EFFECT OF LURES AND TRAP PLACEMENT ON SAND FLY AND MOSQUITO TRAPS

Similar documents
Comparative efficacy of small commercial traps for the capture of adult Phlebotomus papatasi

J Mukhopadhyay/*, KN Ghosh /*/+

DISTRIBUTION OF PHLEBOTOMINE SAND FLIES (DIPTERA:PSYCHODIDAE) IN LIMESTONE CAVES, KHAO PATHAWI, UTHAI THANI PROVINCE, THAILAND

Report Documentation Page

Blood Sucking Insects

Figure 1. A) Sam Malan watches wasp choice test. B) Y-tube apparatus example.

Response of phlebotomine sand flies to lightemitting diode-modified light traps in southern Egypt

Comparison of Two Yellow Sticky Traps for Capture of Western Cherry Fruit Fly (Rhagoletis indifferens) in Tart Cherry in Northern Utah 2015

FLAVESONE: A NOVEL INSECTICIDE FOR THE CONTROL OF URBAN PESTS

Integrated Pest Management. Program Planning Guide

RESEARCH NOTE. NS Singh and Doris Phillips Singh. Department of Zoology, Lucknow Christian College, Golaganj, Lucknow (U.P.

Field Evaluation of a Novel Lure for Trapping Seedcorn Maggot Adults

College of Basic Education Researchers Journal Vol.11 No.3

Prionus Mating Disruption and Trap Capture in Sweet Cherry 2011

2.1 Developing Effective Monitoring Tools For Brown Marmorated Stink Bug

Response of Predaceous Checkered Beetles (Coleoptera: Cleridae) to Pheromone Components of Longhorned Beetles

Useful Tools in Mosquito Surveillance

Choosing a Gravid Water Recipe and CO2 Formulation for Mosquito Surveillance. Presented by Jay Kiser

Address: 5230 Konnowac Pass Rd Address: Dept. Entomology, Barton Lab City: Wapato City: Geneva

Evaluation of commercial and field-expedient baited traps for house flies, Musca domestica L. (Diptera: Muscidae)

Sticky Traps for Large Scale House Fly (Diptera: Muscidae) Trapping in New York Poultry Facilities1

Synthetic Sex Pheromone in a Long-Lasting Lure Attracts the Visceral Leishmaniasis Vector, Lutzomyia longipalpis, for up to 12 Weeks in Brazil

Population dynamic of the flies attached to stick traps in horse stables in Shalalat, Mosul

PERMIT TO ALLOW MINOR USE AND SUPPLY OF AN AGVET CHEMICAL PRODUCT

Research Article Application of RFLP-PCR-Based Identification for Sand Fly Surveillance in an Area Endemic for Kala-Azar in Mymensingh, Bangladesh

Bionomics of phlebotomine sand flies (Diptera: Psychodidae) in the province of Al-Baha, Saudi Arabia

Evaluation of Imidacloprid-Treated Traps as an Attract and Kill System for Filth Flies During Contingency Settings

THE DISTANCE OF ATTRACTION OF CDC LIGHT TRAPS TO PHLEBOTOMINE SANDFLIES. Distances d attraction des pièges lumineux CDC vis-à-vis des Phlébotomes.

Bionomics of phlebotomine sand flies from three villages in Bihar, India

FACTORS AFFECTING LABORATORY PROCEDURES for EVALUATING EFFICACY of INSECT LIGHT TRAPS for HOUSE FLIES

RESEARCH ARTICLE. Gregory A. Ose, 1,2 and Jerome A. Hogsette 3 *

NEW RESISTANCE- BREAKING FLY CONTROL

Monitoring Methods for Codling Moth Dr. Jay Brunner, WSU TFREC, Wenatchee

Honorable Mayor and Members of the City Council SUBJECT: 2008 REPORT FROM THE TEHAMA COUNTY MOSQUITO AND VECTOR CONTROL DISTRICT

2014 House Fly Densities around Dairies in Central Texas

Developing an Easily Used Bait Monitoring Method for Oriental Fruit Moth in Mating Disruption Orchards

Effects of Bulb Degradation on Fly Attraction to Insect Light Traps

Your Guide to Fly Control Management. Strong bonds are built with great care.

WATER USE AND EFFECTIVENESS OF A LOW PRESSURE MISTER SYSTEM FOR COOLING LACTATING DAIRY COWS DURING CHRONIC HEAT STRESS

GOLIATH LIQUID ANT BAIT

FAD Investigation 16FL0012

ORIENTATION OF HYLOBIUS PALES AND PACHYLOBIUS

Walk Through Trap to Control Horn Flies on Cattle

Repellent property of eugenol oil against Houseflies (Musca domestica L.)

Some Biological Parameters of Bigeye and Yellowfin Tunas Distributed in Surrounding Waters of Taiwan

Livestock Concerns with Feral Hogs. Aaron Sumrall Newton Co. Extension Agent

A NEW ERADICATION STRATEGY FOR SMALL, REMOTE GYPSY MOTH INFESTATIONS

Determination of R: The Gas-Law Constant

Navel orangeworm biology, monitoring, and management

Making pest control smarter.

GAS ANALYSER OXYBABY M+ for O 2. or O 2 /CO 2. standard version

Experiment 18 Properties of Gases

flies BASF Pest Control Solutions The Evolution of Better Pest Control

Reducing Fly Populations on Pastured Cattle in Nebraska David Boxler, UNL, North Platte, NE

Boric Acid Aversion in Adult House Flies, Musca domestica L. 1

TERRO Pest Control It Works!

Adaptations of Desert Plants

Project No: R Visual Lures for Possums. Malcolm Thomas and Fraser Maddigan. Pest Control Research Ltd PO Box 7223 Christchurch New Zealand

Benefits. Rev.III_032018_Oxybaby 6.0_engl subject to technical alterations

Presence and distribution of red flour beetles in a city neighborhood surrounding a grain-cleaning facility

Baiting European wasps: why bother? Merydyn Davison Insect Inquiries Officer Orange Agricultural Institute

Introduction. *Mehmet Karakus 1, Bayram Gocmen 2, Yusuf Özbel 3

Hook Selectivity in Gulf of Mexico Gray Triggerfish when using circle or J Hooks

Advancements in Pest Management Monitoring for Food Processors

Result Demonstration Report

23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN APRIL 2007

USDA-ARS Areawide Tick IPM Project: Host-targeted Control

2018 Florida 4-H Insect Collection Contest

Results: Complete the following table and create a bar graph of your data.

Pest animal control. Guiding principles for community groups and landowners

Chemical Class Standard Operating Procedures. Pyrophoric Chemicals (PYR) & Water Reactive Chemicats (WRC) Diethylzinc

LABORATORY TECHNIQUES. Pouring Liquids

Safety Data Sheet AC Tech 2170 SLP

Upland Wildlife Habitat Management (645) EQIP Program Sheet Feral Swine Trapping. MI-EQIP11-1

Evaluation of Insecticide Effects on Biology of Cherry Fruit Fly. Various homeowners in Tri-Cities and Yakima, WA

Distribution, Demographics, and Impacts of the Island Applesnail (Pomacea maculata) in South Carolina: Past, Present and Future Research Efforts

Aquatic Trap Instructions and Information

GAS ANALYSER OXYBABY 6.0 for O 2. or O 2 /CO 2

Altosid PELLETS Mosquito Growth Regulator

Behavioral Adaptations of House Flies (Musca domestica L.) to Avoid the Insecticide Imidacloprid

B. Assemble the Method-25 sample train with a heated probe/filter.

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

The Role of Olive Trees Distribution and Fruit Bearing in Olive Fruit Fly Infestation

Finishing Steers in a Deep-bedded Hoop Barn and a Conventional Feedlot: Effects on Behavior and Temperament during Winter in Iowa

Control of sand flies with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in Morocco

Ready to use oil based insecticide for controlling various home garden insect pests.

Result Demonstration Report

Behavior of the Simple Pendulum

Everything a Lake Should Be

Complete Cockroach Control Protecting Reputations, Health Ratings, and Profitability

Objective: Experimental Procedures:

Visual and chemical cues affecting the detection rate of the emerald ash borer in sticky traps

A Comparative Study on Different Baits Used to Attract House Fly in Malaysia

Isolation of the rapid blight pathogen Labyrinthula terrestris from Bermudagrasses in Arizona

DIEL OVIPOSITION CYCLE OF AEDES ALBOPICTUS. S.H.P.P. Karunaratne and F.P. Amerasinghe. Department of Zoology, University of Peradeniya, Sri Lanka.

Safety Data Sheet according to (EC) No 1907/2006

IMPC phenotyping SOPs in JMC

Safety Data Sheet. SECTION 1: Identification. SECTION 2: Hazard identification

Best Practice on the Farm

DWFP Competitive Grants : total 77 Awards

Transcription:

Proceedings of the Sixth International Conference on Urban Pests William H Robinson and Dániel Bajomi (editors), 2008 Printed by OOK-Press Kft., H-8200 Veszprém, Pápai út 37/a, Hungary 171 EFFECT OF LURES AND TRAP PLACEMENT ON SAND FLY AND MOSQUITO TRAPS 1 ULRICH R. BERNIER, 2 DAVID F. HOEL, 1 JEROME A. HOGSETTE, JR., 2 HANAFI A. HANAFI, AND 1 DANIEL L. KLINE 1 USDA-ARS-Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, Florida, USA 2 U.S. Navy Medical Research Unit 3, Cairo, EGYPT e-mail: uli.bernier@ars.usda.gov Abstract Catches of mosquitoes and sand flies in CO 2 traps baited with three different lures and an unbaited control were compared. The lures examined were carbon dioxide, carbon dioxide plus 1-octen-3-ol, and carbon dioxide plus human hair in ethanol. Studies using a 4 x 4 Latin square design, with 3 sets of 4 consecutive trap nights, were conducted between August 6 and September 10, 2007. The study site was the Bahrif Village, Aswan, Egypt. This location had high percentage of Phlebotomus papatasi in sand fly populations, and the low incidence of human cases of leishmaniasis. There were 2,152 sand flies caught over the 12 total nights (48 trap-nights) of this study. Mean numbers of sand flies captured in traps baited with any lure were significantly greater than sand those caught in the unbaited control trap. The mean numbers of sand flies trapped using each lure did not differ significantly. Key Words Phlebotomus papatasi, surveillance, monitoring, attractants INTRODUCTION Phlebotomine sand flies, especially Phlebotomus papatasi (Scopoli), in the Middle East are responsible for transmission of cutaneous leishmaniasis to humans. These insects are sensitive to environmental conditions that will impact their host-seeking behaviour, such as wind speed and location. They are nocturnal in their biting activities (e.g. bimodal) that may vary from region to region and among species (Hoogstraal et al., 1962; Killick-Kendrick, 1999; Guernaoui et al., 2006). One of the complicating issues with this vector is that common control methods have not been as effective in preventing disease transmission in recent years (Maroli and Khoury, 2006; Orshan et al., 2006). Accurate surveillance of these disease vectors is therefore essential to evaluate local populations for calculating disease risk in a local area and in the assessment of control measures (Alexander and Maroli, 2003). The Centers for Disease Control (CDC) light trap is used often in trapping studies of sand flies (Burkett et al., 2007; Hanafi et al., 2007; Hoel et al., 2007). We used American Biophysics Mosquito Magnet-X (MMX) (Woodstream, Lititz, PA; obtained originally from American Biophysics, East Greenwich, RI) traps in Bahrif, Aswan, Egypt, with and without carbon dioxide, and in combination with additional chemical lures to determine if these combinations enhanced trap collections. Previous studies indicate that carbon dioxide can enhance trap collections (Alexander, 2000; Veronesi et al., 2007). The compound 1-octen-3-ol is known to augment trap collections with mosquito species (Takken and Kline, 1989), and Lutzomyia spp. sand flies were attracted to the combination of human odors and carbon dioxide in laboratory (Oshaghi et al., 1994; Rebollar- Tellez et al., 1999) and field studies (Pinto et al., 2001). Bahrif was selected as a site for field experimentation because sand fly population history in the area is known, the predominant sand fly species in this area (> 93%) is Phlebotomus papatasi, and the incidence of leishmaniasis in the local sand fly population is practically negligible (Hoel et al., 2007), similar to reasons for studies of these flies in the Sinai (Hanafi et al., 2007). MATERIALS AND METHODS Trap Sites Trapping experiments were conducted using 3 sets of a Latin square design with four treatments rotated through four locations / sites over four nights of trapping. The treatment-trap combinations consisted of an unbaited trap with no CO 2, one with CO 2, one with 1-octen-3-ol and CO 2, and one baited with human hair

172 Ulrich R. Bernier, David F. Hoel, Jerome A. Hogsette, jr., Hanafi A. Hanafi, and Daniel L. Kline in ethanol. The three sets of trials/sets were run on nights over the following days: August 7-10, August 24-27, and September 10-14, 2006 in Bahrif village, Aswan, Egypt. The distance of the closest site (2) to the Nile River bank was 324 m inland. Traps were placed at > 10 m apart. For our study, the distance between trap sites 1 and 2 was 25 m, and this was the smallest distance between any two traps. Trap site 3 (centrally located relative to the other sites) was 82 m from site 2, 84 m from site 4, and 104 m from site 1. Site 4 was the located farthest North and was 166 m from site 1 and 186 m from site 2. Trap nights began around 1700 local time each evening and concluded in the morning at approximately 0700. Lures Carbon dioxide was delivered via placing ~1 kg dry ice in Igloo thermos containers (~2 L) (J.W. Hock, Gainesville, FL). The 1-octen-3-ol solution (95% v/v in acetone) was prepared as a 100 ml stock solution comprised of 5 ml of reagent grade 1-octen-3-ol and the remainder acetone in a volumetric flask. In the field, approximately 5 ml of the stock solution was transferred to a 5 ml reaction vial and sealed with a cap containing a rubber septum. The septum was pierced by a 23 gauge pointed Luer needle to allow for evaporation rates of approximately 0.5 ml/trap night (range of 0.2-2.0 ml). The human hair sample (approximately 2.54 cm 2 ) was clipped or shaved off an individual daily and placed into a 5 ml reaction vial. To this, absolute ethanol was added to bring the total volume to 5 ml in the vial. The vial was sealed with a cap containing a rubber septum. The septum was pierced from the inside by a 23 gauge pointed Luer needle to allow for evaporation rates of approximately 0.5 ml/trap night (range of 0.2-2.0 ml). The vials containing solution were hung at the base of the outlet of the MMX trap using cotton string of ~0.32 cm diameter such that the needles were inside the trap outlet and directly in the air flow. For the two traps that were unbaited, empty reaction vials were used in place of those with solution. The trap assembly was suspended using a fiber cord, such that the CFG air flow exit of the MMX was about 0.67 m above the ground. When possible, cords were tied to palm trees in the natural environment, or Shepherd s hooks (~2 m tall) were used when palm trees were not feasible for trap suspension. Evaluations All collections were performed in the morning so we could estimate the amount of solution that had evaporated overnight. This was expressed as a rough approximation by estimating the volume lost. The vials were then placed near the trap location selected for the upcoming evening test and these were replenished with fresh solution in the afternoon. To the octenol vial, we just added additional solution to bring the volume back up to 5 ml. The hair/ethanol in the second vial was completely replaced. The trap assemblies with CO 2 dispensing containers were transported as a single assembly to a sheltered worksite to remove the trapped insects. The remaining dry ice from the dispenser was removed and placed in a large plastic trash bag (~144 L volume). The trap assembly containing insects was also placed in the same bag and the bag was sealed. Each filled bag was set aside for 15-20 min to knock down all insects in the trap. After this period, the trap assembly was removed and insects aspirated using a hand-held aspirator (Hausherr s, Toms River, NJ). The collected insects were placed into 20 ml vials for transportation and later identification under a microscope. Data Analysis All data were log 10 (n+1) transformed prior to data analysis. The data were analyzed for treatment (no CO 2, CO 2, CO 2 + 1-octen-3-ol, CO 2 + human hair), site location (1-4), and time effects (repetitions 1-12) using 3-way ANOVA (SAS Institute, 2003). Means in treatment catches were separated with Duncan s Multiple Range Test (α = 0.05) (SAS Institute, 2003). RESULTS AND DISCUSSION Lures Significant differences were present in the main effects of the model (F=7.35; df=17, 47; P < 0.0001). There were highly significant differences between the lures used (F=19.98; df=3, 47; P < 0.0001) and between the sites of the study (F=17.13; df=3, 47, P < 0.0001). As expected in a Latin square design, significant differences were not observed over time (between repetitions) of this study (F=1.23; df=11, 47; P=0.3097). A total of 2152 sand flies were collected during the 3 tests (Table 1). The only significant

Effect of Lures and Trap Placement on Sand Fly and Mosquito Traps 173 difference observed was that for an unbaited trap compared to a trap containing CO 2, with or without additional baits. Alexander (2000) noted that the use of CO 2 in studies increased the distance, and therefore numbers of sand flies attracted to a trap. It was disappointing that although the trap baited with CO 2 and human hair caught the highest numbers of sand flies, the catch was not significantly different than CO 2 + octenol, nor simply CO 2 alone. Table 1. Total and mean numbers of sand flies captured with each lure at each site. Treatment Total Mean ± SE 1 Hair + CO 2 760 63.33 ± 13.68a Octenol + CO 2 607 50.58 ± 9.49a CO 2 608 50.67 ± 8.89a Unbaited 177 13.92 ± 2.97b Total 2152 1 Values with the same letter are not significantly different (P 0.05) by Duncan s Multiple Range Test (SAS Institute, 2003). Location There were no significant differences in catches for site location 1 compared to location 2, nor for site 3 compared to site 4. However, significant differences existed between each of these pairs, (1, 2) compared to (3, 4). This was expected based on the site locations; sites 1 and 2 were located in one section of the village where significant goat and human activity occur, sites 3 and 4 were more remotely located. Site 3 was located farthest away from human dwellings, across a field used for trash disposal which quite often contained goats feeding in this area during daylight hours. The site was located near vegetation next to an irrigation stream used by inhabitants of the village. Site 4 was located between dwellings, also near this irrigation stream, but in an area where there was less trash and lower rates of traverse by livestock. One reason that goats were expected to play some role in location of increased sand fly populations for trapping is based on findings by Johnson et al. (1993) that goats (and sheep) were the most attractive animal baits for studies with Phlebotomus guggisbergi in Kenya. Additionally, sites 1 and 2 were the most enclosed in a courtyard type area with constructed walls around the perimeter. Possibly, this may be partly due to the same parameters that resulted in larger collections of Phlebotomus papatasi in enclosed spaces (bunkers) than out in the open desert (Hanafi et al., 2007). Therefore, one of the reasons for differences in trap catch in our study may be for similar reasons. Table 2. Numbers of Diptera other than sand flies captured using various lures. Treatment Species Ochlerotatus caspius Culex Perexiguus Culex pipiens Culex antennatus Culex poicilipes Anopheles pharoensis Musca crassirostris Hair + CO 2 227 12 29 9 2 0 41 Octenol + CO 2 386 13 71 19 0 2 59 CO 2 388 73 69 18 3 3 57 Unbaited 4 5 5 1 0 2 1 Total 1015 103 174 47 5 7 158

174 Ulrich R. Bernier, David F. Hoel, Jerome A. Hogsette, jr., Hanafi A. Hanafi, and Daniel L. Kline Other Flies In addition to sand flies, mosquitoes and Muscid flies were also trapped (Table 2). Ochlerotatus caspius Pallas were collected in greatest numbers (227-388 summed over all trials) in traps that employed lures. Musca crassirostris Stein was also collected in traps baited with lures. In order of decreasing numbers caught were Culex pipiens (L.), Cx. perexiguus Theobald, Cx. antennatus Becker, Anopheles pharoensis Theobald, and Cx. poicilipes Theobald. CONCLUSIONS It was clear that the use of any chemical lure, including carbon dioxide alone, resulted in trapping of sand flies at levels significantly greater than those collected in an unbaited MMX trap. The Latin square design compensated for time effects in the data, and there were significant differences in site location. The addition of odors and chemicals thought to be host-specific did not significantly increase the collection of sand flies in traps over numbers caught by release of CO 2 alone. Future experiments will involve additional lures, trap placement effects on catch, and examination of the use of diodes, in conjunction with optimal lures and trap placements, to enhance trap collection. ACKNOWLEDGMENTS This study was partly supported by the Deployed War-Fighter Protection (DWFP) Research Program, funded by the U.S. Department of Defense through the Armed Forces Pest Management Board (AFPMB). The authors thank E.Y. Fawaz and S.S. El-Hossary for assistance throughout this project. REFERENCES CITED Alexander, B. 2000. Sampling methods for phlebotomine sandflies. Med. Vet. Entomol. 14:109-122. Alexander, B. and Maroli, M. 2003. Control of phlebotomine sandflies. Med. Vet. Entomol. 17:1-18. Burkett, D.A., Knight, R., Dennett, J.A., Sherwood, V., Rowton, E., and Coleman, R.E. 2007. J. Med. Entomol. 44:381-384. Guernaoui, S., Boussaa, S., Pesson, B., and Boumezzough, A. 2006. Nocturnal activity of phlebotomine sandflies (Diptera: Pyschodidae) in a cutaneous leishmaniasis focus in Chichaoua, Morocco. Parastiol Res. 98:184-188. Hanafi, H.A., Fryauff, D.J., Modi, G.B., Ibrahim, M.O., and Main, A.J. 2007. Bionomics of phlebotomine sandflies at a peacekeeping duty site in the north of Sinai, Egypt. Acta Tropica 101:106-114. Hoel, D.F., Butler, J.F., Fawaz, E.Y., Watany, N., El-Hossary, S.S., and Villinski, J. 2007. Response of phlebotomine sand flies to light-emitting diode-modified light traps in southern Egypt. J. Vector Ecol. 32:302-308. Hoogstraal, H., Dietlein, D.R., and Heyneman, D. 1962. Leishmaniasis in the Sudan Republic: 4. Preliminary observations on man-biting sandlfies (Psychodidae: Phlebotomus) in certain Upper Nile endemic areas. Trans. Roy. Soc. Trop Med. Hyg. 56:411-422. Johnson, R.N., Ngumgi, P.M., Mwanyumba, J.P., and Roberts, C.R. 1993. Host feeding preference of Phlebotomus guggisbergi, a vector of Leishmania tropica in Kenya. Med. Vet. Entomol. 7:216-218. Killick-Kendrick, R. 1999. The biology and control of phlebotomine sand flies. Clin Dermatol. 17:279-289. Maroli, M. and Khoury, C. 2006. Current approaches to the prevention and control of leishmaniasis vectors. Vet. Res. Commun. 30:49-52 (Suppelement 1) Orshan, L., Szekely, D., Schnur, H., Wilamowski, A. Garler, Y., Bitton, S., and Schlein, Y. 2006. Attempts to control sand flies by insecticide-sprayed strips along the periphery of a village. J. Vector Ecol. 31:113-117. Oshaghi, M.A., McCall, P.J., and Ward, R.D. 1994. Response of adult sandflies, Lutzomyia longipalpis (Diptera: Pyschodidae), to sticky traps baited with host odour and tested in the laboratory. Ann. Trop. Med. Parasitol. 88:439-444. Pinto, M.C., Campbell-Lendrum, D.H., Lozovei, A.L., Teodoro, U., and Davies, C.R. 2001. Phlebotomine sandfly responses to carbon dioxide and human odour in the field. Med. Vet. Entomol. 15:132-139.

Effect of Lures and Trap Placement on Sand Fly and Mosquito Traps 175 Rebollar-Tellez, E.A., Hamilton, J.G.C., and Ward, R.D. 1999. Response of female Lutzomyia longipalpis to host odour kairomones from human skin. Physiol. Entomol. 24:220-226. SAS Institute. 2003. SAS/STAT User s Guide, version 9.1, Cary, NC: SAS Institute. Takken, W. and Kline, D.L. 1989. Carbon dioxide and 1-octen-3-ol as mosquito attractants. J. Am. Mosq. Control Assoc. 5:311-316. Veronesi, E., Pilani, R., Carrieri, M., and Bellini, R. 2007. Trapping sand flies (Diptera: Psychodidae) in the Emilia-Romagna region of northern Italy. J. Vector Ecol. 32:313-318.

176