Hawaiienols A D, Highly Oxygenated p-terphenyls from an. Insect-Associated Fungus Paraconiothyrium hawaiiense

Similar documents
LC-MS-Guided Isolation of Insulin Secretion-promoting. Monoterpenoid Carbazole Alkaloids from Murraya

Bafilomycins and Odoriferous Sesquiterpenoids from Streptomyces albolongus Isolated from Elephas maximus Feces

Supporting information

Fortunoids A C, Three Sesquiterpenoid Dimers with. Different Carbon Skeletons from Chloranthus fortunei

Supporting Information

Supplementary Materials: Bioactive Polycyclic Quinones from Marine Streptomyces sp. 182SMLY

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

Formation of Nudicaulins In Vivo and In Vitro and the Biomimetic Synthesis and Bioactivity of O-Methylated Nudicaulin Derivatives

Lipid Peroxidation and Cyclooxygenase Enzyme Inhibitory Compounds

Supporting Information

Marine AChE inhibitors isolated from Geodia baretti: Natural compounds and their synthetic analogs

Bioactive Pentacyclic Triterpenoids from the Leaves of Cleistocalyx operculatus

User guide for the NMR spectrometer AVA400Stud

Flexible porous coordination polymers constructed by 1,2-bis(4-pyridyl)hydrazine via solvothermal in situ reduction of 4,4 -Azopyridine

Support Information. Diketopiperazines as cross communication quorum-sensing signals between Cronobacter sakazakii and Bacillus cereus

Joo Tae Hwang, Yesol Kim, Hyun-Jae Jang, Hyun-Mee Oh, Chi-Hwan Lim, Seung Woong Lee and Mun-Chual Rho

Journal of Chemical and Pharmaceutical Research, 2014, 6(3): Research Article

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Application of pushover analysis in estimating seismic demands for large-span spatial structure

Supporting Information

Joint Parsing and Translation

Metabolomics-driven Discovery of Meroterpenoids from a Musselderived. Penicillium ubiquetum

Supporting Information for:

SUPPORTING INFORMATION

Experimental research on instability fault of high-speed aerostatic bearing-rotor system

Evgeny A. Katayev and Markus B. Schmid

Typically NMR Sample Configuration

Supplementary Information

APPLICATION OF PUSHOVER ANALYSIS ON EARTHQUAKE RESPONSE PREDICATION OF COMPLEX LARGE-SPAN STEEL STRUCTURES

Basketball field goal percentage prediction model research and application based on BP neural network

Implementation of Height Measurement System Based on Pressure Sensor BMP085

Supplemental Materials

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Simple Measurements & Buoyancy Force

Longevity Risk in China and its Financial Impact: Evidence from Model Test

Step By Step Instructions for VT Experiments on the Bruker 300 MHz Spectrometer

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Modeling the pressure characteristics of parallel chokes used in managed pressure drilling and related experiments

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Hydrophilic/Hydrophobic Interphase-Mediated. Bubble-Like Stretchable Janus Ultrathin Films. Towards Self-Adaptive and Pneumatic

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Supplementary Material

The study of 3-strand PP/PE composite monofilament Rope

Numerical simulation of three-dimensional flow field in three-line rollers and four-line rollers compact spinning systems using finite element method

Supporting information. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Keywords: multiple linear regression; pedestrian crossing delay; right-turn car flow; the number of pedestrians;

BioTechnology. BioTechnology. An Indian Journal FULL PAPER KEYWORDS ABSTRACT. Based on TOPSIS CBA basketball team strength statistical analysis

On-Road Parking A New Approach to Quantify the Side Friction Regarding Road Width Reduction

Study on the shape parameters of bulbous bow of. tuna longline fishing vessel

Performance Analysis of Centrifugal Compressor under Multiple Working Conditions Based on Time-weighted Average

GEF/SGP

Electronic Supplementary Information (ESI)

Things to know before operating an NMR spectrometer André Boltjes, University of Groningen DD NMR Lab v

Supporting Information for. Grafting trimethylaluminum and its halogen derivatives on silica: General trends for

Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils

Analysis of wind resistance of high-rise building structures based on computational fluid dynamics simulation technology

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

PUV Wave Directional Spectra How PUV Wave Analysis Works

In addition to reading this assignment, also read Appendices A and B.

Electronic Supplementary Information

Post-mortem study on structural failure of a wind farm impacted by super typhoon Usagi

Section I: Multiple Choice Select the best answer for each problem.

Large olympic stadium expansion and development planning of surplus value

Supporting Information for

The Economic Factors Analysis in Olympic Game

23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN APRIL 2007

Supporting Information

2013 Australian open women s singles champion and runner-up technical and tactics features research based on mathematical statistic analysis

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Concentration profile of jet gas in the feed injection zone of a FCC riser

A ONE-HUNDRED-DAY CULTURE TRIAL OF THREE DIFFERENT FAMILIES OF GIFT TILPIA, OREOCHROMIS NILOTICUS

Developing an Effective Quantification Method of Tongue Deviation Angle to Assess Stroke Patients

Lab 1c Isentropic Blow-down Process and Discharge Coefficient

Supporting Information

STUDY OF MODEL DEFORMATION AND STING INTERFERENCE TO THE AERODYNAMIC ESTIMATIONS OF THE CAE-AVM MODEL

Aerodynamic Shape Design of the Bow Network Monitoring Equipment of High-speed Train

Supplementary Information

u = Open Access Reliability Analysis and Optimization of the Ship Ballast Water System Tang Ming 1, Zhu Fa-xin 2,* and Li Yu-le 2 " ) x # m," > 0

Real-time Analysis of Industrial Gases with Online Near- Infrared Spectroscopy

Ocean Wave Forecasting

AggPro: The Aggregate Projection System

Aerodynamic Performance Comparison of Head Shapes for High-Speed Train at 500KPH

Impact of China s Industrial Relocation on Energy Consumption

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Commuting Mode Choice Behaviour Study and Policy Suggestions for Low-Carbon Emission Transportation in Xi an (China)

ANALYSIS OF THE POSITIVE FORCES EXHIBITING ON THE MOORING LINE OF COMPOSITE-TYPE SEA CAGE

CALIBRATION OF THE PLATOON DISPERSION MODEL BY CONSIDERING THE IMPACT OF THE PERCENTAGE OF BUSES AT SIGNALIZED INTERSECTIONS

Info Counting chamber (haemacytometer)

Measurements of the Cross Section for e 1 e 2! Hadrons at Center-of-Mass Energies from 2 to 5 GeV

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge

A Study on Injuries and Kinematics in Pedestrian Accidents involved Minivan and Sedan

Aerobic Respiration. Evaluation copy

Imaging Spectrometer. Technologies and Applications PROCEEDINGS OF SPIE. International Symposium. Detection and Imaging on Photoelectronic

RELIABILITY ASSESSMENT, STATIC AND DYNAMIC RESPONSE OF TRANSMISSION LINE TOWER: A COMPARATIVE STUDY

Chapter 12 Practice Test

Shimming with VnmrJ 3.1 Software for Peak NMR Performance

Transcription:

Hawaiienols A D, Highly Oxygenated p-terphenyls from an Insect-Associated Fungus Paraconiothyrium hawaiiense Fengxia Ren,, Shenxi Chen,, Yang Zhang, Shuaiming Zhu, Junhai Xiao, Xingzhong Liu, Ruibin Su,*, and Yongsheng Che*, State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, People s Republic of China State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, People s Republic of China State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, People s Republic of China Contents 1) Figure S1. 2) Figure S2. 1 H NMR spectrum of hawaiienol A (1; 600 MHz, acetone-d 6 ) 3 13 C NMR spectrum of hawaiienol A (1; 150 MHz, acetone-d 6 ) 4 Page 3) Figure S3. HSQC spectrum of hawaiienol A (1; 600 MHz, acetone-d 6 ) 5 4) Figure S4. 1 H 1 H COSY spectrum of hawaiienol A (1; 600 MHz, acetone-d 6 ) 6 5) Figure S5. HMBC spectrum of hawaiienol A (1; 600 MHz, acetone-d 6 ) 7 6) Figure S6. NOESY spectrum of hawaiienol A (1; 600 MHz, acetone-d 6 ) 8 7) Figure S7. 8) Figure S8. 1 H NMR spectrum of hawaiienol B (2; 600 MHz, acetone-d 6 ) 9 13 C NMR spectrum of hawaiienol B (2; 150 MHz, acetone-d 6 ) 10 9) Figure S9. HSQC spectrum of hawaiienol B (2; 600 MHz, acetone-d 6 ) 11 10) Figure S10. 1 H 1 H COSY spectrum of hawaiienol B (2; 600 MHz, acetone-d 6 ) 12 11) Figure S11. HMBC spectrum of hawaiienol B (2; 600 MHz, acetone-d 6 ) 13 12) Figure S12. NOESY spectrum of hawaiienol B (2; 600 MHz, acetone-d 6 ) 14 13) Figure S13. 14) Figure S14. 1 H NMR spectrum of hawaiienol C (3; 600 MHz, acetone-d 6 ) 15 13 C NMR spectrum of hawaiienol C (3; 150 MHz, acetone-d 6 ) 16 15) Figure S15. HSQC spectrum of hawaiienol C (3; 600 MHz, acetone-d 6 ) 17 16) Figure S16. 1 H 1 H COSY spectrum of hawaiienol C (3; 600 MHz, acetone-d 6 ) 18 17) Figure S17. HMBC spectrum of hawaiienol C (3; 600 MHz, acetone-d 6 ) 19 1

18) Figure S18. NOESY spectrum of hawaiienol C (3; 600 MHz, acetone-d 6 ) 20 19) Figure S19. 20) Figure S20. 1 H NMR spectrum of hawaiienol D (4; 600 MHz, acetone-d 6 ) 21 13 C NMR spectrum of hawaiienol D (4; 150 MHz, acetone-d 6 ) 22 21) Figure S21. HSQC spectrum of hawaiienol D (4; 600 MHz, acetone-d 6 ) 23 22) Figure S22. 1 H 1 H COSY spectrum of hawaiienol D (4; 600 MHz, acetone-d 6 ) 24 23) Figure S23. HMBC spectrum of hawaiienol D (4; 600 MHz, acetone-d 6 ) 25 24) Figure S24. NOESY spectrum of hawaiienol D (4; 600 MHz, acetone-d 6 ) 26 25) Figure S25. Experimental CD spectrum of 1 in MeOH 27 26) Figure S26. Relative configurations of 2 (the enantiomers were not shown) 28 27) Figure S27. Relative configurations of 4 (the enantiomers were not shown) 29 28) Figure S28. The optimized conformers for 2 30 29) Figure S29. The optimized conformers for 3 32 30) Figure S30. The optimized conformers for 4 33 31) Figure S31. The optimized conformers for 3a 37 32) Figure S32. Experimental CD spectrum of 2 in MeOH and the calculated ECD spectra of 2a 2h and 2a 2h 38 33) Figure S33. Experimental CD spectrum of 4 in MeOH and the calculated ECD spectra of 4a 4p and 4a 4p 39 34) Figure S34. Linear regression fitted 13 C NMR chemical shifts of 4 with four sets of experimental values (4i, 4l, 4n, and 4o) 40 35) Table S1. The experimental and computed 13 C NMR data of 3 41 36) Table S2. Statistics of Ordinary Least Squares (OLS) Linear Regression of the experimental and computed 13 C NMR chemical shifts of 3 42 37) Table S3. The experimental and computed 13 C NMR data of 4 43 38) Table S4. Statistics of Ordinary Least Squares (OLS) Linear Regression of the experimental and computed 13 C NMR chemical shifts of 4 44 39) Scheme S1. Plausible biosynthetic pathways for 1 4 45 Contributed equally to this work. * Corresponding authors. 2

Figure S1. 1 H NMR Spectrum of Hawaiienol A (1; 600 MHz, Acetone-d 6 ) 3

Figure S2. 13 C NMR Spectrum of Hawaiienol A (1; 150 MHz, Acetone-d 6 ) 4

Figure S3. HSQC Spectrum of Hawaiienol A (1; 600 MHz, Acetone-d 6 ) 4-OCH 3 3 -OCH 3 H-2,6 H-2,6 H-3,5 H-3,5 H-6 H-5 H-2 3 -OCH 3 4-OCH 3 C-2 C-6 C-5 C-3,5 C-3,5 C-2,6 C-2,6 5

Figure S4. 1 H 1 H COSY Spectrum of Hawaiienol A (1; 600 MHz, Acetone-d 6 ) H-2,6 H-2,6 H-3,5 H-3,5 H-6 H-5 H-2 OH-2 OH-2 H-2 H-5 H-6 H-3,5 H-3,5 H-2,6 H-2,6 6

Figure S5. HMBC Spectrum of Hawaiienol A (1; 600 MHz, Acetone-d 6 ) 4-OCH 3 3 -OCH 3 OH-4 H-2,6 H-2,6 H-3,5 H-3,5 H-6 H-5 OH-4 H-2 OH-2 3 -OCH 3 4-OCH 3 C-2 C-4,6 C-5 C-1 C-3,5 C-3,5 C-1,2,6 C-2,6,1 C-3 C-4 C-4 7

Figure S6. NOESY Spectrum of Hawaiienol A (1; 600 MHz, Acetone-d 6 ) 4-OCH 3 3 -OCH 3 OH-4 H-2,6 H-2,6 H-3,5 H-6 OH-4 H-3,5 H-5 H-2 OH-2 OH-2 3 -OCH 3 4-OCH 3 OH-4 H-2 H-5 H-6 H-3,5 H-3,5 H-2,6 H-2,6 OH-4 8

Figure S7. 1 H NMR Spectrum of Hawaiienol B (2; 600 MHz, Acetone-d 6 ) 9

Figure S8. 13 C NMR Spectrum of Hawaiienol B (2; 150 MHz, Acetone-d 6 ) 10

Figure S9. HSQC Spectrum of Hawaiienol B (2; 600 MHz, Acetone-d 6 ) 4-OCH 3,4 -OCH 3 3 -OCH 3 H-2,6 H-3,5,3,5 H-2,6 H-6 H-5 3 -OCH 3 4-OCH 3,4 -OCH 3 C-6 C-5 C-3,5 C-3,5 C-2,6 C-2,6 11

Figure S10. 1 H 1 H COSY Spectrum of Hawaiienol B (2; 600 MHz, Acetone-d 6 ) 4-OCH 3,4 -OCH 3 3 -OCH 3 H-2,6 H-2,6 H-3,5,3,5 H-6 H-5 OH-5 3 -OCH 3 4-OCH 3,4 -OCH 3 OH-5 H-5 H-6 H-3,5,3,5 H-2,6 H-2,6 12

Figure S11. HMBC Spectrum of Hawaiienol B (2; 600 MHz, Acetone-d 6 ) 4-OCH 3,4 -OCH 3 3 -OCH 3 H-2,6 H-2,6 H-3,5,3,5 OH-1 or4 H-6 H-5 OH-1 or4 OH-5 3 -OCH 3 4-OCH 3,4 -OCH 3 C-4 C-6,1 C-5 C-3,5,3,5,3 C-2,6,1,1,2,6 C-4,4 C-2 13

Figure S12. NOESY Spectrum of Hawaiienol B (2; 600 MHz, Acetone-d 6 ) H-2,6 H-3,5,3,5 H-2,6 4-OCH 3,4 -OCH 3 3 -OCH 3 H-6 H-5 OH-1 or4 OH-1 or4 OH-5 3 -OCH 3 4-OCH 3,4 -OCH 3 OH-5 OH-1 or4 H-5 H-6 OH-1 or4 H-3,5,3,5 H-2,6 H-2,6 14

Figure S13. 1 H NMR Spectrum of Hawaiienol C (3; 600 MHz, Acetone-d 6 ) 15

Figure S14. 13 C NMR Spectrum of Hawaiienol C (3; 150 MHz, Acetone-d 6 ) 16

Figure S15. HSQC Spectrum of Hawaiienol C (3; 600 MHz, Acetone-d 6 ) 4-OCH 3,4 -OCH 3 H-2,6,2,6 H-3,5,3,5 H-2,5 H-3,6 4-OCH 3,4 -OCH 3 C-2,5 C-3,6 C-3,5,3,5 C-2,6,2,6 17

Figure S16. 1 H 1 H COSY Spectrum of Hawaiienol C (3; 600 MHz, Acetone-d 6 ) 4-OCH 3,4 -OCH 3 H-2,6,2,6 H-3,5,3,5 H-2,5 OH-3,6 H-3,6 OH-2,5 4-OCH 3,4 -OCH 3 OH-2,5 H-3,6 H-2,5 OH-3,6 H-3,5,3,5 H-2,6,2,6 18

Figure S17. HMBC Spectrum of Hawaiienol C (3; 600 MHz, Acetone-d 6 ) 4-OCH 3,4 -OCH 3 H-2,6,2,6 H-3,5,3,5 H-2,5 OH-3,6 H-3,6 OH-2,5 4-OCH 3,4 -OCH 3 C-2,5 C-3,6 C-1,4 C-3,5,3,5 C-2,6,2,6 C-1,1 C-4,4 19

Figure S18. NOESY Spectrum of Hawaiienol C (3; 600 MHz, Acetone-d 6 ) 4-OCH 3,4 -OCH 3 H-2,6,2,6 H-3,5,3,5 H-2,5 OH-3,6 H-3,6 OH-2,5 OH-2,5 4-OCH 3,4 -OCH 3 H-3,6 H-2,5 OH-3,6 H-3,5,3,5 H-2,6,2,6 20

Figure S19. 1 H NMR Spectrum of Hawaiienol D (4; 600 MHz, Acetone-d 6 ) 21

Figure S20. 13 C NMR Spectrum of Hawaiienol D (4; 150 MHz, Acetone-d 6 ) 22

Figure S21. HSQC Spectrum of Hawaiienol D (4; 600 MHz, Acetone-d 6 ) 4 -OCH 3,4-OCH 3 H-2,6,2,6 H-3,5,3,5 H-3 H-6 H-5 4 -OCH 3,4-OCH 3 C-3 C-5 C-6 C-3,5,3,5 C-2,6,2,6 23

Figure S22. 1 H 1 H COSY Spectrum of Hawaiienol D (4; 600 MHz, Acetone-d 6 ) 4 -OCH 3,4-OCH 3 H-2,6,2,6 H-3,5,3,5 OH-1 H-3 OH-5 OH-4 OH-6 OH-3 H-6 H-5 4 -OCH 3,4-OCH 3 H-6,OH-3 H-5 OH-6 OH-4 OH-5 H-3 OH-1 H-3,5,3,5 H-2,6,2,6 24

Figure S23. HMBC Spectrum of Hawaiienol D (4; 600 MHz, Acetone-d 6 ) 4 -OCH 3,4-OCH 3 H-2,6,2,6 H-3,5,3,5 OH-1 H-3 OH-5 OH-4 OH-6 OH-3 H-6 H-5 4 -OCH 3,4-OCH 3 C-5,3 C-1, 6 C-4 C-3,5,3,5 C-1,2,6,2,6 C-1 C-4,4 C-2 25

Figure S24. NOESY Spectrum of Hawaiienol D (4; 600 MHz, Acetone-d 6 ) 4 -OCH 3,4-OCH 3 H-2,6,2,6 H-3,5,3,5 OH-5 OH-3 OH-1 H-3 OH-4 OH-6 H-5 H-6 4 -OCH 3,4-OCH 3 OH-3 H-6 H-5 OH-6 OH-4 OH-5 H-3 OH-1 H-3,5,3,5 H-2,6,2,6 26

Figure S25. Experimental CD Spectrum of 1 in MeOH 27

Figure S26. Relative Configurations of 2 (the Enantiomers Were Not Shown) 28

Figure S27. Relative Configurations of 4 (the Enantiomers Were Not Shown) 29

Figure S28. The Optimized Conformers for 2 2a 2a 2b 2b 2c 2c 2d 2d 30

2e 2e 2f 2f 2g 2g 2h 2h 31

Figure S29. The Optimized Conformers for 3 3a 3b 32

Figure S30. The Optimized Conformers for 4 4a 4a 4b 4b 4c 4c 4d 4d 33

4e 4e 4f 4f 4g 4g 4h 4h 34

4i 4i 4j 4j 4k 4k 4l 4l 35

4m 4m 4n 4n 4o 4o 4p 4p 36

Figure S31. The Optimized Conformer for 3a 37

Figure S32. Experimental CD Spectrum of 2 in MeOH and the Calculated ECD Spectra of 2a 2h and 2a 2h 38

Figure S33. Experimental CD Spectrum of 4 in MeOH and the Calculated ECD Spectra of 4a 4p and 4a 4p 39

Figure S34. Linear Regression Fitted 13 C NMR Chemical Shifts of 4 with Four Sets of Experimental Values (4i, 4l, 4n, and 4o) 40

Table S1. The Experimental and Computed 13 C NMR Data of 3 Position Experimental Calculated 3a-1 3a-2 Scaled Fitted 1 132.2 132.2 134.4 129.1 2 128.5 128.5 133.8 128.6 3 113.8 113.8 118.2 113.6 4 159.7 159.7 166.7 160.2 5 113.8 113.8 118.2 113.6 6 128.5 128.5 133.8 128.6 1 90.6 90.6 97.4 93.6 2 78.4 88.1 80.6 77.5 3 88.1 78.4 94.2 90.5 4 90.6 90.6 97.4 93.6 5 78.4 88.1 80.6 77.5 6 88.1 78.4 94.2 90.5 1 132.2 132.2 134.4 129.1 2 128.5 128.5 133.8 128.6 3 113.8 113.8 118.2 113.6 4 159.7 159.7 166.7 160.2 5 113.8 113.8 118.2 113.6 6 128.5 128.5 133.8 128.6 4-OCH3 55.5 55.5 56.0 53.8 4 -OCH3 55.5 55.5 56.0 53.8 41

Table S2. Statistics of Ordinary Least Squares (OLS) Linear Regression of the Experimental and Computed 13 C NMR Chemical Shifts of 3 Assignment CMAD a CLAD b R 2 R 2 adj RMSE F p value 3a-1 1.21 3.06 0.9967 0.9965 1.7768 5360.0760 < 0.01 3a-2 3.12 12.37 0.9671 0.9653 5.5723 528.7920 < 0.01 a CMAD = corrected mean absolute deviation, computed as (1/ n) δ calc δ exp. b CLAD = corrected largest absolute deviation, computed as max( δcalc δexp ). n i 42

Table S3. The Experimental and Computed 13 C NMR Data of 4 Position Experimental Calculated 4i 4l 4n 4o 1 131.1 129.7 128.4 130.4 132.4 2 130.7 129.8 129.8 130.2 129.8 3 112.9 112.9 113.5 113.8 112.3 4 159.9 159.2 160.1 159.2 158.7 5 112.9 112.9 113.5 113.8 112.3 6 130.7 129.8 129.8 130.2 129.8 1 82.0 82.8 86.7 83.9 82.2 2 208.9 212.9 209.9 210.5 212.5 3 73.6 79.2 79.1 83.4 82.4 4 86.0 87.1 81.6 80.4 83.0 5 77.0 78.9 77.8 76.3 78.0 6 80.1 76.4 78.9 80.1 80.6 1 135.2 133.5 130.1 128.0 133.5 2 129.5 129.5 131.8 131.9 128.7 3 113.8 112.5 113.2 112.7 112.5 4 160.0 158.1 160.2 159.4 158.5 5 113.8 112.5 113.2 112.7 112.5 6 129.5 129.5 131.8 131.9 128.7 4-OCH 3 55.4 55.7 54.5 54.7 54.9 4 -OCH 3 55.5 55.6 54.5 54.8 54.9 43

Table S4. Statistics of Ordinary Least Squares (OLS) Linear Regression of the Experimental and Computed 13 C NMR Chemical Shifts of 4 Configuration CMAD a CLAD b R 2 R 2 adj RMSE F p value 4i 1.38 5.58 0.9971 0.9970 2.11 6239.79 < 0.01 4l 1.83 5.45 0.9956 0.9953 2.62 4043.45 < 0.01 4n 2.01 9.83 0.9926 0.9922 3.38 2415.19 < 0.01 4o 1.53 8.75 0.9959 0.9956 2.53 4334.47 < 0.01 a CMAD = corrected mean absolute deviation, computed as (1/ n) δ calc δ exp. b CLAD = corrected largest absolute deviation, computed as max( δcalc δexp ). n i 44

Scheme S1. Plausible Biosynthetic Pathways for 1 4 Methylation 45