jang and S.-W. Rhee, Nanoscale, 2014, 6, 3296-3301. S26. R. Kasaudhan, H. Elbohy, S. Sigdel, H. Qiao, Q. Wei and Q. Qiao, IEEE Electron. Device Lett. 2014, 35, 578-580. S27. K. Manseki, T. Sugiura and T. Yoshida, New J. Chem., 2014, 38, 598-603. S28. H. Niu, S. Zhang, R. Wang, Z. Guo, X. Shang, W. Gan, S. Qin, L. Wan and J. Xu, J. Phys. Chem. C, 2014, 118, 3504-3513. S29. J. Huo, Y. Hu, H. Jiang, W. Huang and C. Li, J. Mater. Chem. A, 2014, 2, 8266-8272. S30. W. Chen, Y. C. Qiu, Y. C. Zhong, K. S. Wong and S. H. Yang, J. Phys. Chem. A, 2010, 114, 3127-3138. S31. N. K. Huu, D. Y. Son, I. H. Jang, C. R. Lee and N. G. Park, ACS Appl. Mater. Interfaces, 2013, 5, 1038-1043. S32. H. Song, K. H. Lee, H. Jeong, S. H. Um, G. S. Han, H. S. Jung and G. Y. Jung, Nanoscale, 2013, 5, 1188-1194. S33. S. H. Ahn, D. J. Kim, W. S. Chi and J. H. Kim, Adv. Funct. Mater., 2014, 24, 5037-5044 S5