Fishery and population characteristics of Indian mackerel, Rastrelliger kanagurta (Cuvier) at Kakinada

Similar documents
Fishery, biology and population characteristics of the Indian mackerel, Rastrelliger kanagurta (Cuvier) exploited along the Tuticorin coast

Fishery, biology and stock assessment of Cynoglossus macrostomus (Norman) off Malabar coast

Fishery, biology and stock of the Indian mackerel Rastrelligerkanagurta off Mangalore-Malpe in Karnataka, India

OBSERVATIONS ON SOME ASPECTS OF BIOLOGY OF JOHNIUS (JOHNIEOPS) VOGLERI (BLEEKER) AND PENNAHIA MACROPHTHALMUS (BLEEKER) IN THE KAKINADA REGION

Age and growth, mortality and stock assessment of Euthynnus affinis (Cantor) from Maharashtra waters

Flatfish fishery off Cochin and some aspects of the biology and stock of Malabar sole Cynoglossus macrostomus (Norman)

Sciaenid fishery off Visakhapatnam with some aspects of population dynamics of Johnius carutta (Bloch)

POPULATION CHARACTERISTICS OF THE SILVERBELLY LEIOGNATHUS BINDUS (VALENCIENNES) ALONG WEST BENGAL COAST V. SRIRAMACHANDRA MURTY*

IOTC 2013 WPNT03 18 ABSTRACT

Fishery, population dynamics and stock structure of frigate tuna Auxis thazard (Lacepede, 1800) exploited from Indian waters

Fishery, biology and population dynamics of Metapenaeus dobsoni (Miers 1878) from Kerala, south-west coast of India

Population parameters of the catfishes, Arius caelatus (Valenciennes, 1830) and Arius tenuispinis (Day, 1877) from Mumbai waters

Fishery and some aspects of population dynamics of goatfish Upeneus vittatus (Forskal) off Visakhapatnam

Fishery and population dynamics of Harpadon nehereus (Ham.) off the Saurashtra coast

Lizardfish fishery, biology and population dynamics of Saurida undosquamis (Richardson) off Visakhapatnam

Distribution, biology and behaviour of the giant trevally, Caranx ignobilis - a candidate species for mariculture

STATUS OF EXPLOITED MARINE FISHERY RESOURCES OF INDIA

Current Status of Crab Fishery in the Artisanal Sector along Gulf of Mannar and Palk bay Coasts

Tuna Fishery of India with Special Reference to Biology and Population Characteristics of Neritic Tunas Exploited from Indian EEZ

AMBLYGASTER SIRM (WALBAUM) OFF THE NEGOMBO COAST

Reproductive biology and population characteristics of Sardinella gibbosa and Sardinella fimbriata from north west Bay of Bengal

Reproductive Biology of the Indian Oil Sardine Sardinella longiceps From Al-Seeb Waters off Oman

Age and Growth of Valamugil seheli from Sudanese Red Sea Coast

Population dynamics of the shrimp Penaeus semisulcatus in the Yemeni Red Sea waters

GROWTH PARAMETERS OF THE BLACK SEA SPRAT (SPRATTUS SPRATTUS L.) DURING THE PERIOD NOVEMBER 2010 MARCH 2012 ALONG THE BULGARIAN BLACK SEA COAST

Stock Assessment Form of Metapenaeus stebbingi (Demersal sp.) in GSA 26.

Preliminary analysis of yellowfin tuna catch, effort, size and tagging data using an integrated age-structured model

Scomberomorus guttatus (Bloch

ASSESSMENT OF THE WEST COAST OF NEWFOUNDLAND (DIVISION 4R) HERRING STOCKS IN 2011

Population dynamics of Harpodon nehereus (Ham.. - Buch.) from the Kutubdia channel of Bangladesh

Stock Assessment Form of Saurida undosquamis (Demersal sp.) in GSA 26.

Sprat (Sprattus sprattus) in subdivisions (Baltic Sea)

THE BIOLOGY OF THE PRAWN, PALAEMON

SILVER WAREHOU (SWA) (Seriolella punctata)

INFORJvffilON SERVICE

CATCH-AT-SIZE AND AGE ANALYSIS FOR ATLANTIC SWORDFISH

Reproductive biology of Sardinella longiceps along Ratnagiri coast off Maharashtra

BLACK SEA WHITING, MERLANGIUS MERLANGUS EUXINUS NORDMANN

STATUS OF EXPLOITED MARINE FISHERY RESOURCES OF INDIA

OBSERVATIONS ON SOME ASPECTS OF BIOLOGY OF THE BLACK CROAKER ATROBUCCA NIBE (JORDAN AND THOMPSON) FROM KAKINADA

CHARACTERISTICS OF CAPTURE FISHERY RESOURCES, THEIR ASSESSMENT AND MANAGEMENT K. ALAGARAJA

Dauphin Lake Fishery. Status of Walleye Stocks and Conservation Measures

Herring (Clupea harengus) in subdivisions and 32 (central Baltic Sea, excluding Gulf of Riga)

Factors influencing production

Determination of the von Bertalanffy Growth Equation for the Southern New England-Middle Atlantic~ Bank and Gulf of Maine stocks of Silver Hake by

SWG-11-JM-10. F Limit Reference Points about Preventing Recruitment Overfishing and its Uncertainty

Age and growth of brushtooth lizard fish Sauridaundosquamis (Richardson, 1848) occurring in Parangipettai southeast coast of India

The stock of blue whiting has been surveyed for the last three years during the spawning period using the research vessel cg. 0.

SCIENTIFIC COMMITTEE TWELFTH REGULAR SESSION. Bali, Indonesia 3-11 August 2016

9.4.5 Advice September Widely distributed and migratory stocks Herring in the Northeast Atlantic (Norwegian spring-spawning herring)

Trends in penaeid shrimp landings by sona boats at Visakhapatnam Fishing Harbour, Andhra Pradesh

Catch per unit effort of coastal prawn trammel net fishery in Izmir Bay, Aegean Sea

A study on the growth of horse mackerel (Trachurus mediterraneus Aleev, 1956) from Bulgarian waters of the Black Sea using length frequency analysis

ASSESSMENT OF THE WEST COAST OF NEWFOUNDLAND (DIVISION 4R) HERRING STOCKS IN 2013

West Coast Rock Lobster. Description of sector. History of the fishery: Catch history

Sardine fishery with notes on the biology and stock assessment of oil sardine off Mangalore-Malpe

Some Biological Parameters of Bigeye and Yellowfin Tunas Distributed in Surrounding Waters of Taiwan

6 th Meeting of the Scientific Committee Puerto Varas, Chile, 9-14 September 2018

Size and spatial distribution of the blue shark, Prionace glauca, caught by Taiwanese large-scale. longline fishery in the North Pacific Ocean

Population dynamic and fisheries management of Eeuropen sea bass, Dicentrarchus labrax (f. Moronidae) from Bardawil lagoon, North Sinai, Egypt

Advice October 2013

Population Dynamics and Management of Goldlined Seabream Rhabdosargus sarba (Sparidae) from the Oman Coast of Arabian Sea

Gulf of St. Lawrence (4RST) Greenland Halibut

A REVIEW AND EVALUATION OF NATURAL MORTALITY FOR THE ASSESSMENT AND MANAGEMENT OF YELLOWFIN TUNA IN THE EASTERN PACIFIC OCEAN

28. BIOLOGY OF MERETRIX CASTA (CHEMNITZ) AND PAPHIA MALABARICA (CHEMNITZ) FROM MULKY ESTUARY, DAKSHINA KANNADA

The fishery for jack mackerel in the Eastern Central Pacific by European trawlers in 2008 and 2009

IOTC 2015 SC18 ES06[E]

STOCK STATUS OF SOUTHERN BLUEFIN TUNA

Advice June 2014

Agenda Item Summary BACKGROUND. Public Involvement ISSUE ANALYSIS. Attachment 1

2017 North Pacific Albacore Stock Assessment

Population structure of Indian mackerel, Rastrelliger kanagurta (Cuvier, 1816), from the Suez Bay, Gulf of Suez, Egypt

Maturity and Spawning of the Small Yellow Croaker, Larimichthys polyactis

HADDOCK ON THE SOUTHERN SCOTIAN SHELF AND IN THE BAY OF FUNDY (DIV. 4X/5Y)

Preliminary results of SEPODYM application to albacore. in the Pacific Ocean. Patrick Lehodey

Monitoring the length structure of commercial landings of albacore tuna during the fishing year

Environmental influence on the behaviour of Indian mackerel and their availability to fishing gear along the Malabar coast

Advice October 2014

ISC Pacific Bluefin tuna Stock Assessment 2016

Southern Gulf of St. Lawrence (4T) Herring

TUNA RESEARCH IN INDIA

Southern Gulf of St. Lawrence (4T) Herring

Biological aspects of threadfin bream Nemipterus japonicus (Bloch 1791) along coast of Saurastra, Gujarat

Plaice (Pleuronectes platessa) in Division 7.e (western English Channel)

MATURITY & SPAWNING OF OTOLITHUS ARGENTEUS (CUVIER) FROM KARWAR WATERS

Dynamics Population Of Skipjack (Katsuwonus Pelamis) In Makassar Strait Water, South Sulawesi, Indonesia

PURSE-SEINE AND BOAT-SEINE {JHANGU VALA) FISHERY FOR THE OIL SARDINE OFF COCHIN Central Marine Fisheries Research Institute, Cochin-18

A STUDY ON THE PRAWN FISHERY OF NETRAVATI-GURUPUR ESTUARY, MANGALORE., Central Marine Fisheries Research Institute Centre, Mangalore.

Stock assessment of white spotted rabbitfish (Siganus canaliculatus Park, 1797) in Jubail marine wildlife sanctuary, Saudi Arabia

THE PURSE-SEINE FISHERY FOR OIL SARDINE IN THE SOUTH KARNATAKA COAST AND ITS EFFECTS ON THE INDIGENOUS FISHERY

SOUTH PACIFIC COMMISSION

92 ND MEETING DOCUMENT IATTC-92 INF-C

Trawl fishery management of Eastern Arabian Sea

An update of the application of the A-SCALA method to bigeye tuna in the western and central Pacific Ocean

ASSESSMENT OF HERRING IN THE SOUTHERN GULF OF ST. LAWRENCE (NAFO DIV. 4T)

The Changes Observed in Atlantic Bonito (Sarda sarda) Populations During the Autumn-Winter Migration in the Suthern Black Sea Coast

Advice June 2012

Paper prepared by the Secretariat

ASSESSMENT OF SHRIMP STOCKS IN THE ESTUARY AND GULF OF ST. LAWRENCE IN 2011

Status of Northern Pike and Yellow Perch at Goosegrass Lake, Alberta, 2006

Transcription:

Indian J. Fish., 53(1) : 77-83, Jan.-Mar., 2006 77 Fishery and population characteristics of Indian mackerel, Rastrelliger kanagurta (Cuvier) at Kakinada E.M. ABDUSSAMAD, H. MOHAMED KASIM AND P. ACHAYYA Central Marine Fisheries Research Institute, Kochi-682 018 ABSTRACT Indian mackerel, Rastrelliger kanagurta is exploited by trawls and gillnets along Kakinada coast. Its production increased from 67 t in 1988 99 to 3,493 t in 1997 98. Period of peak abundance and fishery was February-March while recruitment was high during December-January. Length weight relationship showed that females were slightly heavier than males of the same size. Growth parameters, L and K were estimated as 286.3 mm and 1.89/year respectively. Natural mortality of the stock was 2.61. Total mortality varied between 4.69 and 9.29 and fishing mortality between 2.08 and 6.68. Stock varied during the period between 1,814 and 5,255 t and biomass between 268 and 902 t. Maximum sustainable yield is 2,239 t. Emax is 0.77, whereas exploitation rate varied between 0.44 and 0.72. These indicated that the resource is currently under moderate fishing pressure especially from trawls and has only marginal scope for further increase in production. Since further increase in effort by trawls would be detrimental for the resource it is recommended to reduce their effort marginally or to maintain at the present level, whereas effort by gillnets can be increased. Introduction The Indian mackerel, Rastrelliger kanagurta is a commercially important pelagic resource with wide distribution along east and west coast of India. Its contribution in the country s total marine fish production varied between 2 and 20% during 1984 88 (Noble et al., 1992). South west coast is the most productive zone as far as its fishery is concerned. However, in recent years it has emerged as a dominant fishery along the east coast also. During the last decade its landings increased steadily along the Andhra coast from 3,633 tonnes of 1985 to 25,688 in 1993 (Anon, 1995). East Godavari district alone contributed 45% of the total mackerel production from the state (Luther, 1995). However, information on the fishery and biology of mackerel from this region is scanty, as most of the investigations were confined to west coast (Yohannan, 1979; 1982; Noble, 1986; Noble et al., 1992; Devaraj et al., 1994 and Prathibha et al., 1998). Contribution from east coast is limited to reports on the occurrence of their young ones in the catches (Rao and Basheeruddin, 1953; Appannasastry, 1969) food and feeding habits (Kuthalingam, 1956; Rao and Rao, 1957) and bionomics along Visakhapatnam coast (Rao, 1962; Luther, 1995). Present

E.M. Abdussamad et al. 78 study was undertaken at a time when this resource is emerging as one of the dominant fishery along the east coast and its outcome will be useful for fishery managers and researchers. Materials and methods Fishing effort and fishery by trawls and gillnets and biology of Rastrelliger kanagurta at Kakinada were monitored during 1995-2000 at weekly intervals. Catch-effort data by trawls for 1985-95 period were also used to study the trend in fishery over the years. Length-weight relationship was estimated following linear regression analysis as in Sparre (1986). Well-being and robustness of the fishes were assessed by studying the relative condition factor (Kn) as in Le Cren (1951). Size at first maturity was determined by probability curve method. Growth, mortality, exploitation and recruitment pattern were estimated from monthly length frequency data of the species in the catch during 1995-2000 using ICLARM s FiSAT software (Gayanilo et al., 1995). Growth and growth parameters were also estimated through integrated modal progression analysis (Pauly, 1980). Size at first capture (Lc 50 ) was estimated as in Pauly (1984) and age at zero length (t o ) as in Bertalanffy (1934). Natural mortality (M) was estimated from the empirical formula as in Pauly (1980), by taking the mean sea surface temperature as 29 o C and total mortality (Z) from the catch curve as in Pauly (1983). Exploitation rate (E) was estimated from the equation, E = F/Z and exploitation ratio (U) from F/Z x (1 e Z ) as in Beverton and Holt (1957) and Ricker (1975), where, F is the fishing mortality. Potential yield per recruit and optimum age of exploitation were computed as in Krishnankutty and Qasim (1968). Stock was computed from the relations, P = Y/U and biomass from TABLE 1: Mackerel catch, catch rate, their percentage contribution in total fish catch and effort by trawls at Kakinada during 1985-2000 Period Effort (unit) Catch (tons) CPUE CPH % in total fish (kg) (kg) catch 1985-86 43,370 81 1.87 0.26 0.40 1986-87 44,321 102 23.01 2.81 4.35 1987-88 34,852 218 6.25 0.72 1.65 1988-89 39,124 67 1.70 0.19 0.82 1989-90 42,157 142 3.36 0.40 1.11 1990-91 33,149 68 2.04 0.18 0.53 1991-92 41,826 188 4.50 0.42 0.83 1992-93 51,481 764 14.84 1.16 2.76 1993-94 47,721 917 19.21 1.22 3.18 1994-95 51,340 1,246 24.27 1.18 3.68 1995-96 49,768 837 17.91 0.88 2.69 1996-97 47,966 1,411 29.41 1.84 5.40 1997-98 58,872 2,992 50.81 3.11 8.56 1998-99 61,807 1181 19.11 1.20 3.48 1999-2000 57,842 1643 28.4 1.78 4.7

Fishery and population characteristics of Indian mackerel 79 B=Y/F, where, Y is yield in tonnes. MSY was estimated graphically as in Corten (1974). Results Fishery Mackerel fishery was supported almost exclusively by R. kanagurta. They were exploited by trawls and gillnets. Almost 77% of the fishery was by trawls. Catch by the gear increased steadily over the years from 67 t of 1988 89 to 2,992 t in 1997 98 (Table 1). Increasing trends have been observed in catch rates and percentage composition also. Catch rate varied between 1.7 and 50.8 kg/unit effort and 0.2 and 8.1kg/trawling hour and percentage contribution between 0.40 and 8.6%. Trawls landed mackerel round the year with peak during December-April forming nearly 53% of the annual catch during February-March. Comparatively large proportions of spent and gravid fishes were represented in the fishery during this period. Catch rates and percentage contribution in the total catch were also high during this period. Gillnet catch varied between 276 and 787 t annually during 1995-2000 at an average catch rate of 14.0 kg/hr of fishing and 38.2 kg/unit effort. It formed 19% of the total fish catch in the gear. Peak fishery in the gear was during March- May. In April it formed nearly 64% of the catch in the gear. Size composition in the catch In trawls 60-275 mm fishes with 172 mm as mean size and 95-100, 135-140 and 225-230 mm as major modes supported the fishery (Fig. 1). Mean weight of the species in the catch was 55.7 g. Small fishes of less than 150 mm constituted 44.4% of the catch, 150-200 mm fishes 16.6% and above 200 mm 39%. Small fishes, below 100 mm entered in trawl catches in large numbers during March-May and in small numbers during September/October. Their size at first capture in the gear was 149.6 mm. Gillnets landed relatively large fishes of 140-270 mm size with 230-235 mm as Fig 1. Annual average size frequency distribution of Rastrelliger kanagurta in trawls and gillnets during 1995-2000. modal class. About 95% of the catch in the gear was by adults and 92% by fishes above 200 mm. Growth and age: Growth parameter, L and K were 286.3 mm and 1.89/yr respectively and t o was-0.0023 year. Lt = 286.3 x [1 e -1.89 (t + 0.0023) ]. The calculated lengths were 168, 234, 262 and 275 mm by the end of 6, 12, 18 and 24 months respectively after birth. The age corresponding to size at first capture was 4.8 month, whereas optimum age of exploitation was 8.3 months. This suggested necessity of formulation and implementation of measures to increase their size and age

E.M. Abdussamad et al. 80 at first capture and to reduce fishing pressure for sustaining stock and increasing yield. Sexual maturity The fish attained sexual maturity and spawn during the first year. Their size at first maturity was 182.4 mm for males and 184.7 mm for females. Age at this size was 6.5 months. However, fully matured fishes with ripe gonads were observed in the population from 173 mm Fig 2. Recruitment pattern of Rastrelliger kanagurta along Kakinada region. progressive gonadal maturation and subsequent spawning during December-January. onwards. Spawning and recruitment pattern Recruitment pattern (Fig.2) and presence of young ones in the catch showed that they spawned almost round the year with peak during December-January accounting 67% of the total spawning activity. Recruits from the December-January brood entered the fishery during March-April. Length-weight relationship Length-weight relationship for males, females and unsorted fishes were computed separately and the regression equations are given below. Male Female Unsorted fishes Log W = -5.54817 + 3.23919 * Log L Log W = -5.41674 + 3.18733 * Log L Log W = -5.91862 + 3.40179 * Log L These relationship shows that females are heavier than males of the same size. Analysis of covariance shows that males and females differ significantly (P< 0.05) in their lengthweight relationship (F: 4.26; df. 1, 1106). Condition factor (Kn) Relative condition factor (Kn) fluctuated during different season (Fig. 3). Kn value increased steadily from September and remained high till January. It declined sharply there after below 1.0 during February-May. The seasonal variations are attributed to Fig 3. Seasonal fluctuation in the condition factor (Kn) of Rastrelliger kanagurta at Kakinada. Mortality and exploitation rate Natural mortality of the species was 2.61. Total mortality during the period was 6.43 and fishing mortality 3.82. Their Emax was 0.77, whereas, exploitation rate was 0.594. This indicated that the resource is under

Fishery and population characteristics of Indian mackerel 81 Fig 4. Yield per recruit at different levels of exploitation levels and maximum sustainable yield of Rastrelliger kanagurta along Kakinada coast. moderate fishing pressure along the region. MSY, stock, yield per recruit and biomass Average catch of mackerel during the period was 2,105 t and maximum sustainable yield (MSY) was 2,239 t (Fig. 4). Their stock varied from 1814 to 5255t with a mean of 3,550 t; while the biomass ranged from 268 to 902 t with a mean of 551t. The present study indicated marginal scope for further increase in production. Maximum yield per recruit was 21.6 g and potential yield per recruit was 18 g. Discussion Mackerel fishery registered steady growth till 1997. This increase can be attributed partly to increased effort and partly to extension of fishing to deeper waters, where abundance of the resource is relatively high as evidenced from their large catch rates and increased contribution to the total fish production during late nineties. Variations observed in the seasonal pattern of fishery by trawls and gillnets may be due to differences in the fishing grounds, depth of operation of the gears and variation in vertical distribution of the species in the sea with respect to prevailing environmental conditions. Indian mackerel grows fast in Kakinada area than that reported from Visakhapatnam area (Luther, 1995). This may probably be due to the prevalence of productive condition prevailed along the east Godavari coast due to Godavari river discharge. Estimates of growth parameters by earlier workers differ from the present estimates. However, the L estimates, 281.7 by Prathibha et al., (1998) from west coast is very close to the present estimate than other estimates from west (Yohannan, 1979; Noble, 1986; Devaraj et al., 1994) and east coast (Luther, 1995). Similarly their estimates of growth coefficient (K) also vary widely from that of the present estimate. As opined by Devaraj et al. (1994), these variations could be due to spatial and annual variation in the growth of the fishes. It may also occur due to varying combinations of size groups in the length frequency data used for study. Mainly zero year group constituted trawl catch (82%). Since pre-adults represented 51.1% of the total catch, the present fishing pattern may not permit large proportion of them to spawn atleast once in their life. Owing to their early maturity though there is no immediate danger on recruitment and stock, further increase in fishing pressure by trawls may result in growth over fishing. If fishes were allowed to grow for few more months than at

E.M. Abdussamad et al. present, production could be increased considerably from the same stock. A rough projection based on the pooled length frequency data and length-weight relationship indicates that the production will increase by nearly 57%, if their minimum size and age at harvest is increased to 200 mm and 7.7 months. Total mortality and exploitation rate indicated moderate fishing pressure on the stock. Average exploitation rate though small, is close to E max indicating only limited scope for increased production from the present grounds. It is prudent to regulate the fishery at a much lower level than the optimum exploitation level. Stock assessment suggested that under the present fishing conditions further increase in trawl effort might not be healthy for the stock. On the other hand gillnets are more ideal for mackerel exploitation, as catch was constituted by adults and so an increase in the gillnet effort may be encouraged. Acknowledgement Authors sincerely acknowledge the encouragement by Dr. N. Gopalakrishna Pillai, Head, Pelagic Fisheries Division throughout the period of this study. References Anon, 1995. Marine fish landing in India during 1985-93. Mar. Fish. Infor. Serv. T & E Ser., 136: 31 pp. Appannasastry, Y. 1969. On the occurrence of the juveniles of the Indian mackerel, Rastrelliger kanagurta in the inshore waters of Kakinada. J. Mar. Biol. Ass. India, 10: 179 181. Bertalanffy, L. von 1934. Unter suchungen uberdie Gesetzlichkeiten des Wasdestums I. Allgemeine Grundlagen der Theorie. Roux. Arch. Entwicklungsmech. Org. 131: 613-653. Beverton R.J.H. and S.J.H Holt 1957. On the dynamics of exploited fish populations. 82 Fish. Inves. Minist. Agric. Fish Food. G.G. (2 Sea Fish), 19: 533 pp. Corten, 1974. Recent changes in the stock of Celtisea herring (Clupea harengus L.). J. Cons. Perm. Int. Explor. Mer., 35: 194-201. Devaraj, M., I. Fernandez and S.S. Kamat, 1994. Dynamics of the exploited Indian mackerel, Rastrelliger kanagurta stock along the southwest coast of India. J. Mar. Biol. Assoc. India, 36: 110 151. Gayanilo, Jr. F.C., P. Sparre and D. Pauly, 1995. The FAO-ICLARM stock assessment tools (FISAT): user s guide. FAO computerised information series: fisheries. FAO, Rome, Italy. Krishnan Kutty, M. and S.Z. Qasim 1968. The estimation of optimum age of exploitation and potential yield in fish populations. J. Cons. Perm. Int. Explor. Mer., 32 (2): 249 255. Kuthalingam, M.D.K. 1956. Observation on the food and feeding habits of oil sardine and mackerel. Curr. Sci., 11(6): 243 244. Le Cren, E.D. 1951. The length-weight relationship and seasonal cycles in gonadal weight and condition in the perches (Perca fluviatilis). J. Anim. Ecol., 20: 201 219. Luther, G. 1995. Fishery and resource characteristics of mackerel of Visakhapatnam coast. Mar. F i s h. Infor. Serv., 138: 1 5. Noble, A. 1986. Some insight into the resource characteristics of the Indian mackerel, Rastrelliger kanagurta (Cuvier). Ph.D. Thesis, Cochin Univ. Sci. Technol., Cochin. Noble, A., G. Gopakumar, N.G.K. Pillai, G.M. Kulkarni, K.N. Kurup, S. Ruben, M. Sivadas and T.M. Yohannan 1992. Assessment of mackerel stock along the Indian Coast. Indian J. Fish., 39: 119 124 Pauly, D. 1980. A selection of simple methods for the assessment of tropical fish stocks. FAO. Fish. Circular No. 729, FIRM/

Fishery and population characteristics of Indian mackerel 83 129: pp. 54. Pauly, D. 1983. Some simple methods for the assessment of tropical fish stocks. FAO. Fish. Tech. Paper No. 234, Rome: 1 52. Pauly, D. 1984. Length converted catch curves: A powerful tool for fisheries research in the tropics (Part II). FISHBYTE, 2 (1): 17 19. Prathibha, R., P.P. Pillai, A.C. Gupta and Preetha 1998. Fishery and population characteristics of mackerel landed by trawlers along the Dakshina Kannada coast. Indian J. Fish., 45 (1): 21 27. Rao, K.V. and S. Basheeruddin 1953. Occurrence of young mackerel, Rastrelliger kanagurta (Cuvier) off Madras coast. Curr. Sci., 22: 182 183. Rao, K.V.N. 1962. Observation on the bionomics of Indian mackerel, Rastrelliger kanagurta (Cuvier), caught in Lawsens Bay near Waltair, Andhra coast. Proc. Symp. Scombroid Fishes. Part II: 574 585. Rao, K.V.N. and K.P. Rao 1957. Difference in the food of the young and the adult Indian mackerel, Rastrelliger kanagurta (Cuvier). Nature, 180: 711 712. Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board. Canada, 191: 382 p. Sparre, P. 1986. Introduction to tropical fish stock assessment. FAO/DANIDA Project, Training in Fish Stock assessment, (I-III Edition). Yohannan, T.M. 1979. The growth pattern of Indian mackerel. Indian J. Fish., 26: 207 216. Yohannan, T.M. 1982. Population dynamics of Indian mackerel based on data from Mangalore during 1967-1975. Indian J. Fish., 29: 50 62. Date of Receipt : 6-4-2005 Date of Acceptance : 4-11-2005