Cytogenetic studies in fishes of the genera Hassar, Platydoras and Opsodoras (Doradidae, Siluriformes) from Jarí and Xingú Rivers, Brazil

Similar documents
Cytogenetic analysis in catfish species of the genus Peckoltia Miranda Ribeiro, 1912 (Teleostei: Siluriformes: Loricariidae)

Cytogenetic analysis on Pterophyllum scalare (Perciformes, Cichlidae) from Jari River, Pará state

Chromosome Characterization of a Neotropical Fish Poptella paraguayensis from Paraguay River Basin

Different cytotypes in fishes of the genus Hypostomus Lcépède, 1803, (Siluriformes: Loricariidae) from Xingu river (Amazon region, Brazil)

Cytogenetic analysis of five species of the subfamily Corydoradinae (Teleostei: Siluriformes: Callichthyidae)

Artur Antonio Andreata 1, Claudio Oliveira 2 and Fausto Foresti 2. Morfologia, Botucatu, SP, Brazil. Abstract. Introduction. Materials and Methods

Cytogenetics of Trichomycterus brasiliensis (Siluriformes: Trichomycteridae) from the Upper São Francisco River Basin (MG)

Cytogenetic description of Ancistrus abilhoai (Siluriformes: Loricariidae) from Iguaçu River basin, southern Brazil

A comparative cytogenetic study of five piranha species (Serrasalmus, Serrasalminae) from the Amazon basin

Karyotypic Description of Corumbataia cuestae (Pisces, Loricariidae, Hypoptopomatinae)

The role of chromosomal fusion in the karyotypic evolution of the genus Ageneiosus (Siluriformes: Auchenipteridae)

BMC Genetics. Open Access. Abstract. BioMed Central

Chromosomal analyses in Megalonema platanum (Siluriformes: Pimelodidae), an endangered species from South American rivers

Cytogenetic Analysis of Three Sympatric Gymnotus Species (Teleostei: Gymnotidae) from the Fundo Stream, MG, Brazil

Karyotypic diversity and evolutionary trends in the Neotropical catfish genus Hypostomus

Scientific Note. Cytogenetic data on Astyanax jacuhiensis (Characidae) in the lago Guaíba and tributaries, Brazil

CYTOGENETICS OF TWO SYMPATRIC Corydoras SPECIES (PISCES, SILURIFORMES, CHALLICHTYIDAE) OF SOUTHERN BRAZIL

Danillo S. Silva 1, Luiz A. W. Peixoto 2, Julio C. Pieczarka 1, Wolmar B. Wosiacki 2, Jonathan S. Ready 1 and Cleusa Y.

Population divergence and peculiar karyoevolutionary trends in the loricariid fish Hypostomus aff. unae from northeastern Brazil

Karyotypes of 10 Species of Neotropical Cichlids (Pisces, Perciformes)

Cytogenetic characterization of four species of the genus Hypostomus Lacépède,

Karyotype variability in neotropical catfishes of the family Pimelodidae (Teleostei: Siluriformes)

Diversity and chromosomal evolution in the genus Ancistrus

Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, PR, Brasil

Journal of Plant & Agriculture Research. Research Article

Jamille de Araújo Bitencourt 1, Paulo Roberto Antunes de Mello Affonso 2, Lucia Giuliano-Caetano 1 and Ana Lucia Dias 1

Karyotype of River Loach Turcinoemacheilus kosswigi Bănărescu and Nalbant, 1964 (Cypriniformes, Balitoridae) from the Euphrates River, Turkey

Evidence for a natural hybrid of peacock bass (Cichla monoculus vs Cichla temensis) based on esterase electrophoretic patterns

Schooling Behavior of Thayeria. obliqua and Pristella maxillaris

147. Triploidy appeared in the Back. Cross Offspring

Karyotype description of possible new species of the Hypostomus ancistroides complex (Teleostei: Loricariidae) and other Hypostominae

Systematics and Biodiversity of the Order Cypriniformes (Actinopterygii, Ostariophysi) A Tree of Life Initiative. NSF AToL Workshop 19 November 2004

Original article. Pós Graduação em Biologia Comparada, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, Brazil.

Lecture 2 Phylogenetics of Fishes. 1. Phylogenetic systematics. 2. General fish evolution. 3. Molecular systematics & Genetic approaches

NICHOLAS JACOB WALKER

Puncture Wounds by Driftwood Catfish During Bucket Baths: Local Habits of Riverside People and Fish Natural History in the Amazon

Key words: Cytotaxonomy, Cytogenetics, Multivariate morphometrics, RAPD. Introduction

Evolution of Zebrina Pendula Var. Quadricolor by Centric Fusions: Evidence From Karyotype

A new killifish of the genus Melanorivulus from the upper Paraná river basin, Brazil (Cyprinodontiformes: Rivulidae)

Karyotype analysis of three species of Corydoras (Siluriformes: Callichthyidae) from southern Brazil: rearranged karyotypes and cytotaxonomy

Cutthroat trout genetics: Exploring the heritage of Colorado s state fish

A Study on Morphology, Cytogenetics and Mitochondrial DNA Sequences of Ricefish, Oryzias in Thailand

Karyotype Analysis of the New Catfish Mystus ngasep (Siluriformes: Bagridae) from Manipur, India

INFLUENCE OF TRAFFIC FLOW SEPARATION DEVICES ON ROAD SAFETY IN BRAZIL S MULTILANE HIGHWAYS

!"#$%&'() Mola mola *+,+-./

BIODIVERSITY OF LAKE VICTORIA:

Departamento de Zoologia, Universidade Federal do Paraná. Caixa Postal 19020, Curitiba, Paraná, Brasil.

ZOOTAXA ISSN (online edition)

WAVES ENERGY NEAR THE BAR OF RIO GRANDE'S HARBOR ENTRANCE

Academia Arena 2014;6(9)

A new killifish of the genus Melanorivulus from the upper Paraná river basin, Brazil (Cyprinodontiformes: Rivulidae)

Molecular systematics, biogeography and population. structure of Neotropical freshwater needlefishes of the genus Potamorrhaphis

Molecular comparison of Clarias batrachus (Linnaeus, 1758) found in India with the species reported from Bangladesh

FIRST RECORD OF HYPOSTOMUS PECKOLTOIDES (SILURIFORMES: LORICARIIDAE) IN PARAGUAY WITH COMMENTS ON VARIATIONS

By Charles Hawks Sponsored By The Angelfish Society

THE DIVERSITY OF FISHES

The fry patterns in the South American catfish genus Corydoras. Ian Fuller

PASTELARIA STUDIOS PUBLISHER

Contribution number 1429 of the Departamento de Zoologia, Universidade Federal do Paraná.

Peixes de água doce da Mata Atlântica. Naércio A. Menezes Museu de Zoologia da USP

Fig. 3.1 shows the distribution of roe deer in the UK in 1972 and It also shows the location of the sites that were studied in 2007.

Size and spatial distribution of the blue shark, Prionace glauca, caught by Taiwanese large-scale. longline fishery in the North Pacific Ocean

Notes on Stygichthys typhlops (Characiformes; Characidae): characterization of their teeth and discussion about their diet

Genetic analysis of radio-tagged westslope cutthroat trout from St. Mary s River and Elk River. April 9, 2002

Massachusetts Bay Smelt Spawning Habitat Monitoring Program. Assessment of Rainbow Smelt Egg Mortality at Town Brook, Quincy, April 1997

HSIAO WITH DESCRIPTION OF A NEW SPECIES (HEMIPTERA)

Metadata Freshwater Fishes of Colombia

Papers from the Conference on the Biology and Evolution of Crustacea

Freshwater mussels of Catalão, confluence of Solimões and Negro rivers, state of Amazonas, Brazil

Rapid recent expansion of the round goby (Neogobius melanostomus) and the western tubenose goby (Proterorhinus semilunaris) in Flanders (Belgium)

Karyotypes of Capoeta antalyensis (Battalgil, 1944) and Capoeta baliki Turan, Kottelat, Ekmekçi & İmamoğlu, 2006 (Actinopterygii, Cyprinidae)

Two New Species of the Neotropical Catfish Genus Lepthoplosternum (Ostariophysi: Siluriformes: Callichthyidae)

Conserving the freshwater fishes of South America

wi Astuti, Hidayat Ashari, and Siti N. Prijono

Os eventos extremos estão aumentando na Amazônia? Javier Tomasella e José A. Marengo. Centro de Ciência do Sistema Terrestre, INPE

Santos, SP BRAZIL February, 2010

Conditioned Alarm Behavior in Fathead Minnows (Pimephales promelas) and Test Their Ability

SERIES OF MISCELLANEOUS PUBLICATIONS UNIVERSITY OF AMSTERDAM. (Pisces, Siluriformes, Callichthyidae) H. Nijssen. Abstract INTRODUCTION

Feeding habits of giant otters Pteronura brasiliensis (Carnivora: Mustelidae) in the Balbina hydroelectric reservoir, Central Brazilian Amazon

LOWER MOKELUMNE RIVER UPSTREAM FISH MIGRATION MONITORING Conducted at Woodbridge Irrigation District Dam August 2014 through July 2015.

Merodoras nheco, new genus and species from Rio Paraguay basin, Brazil (Siluriformes, Doradidae), and nomination of the new subfamily Astrodoradinae

Force Standards Comparison between Mexico and Brazil. Jorge C. Torres Guzmán*, Daniel Ramírez Ahedo*, Jorge P. Cruz**, Jorge M. E.

Cytogenetics of Gymnogeophagus setequedas (Cichlidae: Geophaginae), with comments on its geographical distribution

Comparative cytogenetics of cichlid fishes through genomic in-situ hybridization (GISH) with emphasis on Oreochromis niloticus

JOHN G. LUNDBERG. RESEARCH INTERESTS Systematics, Ichthyology, Biogeography, Paleobiology, Vertebrate morphology.

Why so blue? The determinants of color pattern in killifish, Part II Featured scientist: Becky Fuller from The University of Illinois

Teleosts: Evolutionary Development, Diversity And Behavioral Ecology (Fish, Fishing And Fisheries) READ ONLINE

Brasacanthus sphoeroides gen. n., sp. n. (Acanthoceph ala, Echi norhynch idae) from a coastal marine fish of Parana State, Brazil 1

Using a Dichotomous Classification Key to Identify Common Freshwater Fish of New York State

Fish Dissection. Background

Neatness 0 1 Accuracy Completeness Lab Class Procedure Total Lab Score

Karyological characterization of Mugil trichodon Poey, 1876 (Pisces: Mugilidae)*

Booklet translated by SREJ at CSDC 1

Schwenkiella orietanlis Singh and Agarwal, 1997 (PLATE-XXVII-XXVIII)

The egg capsule of the coral cat shark, Atelomycterus marmoratus. (Bennett, 1830) (Chondrichthyes: Scyliorhinidae).

Nancy E. Kohler, Danielle Bailey, Patricia A. Turner, and Camilla McCandless SEDAR34-WP-25. Submitted: 10 June 2013

A KARYOLOGICAL ANALYSIS OF TWO CYPRINID FISHES, NOTEMIGONUS CRYSOLEUCAS AND NOTROPIS LUTRENSIS*

Patterns of energy allocation to reproduction in three Amazonian fish species

Two New Specimens for the Bolivian Endemic Titi Monkeys, Callicebus olallae and Callicebus modestus

Phylogenetic relationships of the South American Doradoidea (Ostariophysi: Siluriformes)

Transcription:

Short Communication Genetics and Molecular Biology, 31, 1 (suppl), 256-260 (2008) Copyright 2008, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Cytogenetic studies in fishes of the genera Hassar, Platydoras and Opsodoras (Doradidae, Siluriformes) from Jarí and Xingú Rivers, Brazil Susana Suely Rodrigues Milhomem 1, Augusto Cesar Paes de Souza 1, Aline Lira do Nascimento 1, Jaime Ribeiro Carvalho Jr. 3, Eliana Feldberg 2, Julio Cesar Pieczarka 1 and Cleusa Yoshiko Nagamachi 1 1 Departamento de Genética, Universidade Federal do Pará, Belém, Pará, Brazil. 2 Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil. 3 Centro Jovem de Aquaculturismo, Belém, Pará, Brazil. Abstract We studied the karyotypes of Hassar cf. orestis and an undescribed Hassar species from the Jarí River and Opsodoras ternetzi, H. orestis and Platydoras cf. costatus from the Xingú River, all with 2n = 58. Constitutive heterochromatin is located in the centromere in most metacentric pairs; in some chromosomes this banding is not present, or it is located on the whole chromosome arm or in the distal regions. The NOR is located on a single biarmed pair at a distal region of the short arm in H. cf. orestis, H. orestis and P. cf. costatus at a distal region of the long arm in O. ternetzi and at a proximal region of the long arm in the Hassar species. In all species (except for Hassar sp.) the CMA3 analysis revealed a rich G-C region coincident with the NOR. Probably inversions occurred in the NOR chromosome during the chromosomal differentiation of the Doradidae species here described. Key words: chromosomes, Amazon, biodiversity, Siluriformes, banding, fluorochromes. Accepted: August 28, 2006; Received: June 8, 2007. The species of the Doradidae family are usually known as thorny catfishes. They are distributed throughout all the main river systems in the American continent (Higushi, 1992). In South America, these fishes can be found in a large range of freshwaters habitats, between the parallels 10 N and 35 S. Approximately 80 species are described from the Orinoco, Essequibo, Putumayo, Napo, Ucayali-Marañon, Amazonas and its tributaries (Negro, Madeira and Xingú), Tocantins-Araguaia and Paraguay- Paraná River systems. Some endemic species can be found in the São Francisco-Velhas River system in central eastern Brazil with two primitive forms limited to the Jequitinhonha and Paraguaçu River system (Higushi, 1992; de Pinna, 1998). The fishes from this family have a size range from three centimeters to one meter. They are easily identified by the series of bony plates on each side of the body, where each plate has a curved torn of different size, depending on the species. Some have additional plates among the dorsal and adipose fins, or even covering most of the body. They are omnivorous fishes (Ferreira et al., 1998) and are also called talking catfishes because they are able to make Send correspondence to Cleusa Yoshiko Nagamachi. Departamento de Genética, Universidade Federal do Pará, Campus do Guamá, Av. Augusto Corrêa, sn., CCB, 3 andar, 66075-900 Belém, PA, Brazil. E-mail: cleusa@ufpa.br. sounds by movements of the pectoral spine or as vibrations produced by the swim bladder (Nelson, 1994). Based on the cladistic methodology applied for osteological traits, Higuchi (1992) divided this family of 70 species into 33 genera, where three were new. Nelson (1994) reports that the family Doradidae has around of 35 genera with 90 species. Sabaj and Ferraris Jr. (2003) recognized 72 valid species in 30 genera. Following this review, Moyer et al. (2004) provide a genus-level phylogeny for doradids based on mitochondrial (12S and 16S rrna) and nuclear (elongation factor-1 alpha EF1α) gene sequences, as well as a re-evaluation of published morphological data. This phylogeny differs in some aspects from the one proposed by Higuchi (1992). Few species have their karyotypes studied (Fenocchio et al., 1993; Venere, 1998; Eler et al., 2007). These data show that, even with few species cytogenetically studied in this family, a large variation among the karyotypes is evident, especially in chromosomes morphology (Table 1). In the present paper we describe the karyotypes of Hassar cf. orestis, Hassar sp., Hassar orestis Burgess, 1989, Opsodoras ternetzi Eigenmann, 1925 and Platydoras cf. costatus Linnaeus, 1758 aiming to contribute to their taxonomic classification and a better understanding of their chromosomal evolution.

Milhomem et al. 257 Table 1 - Chromosomal characterization of the family Doradidae. 2n = diploid number; FN = Fundamental Number; KF = Karyotypic formulae; NOR = Nucleolar Organizer Region; M = metacentric; SM = submetacentric; ST = subtelocentric; A = acrocentric; p = short arm; q = long arm. M = male; F = female. Species 2n FN KF NOR Reference Hassar cf. orestis 58 116 32M+18SM+8ST 20 SM, p, distal Present paper Hassar orestis 58 114 42M+14SM+2A SM, q, distal Venere (1992) Hassar orestis 58 116 32M+20SM+6ST 22 SM, p, distal Present paper Hassar sp. 58 116 32M+18SM+8ST 7 M, q, proximal Present paper Hassar wilderi 58 116 32M+16SM+10ST SM, p, distal Venere (1992) Leptodoras acipenserinus 58 112 24M+16SM+14ST+4A ST, p, distal Venere (19992) Opsodoras sp. 58 109 F 108 M 21M+18SM+12ST+7A 20M+18SM+12ST+8A SM, p, distal Venere (1992) Opsodoras ternetzi 58 114 44M+12SM+2A 24 SM, q, distal Present paper Platydoras cf. costatus 58 104 26M+16SM+4ST+12A 20 SM, p, distal Present paper Pseudodoras niger 58 102 20M+16SM+8ST+14A 15 SM, p, distal Fenocchio et al. (1993) Rhynodoras d orbignyi 58 102 20M+20SM+4 ST+14A 16 SM, p, distal Fenocchio et al. (1993) Rhynodoras sp. 58 104 18M+16SM+12ST+12 A SM, p, distal Venere (1992) Trachydoras paraguaiensis 56 112 32M+20SM+4ST SM, q, interstitial Fenocchio et al. (1993) Wertheimeria maculata 58 104 24M+14SM+8ST+12A M, p, distal Eler et al. (2007) Hassar wilderi 58 116 32M+16SM+10ST ST, p, distal Eler et al. (2007) We analyzed fishes of the family Doradidae, from Rivers Jarí (PA) and Xingú (PA). From Jarí River (S = 03 18' 14,9" and W = 52 03' 29,3") three females and two males of the Hassar cf. orestis species were analyzed as well as three females of the species Hassar sp. From Xingú River (S = 02 37' 44,3" and W = 51 57' 06,4"), three females and two males of the Opsodoras ternetzi species were analyzed as well as one male and one female of the species Hassar orestis. Also from this River (S = 03 50' 46,6" and W = 52 29' 22,3") four females of the species Platydoras cf. costatus were analyzed. Voucher specimens were deposited in the fish collection of the Museu Paraense Emilio Goeldi in Belém, Pará, Brazil: Hassar orestis (MPEG 12463) and Opsodoras ternetzi (MPEG 12464), both from Xingú River. The other specimens here described remain uncatalogued. Mitotic chromosome preparations were obtained from kidney cells using the air-drying technique of Bertollo et al. (1978). C-banding (Sumner, 1972), Ag-NOR staining (Howell and Black, 1980) and Chromomycin A3 (CMA 3 ) banding (Schweizer, 1980) were applied. Chromosome morphology was determined on the basis of arm ratio as proposed by Guerra (1986), and chromosomes were classified as metacentrics (M), submetacentrics (SM), subtelocentrics (ST) and acrocentrics (A). The five species here studied have 2n = 58 chromosomes. Hassar cf. orestis (Figure 1a) and Hassar sp. (Figure 1b) have 32M+18SM+8ST and FN = 116 Opsodoras ternetzi (Figure 1c) has 44M+12SM+2A and FN = 114, Hassar orestis (Figure 1d) has 32M+20SM+6ST and FN = 116, and Platydoras cf. costatus (Figure 1e) has 26M+16SM+4ST+12A and FN = 104. None of these species has shown any sex chromosome heteromorphism. Single Ag-NORs were observed in all species. In Hassar cf. orestis (Figure 1a) from Jarí River, and in Hassar orestis (Figure 1d) and Platydoras cf. costatus (Figure 1e) from Xingú River the NOR is located at a distal position of the short arm, while in Hassar sp. (Figure 1b) it is at interstitial position of the long arm and in Opsodoras ternetzi (Figure 1c) it locates to a distal position of the long arm on submetacentric chromosomes. Constitutive heterochromatin could be found in the centromeric region of most of metacentric chromosomes, showing a faint banding pattern in all the species here studied. It was possible also to find heterochromatic blocks in the short arms of Hassar orestis (Figure 2d) and Opsodoras ternetzi (Figure 2c). CMA 3 banding in the species Hassar cf. orestis (Figure 2a), Opsodoras ternetzi (Figure 2c), Hassar orestis (Figure 2d) and Platydoras cf. costatus (Figure 2e) showed regions rich in G-C base pairs coincident with the NOR location. Unfortunately, it was not possible to do this banding in Hassar sp. Table 1 summarizes the karyotype data obtained in the present study and those available in the literature. When we compare the results here obtained with the ones described by Venere (1998) we can note that there is good agreement on the diploid number in the genus Hassar, except for a small difference in the fundamental number of Hassar oresti, because the karyotype described by that author has one acrocentric pair which is not present in the

258 Cytogenetic studies in Doradidae (Siluriformes) Figure 1 - Giemsa stained karyotypes of the species: a) Hassar cf. orestis; b) Hassar sp.; c) Opsodoras ternetzi; d) Hassar orestis; e) Platydoras cf. costatus. Within the boxes are the NOR-stained chromosomes of each species. karyotype here described. The species Opsodoras ternetzi here described also has the same diploid number, however, the karyotype is different from the species Opsodoras sp. (Venere, 1998) because it does not have sex chromosome heteromorphism or acrocentric pairs. The family Doradidae has around of 80 species (de Pinna, 1998), from which 14 were already karyotyped and most have 2n = 58. Probably this is the modal diploid number of this family, the same diploid number which is also considered ancestral for Siluriformes (Oliveira et al., 1988). Eler et al. (2007) described the karyotype of Wertheimeria maculata, which according to Higushi (1992) is a sister taxon of all Doradidae. This species has 2n = 58 (24M+14SM+8ST+12A), supportig the hypothesis that this diploid number is plesiomorphic for the Doradidae. The C-banding pattern was similar for the entire group, with a heterochromatic faint pattern. Fenocchio and Bertollo (1992) noted that it is very difficult to obtain good C-banding in Pimelodidae, a family phylogenetically related to Doradidae. This can best be explained by the peculiar traits of the chromatin of these fishes rather than by the absence of heterochromatic regions. When looking at Hassar wilderi and Opsodoras sp. which were already analyzed using CMA 3 banding (Venere, 1998), we can conclude that this G-C base pairs specific fluorochrome is useful for visualizing the NOR in fishes. According to Pendás et al. (1993), the positive correlation between NOR and CMA 3 banding occurs because the rrna genes from NOR region are interspersed by DNA sequences which are rich in G-C base pairs. The single NOR in the distal position of a short arm in the species Hassar cf. orestis from Jarí River, Hassar orestis and Platydoras cf. costatus from Xingú River is similar to the one described for Hassar wilderi, Leptodoras

Milhomem et al. 259 Figure 2 - C-banded (left) and CMA 3 banded (right) karyotypes of the species: a) Hassar cf. orestis; b) Hassar sp.; c) Opsodoras ternetzi; d) Hassar orestis; e) Platydoras cf. costatus. In the C-banded karyotype shown in 2c, the arrows point to centromeric heterochromatin, while the arrow heads show heterochromatic blocks in the short arms. acipenserinus, Opsodoras sp. and Rhynodoras sp. (Venere, 1998), and also for Pseudodoras niger and Rhynodoras d orbignyi (Fenocchio et al. 1993). In Hassar sp. from Jarí, the NOR is similar to the one in Trachydoras paraguaiensis (Fenocchio et al. 1993) since both are located in an interstitial region in the long arm of a submetacentric pair. In Opsodoras ternetzi from Xingú the NOR is located at the distal region of the long arm of a submetacentric chromosome pair same as in Hassar orestis (Venere, 1998). The results here obtained for the species Hassar orestis from Jarí and Xingú Rivers show that the NOR is located in the distal region of the short arm. One chromosome pair with heterochromatic blocks in the short arms in Hassar orestis (Figure 2d) from Xingú River is probably the NOR bearer chromosome, showing a more evident secondary constriction in one copy of the pair which seems to be a species-specific marker. Venere (1998) studied the same species from Araguaia River and found the NOR in the distal region of the long arm. These results are important since they show the possibility of using the NOR as a population marker. If one accepts that the analyzed NOR bearer chromosomes in the genus Hassar are homologous, potential paracentric and/or pericentric inversions could have played a role in the karyotypic evolution of these species, moving the NOR to different places of the chromosomes. According to Almeida-Toledo (1998), NOR position changes can be an important marker for karyotypic differences among populations or species of fishes. The NOR size polymorphisms are very frequent in fishes and can be found also in mammals and other vertebrates and seems to be a general trait of NORs. This size polymorphism was observed in all the species here studied. Concerning the Opsodoras ternetzi we observed a difference in NOR position when compared with the Opsodoras sp. (Venere, 1998). In the first one the staining occurred in the distal region of the long arm of a metacentric pair, while in the latter the staining was in the distal region of the short arm of a subtelocentric pair. Apart from this, the modal number is conserved as in other species of this group, but the chromosome formulae and the fundamental numbers change with respect to M+SM+ST+A, suggesting that inversions can be involved not only in the NOR bearers but also in the differentiation of other chromosomal pairs. According to Lundberg and Friel (2004), Auchenipteridae is the family that is most closely related to Doradidae. Souza et al. (2001) described the karyotypes of four species of this family, where three species have a single NOR located in a distal portion of a short arm, like Hassar cf. orestis from Jarí River, Hassar orestis and Platydoras cf. costatus from Xingú River here presented, as well as Hassar wilderi, Leptodoras acipenserinus, Opsodoras sp. and Rhynodoras sp. (Venere, 1998) and Pseudodoras niger and Rhynodoras d orbignyi (Fenocchio et al., 1993). The ancestral location of NORs may be in the distal portion of a short arm, since it is found in species from both Doradidae and Auchenipteridae. Cytogenetic research on other species of this family should help to define the phylogenetic relationships within this group, as well as the understanding of the chromosomal evolutionary mechanisms that acted in the chromosomal differentiation of these species.

260 Cytogenetic studies in Doradidae (Siluriformes) Acknowledgments This work was supported by: SECTAM-FUNTEC, IBAMA, CNPq, CAPES, UFPA/PROPESP/PROINT and INPA. References Almeida-Toledo LF (1998) Cytogenetic markers in Neotropical freshwater fishes. In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS and Lucena CAS (eds) Phylogeny and Classification of Neotropical Fishes. Edipucrs, Porto Alegre, pp 583-588. Bertollo LAC, Takahashi CS and Moreira-Filho O (1978) Citotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidae). Rev Bras Genet 2:103-120. Eler ES, Dergam JA, Vênere PC, Paiva LC, Miranda GA and Oliveira AA (2007) The karyotypes of the thorny catfishes Wertheimeria maculata Steindachner, 1877 and Hassar wilderi Kindle, 1895 (Siluriformes, Doradidae) and their relevance in doradids chromosomal evolution. Genetica 130:99-103. Fenocchio AS and Bertollo LAC (1992) Karyotype similarities among Pimelodidae (Pisces, Siluriformes) from the Brazilian Amazon region. Cytobios 69:41-46. Fenocchio AS, Jorge LC, Venere PC and Bertollo LAC (1993) Karyotypic characterization and nucleolus organizer regions in three species of Doradidae (Pisces, Siluriformes). Rev Bras Genet 4:1097-1101. Ferreira EJG, Zuanon JAS and Santos GM (1998) Peixes Comerciais do Médio Amazonas: Região de Santarém, Pará. IBA- MA, Brasília, 214 pp. Guerra MS (1986) Reviewing the chromosome nomenclature of Levan et al. Rev Bras Genet 4:741-743. Higuchi H (1992) A phylogeny of the South American thorny catfishes (Osteichthyes, Siluriformes, Doradidae). PhD Thesis, Harvard University, Cambridge. Howell WM and Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia 36:1014-1015. Lundberg JG and Friel JP (2003). Siluriformes. Catfishes, v. 20 January 2003 (under construction). http://tolweb.org/ Siluriformes/15065/2003.01.20. In: Tree of Life Web Project, http://tolweb.org/. Moyer GR, Burr BM and Krajewski C (2004) Phylogenetic relationships of thorny catfishes (Siluriformes, Doradidae) inferred from molecular and morphological data. Zool J Linn Soc 140:551-575. Nelson JS (1994) Fishes of the World. John Wiley and Sons, New York, 164 pp. Oliveira C, Almeida-Toledo LF, Foresti F, Britski HA and Toledo Filho SA (1988) Chromosome formulae of Neotropical freshwater fishes. Rev Bras Genet 3:577-624. Pendás AM, Morán P and García-Vázquez E (1993) Ribosomal RNA genes are interspersed throughout a heterochromatic chromosome arm in Atlantic Salmon. Cytogenet Cell Genet 63:28-130. de Pinna MCC (1998) Phylogenetic relationships of Neotropical Siluriformes (Teleostei, Ostariophysi): Historical overview and synthesis of hypothesis. In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS and Lucena CAS (eds). Phylogeny and Classification of Neotropical Fishes. Edipucrs, Porto Alegre, pp 279-330. Sabaj MH and Ferraris Jr CJ (2003) Family Doradidae. In: Reis RE, Kullander SO and Ferraris Jr CJ (eds). Check list of the freshwater fishes of South and Central America. Edipucrs, Porto Alegre, pp 456-469. Schweizer D (1980) Simultaneous fluorescent staining of R bands and specific heterochromatic regions (DA/DAPI bands) in human chromosomes. Cytogenet Cell Genet 27:190-193. Souza EL, Feldberg E and Nakayama CM (2001) Estudos cromossômicos na família Auchenipteridae (Siluriformes) na área do Catalão, AM. In: Anais da X Jornada de Iniciação Científica de PIBIC/INPA, Manaus, pp 150-153. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304-306. Venere PC (1998) Diversificação cariotípica em peixes do médio rio Araguaia, com ênfase em Characiformes e Siluriformes (Teleostei, Ostariophysi). Ph.D. Thesis, Universidade Federal de São Carlos, São Carlos. Associate Editor: Fausto Foresti License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.