Supplementary Information

Similar documents
Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Supporting Information

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Supporting Information

Supporting Information for

Supporting Information

Supporting Information

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Supporting information

noble-metal-free hetero-structural photocatalyst for efficient H 2

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

state asymmetric supercapacitors

Supplementary Information

Electronic Supplementary Information (ESI)

Supplementary Material

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Electronic Supplementary Information (ESI)

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Electronic Supplementary Information (ESI)

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Electronic Supplementary Information

Electronic Supporting Information (ESI)

Supporting Information

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Supporting Information

Supporting Information for

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Supporting Information

Supplementary Information

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Electronic Supplementary Information

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Supplementary Information

Supporting Information

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supporting Information

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Electronic Supplementary Information

Supporting Information

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Supporting information

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

Supplementary Information

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Supporting Information

Supporting Information

Supporting Information

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Supporting Information

Highly enhanced performance of spongy graphene as oil sorbent

Electronic Supplementary Information for

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Electronic Supplementary Information

Curriculum Vitae. Yu (Will) Wang

Complex Systems and Applications

Supporting Information

Electronic Supplementary Information

HONG KONG CHINA BODYBUILDING & FITNESS ASSOCIATION IS A MEMBER OF THE WBPF, ABBF & EABBF AND RECOGNISED BY THE SPORTS FEDERATION & OLYMPIC COMMITTEE O

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supporting Information

Supporting Information. High-performance nonfullerene polymer solar cells based on fluorinated wide

Applied Medical Parasitology By LI CHAO PIN, ZHANG JIN SHUN ZHU BIAN SUN XIN

Supporting Information

Identification of a Large Amount of Excess Fe in Superconducting Single- Layer FeSe/SrTiO 3 Films

Measurements of the Cross Section for e 1 e 2! Hadrons at Center-of-Mass Energies from 2 to 5 GeV

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

Preliminary Audition

Three-Dimensional Plasmonic Hydrogel Architecture: Facile Synthesis and Its Macro Scale Effective Space

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Imaging Spectrometer. Technologies and Applications PROCEEDINGS OF SPIE. International Symposium. Detection and Imaging on Photoelectronic

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%

LOCAL ORGANIZING COMMITTEE

Supporting Information

2012 International Conference on Future Energy, Environment, and Materials

Supporting information

Transformation Optics and Experiments

Electronic Supplementary Information

A tribute to Guosen Yan

Ph.D., Industrial and Systems Engineering, 2009

Chueh, Chu-Chen ( 闕居振 )_ Assistant Professor. B.S. in Chemical Engineering. Research and Professional Interests

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supplementary Information A novel ball milling technique for room temperature processing of TiO 2 nanoparticles employed as electron transport layer in perovskite solar cells and modules Mriganka Singh, a Chien-Hung Chiang, b Karunakara Moorthy Boopathi, c Chintam Hanmandlu c, Gang Li, e Chun-Guey Wu,* bf Hong-Cheu Lin,* a and Chih-Wei Chu* cdg a Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan. Email: linhc@cc.nctu.edu.tw b Research Center for New Generation Photovoltaics, National Central University, Jhong-Li, Taiwan. Email: t610002@cc.ncu.edu.tw c Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan. Email: gchu@gate.sinica.edu.tw d College of Engineering, Chang Gung University, Guishan District, Taoyuan City, Taiwan e Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China f Department of Chemistry, National Central University, Jhong-Li, Taiwan g Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan 1

Table S1: PV performance of PSCs on different types of TiO 2 ETLs at the reverse and forward scans, measured under AM 1.5G illumination (100 mw/cm 2 ). Device Structure Scan direction V oc (V) J sc (ma cm 2 ) FF (-) PCE (%) S-TiO 2 Reverse 1.02 20.00 0.60 12.32 S-TiO 2 /m-tio2 Forward Reverse Forward 0.91 1.10 1.01 19.85 21.48 21.49 0.56 0.77 0.63 10.20 18.21 13.92 G-TiO 2 Reverse Forward 1.07 1.05 21.72 21.63 0.75 0.75 17.43 17.03 Table S2: The device performance of PSCs (small-area: 0.1 cm 2 ) based on low-temperature TiO 2 ETL prepared with various deposition methods. No. Device Structure (only ETL) 1 2 3 4 5 6 7 FTO/TiO 2 FTO/TiO 2 + graphene ITO/ TiO 2 ITO/PEIE/ Y:TiO 2 FTO/TiO x FTO/lt-TiO 2 ITO/TiO 2 ITO/TiCl- TiO 2 ITO/TiO 2 ITO/CQDs /TiO 2 ITO/TiO 2 ITO/TiO 2 -Cl ITO/G-TiO 2 ETL deposition method hydrothermal non-hydrolytic sol-gel non-hydrolytic sol-gel non-hydrolytic sol-gel non-hydrolytic sol-gel non-hydrolytic sol-gel ball milling ETL processing temperature ( C) 150 150 150 150 150 150 <150 V oc (V) 1.00 1.04 1.06 1.13 0.96 1.05 1.02 1.09 1.03 1.13 1.12 1.18 1.07 J sc (ma cm 2 ) 17.7 21.9 19.9 22.7 15.4 20.0 21.0 19.7 19.1 21.3 21.6 22.3 21.7 FF (-) 0.61 0.73 0.65 0.75 0.56 0.72 0.72 0.75 0.77 0.78 0.76 0.80 0.75 PCE (%) 10.0 15.6 13.8 19.3 8.3 15.3 15.6 16.4 15.1 18.8 18.5 21.4 17.4 Year/ Ref. 2013/ [1] 2014/ [2] 2014/ [3] 2016/ [4] 2017/ [5] 2017/ [6] [This work] 2

Table S3: The efficiency of the perovskite solar submodules with various area based on TiO 2 ETL prepared at various temperature. 7 No. Device Structure (only ETL) ETL processing temperature ( C) Aperture area (cm 2 ) Active area (cm 2 ) Designated area (cm 2 ) PCE (%) 1 C-TiO 2 130 4.00 13.6 [8] 2 3 4 C-TiO 2 /M-TiO 2 C-TiO 2 C-TiO 2 /M-TiO 2 450 450 500 49.0 11.09 31.0 10.4 13.3 10.46 5 6 7 8 9 10 C- TiO 2 /Graphene + M- TiO 2 C-TiO 2 /M-TiO 2 C-TiO 2 /M-TiO 2 C-TiO 2 /TiO 2 NRs C-TiO 2 /M-TiO 2 C-TiO 2 /M-TiO 2 450 500 480 450 500 480 36.1 17.6 36.1 10.36 70.0 50.6 8.40 8.80 8.80 10.1 100 2.02 43.2 25.2 10.74 12.6 6.22 9.50 8.07 15.8 13.9 12.1(certified) 10.3 4.30 15.14 13.53 14.19 Ref. [9] [10] [11] [12] [13] [14] [15] 11 12 13 C-TiO 2 C-TiO 2 G-TiO 2 450 500 <150 [18] [19] This work Note. C-TiO 2 : Compact TiO 2 layer; M-TiO 2 : Mesoporous TiO 2 layer; G-TiO 2 : Ground TiO 2 layer [16] [17] 3

Fig. S1: Average particle size of TiO 2 powder plotted with respect to the grinding time (insert: the pictures of the ground TiO 2 solutions obtained different grinding times). 4

Fig. S2: Atomic force microscopy image of G-TiO 2 film spin-coated on ITO. Fig. S3: J-V curve of PSCs with the device structure FTO/S-TiO 2 /m-tio 2 /CH 3 NH 3 PbI 3 /spiro- MeOTAD/MoO 3 /Ag measured at reverse and forward scans. 5

Fig. S4: J-V curves of PSCs with the G-TiO 2 and S-TiO 2 as an electron transporting layers measured at reverse and forward scans. Fig. S5: J-V curves of of the G-TiO 2 based PSCs measured with different delay times. 6

Fig. S6: Photograph of large-area (25.2 cm 2 ) solar submodules incorporating G-TiO 2 as the ETL. Fig. S7: Long-term stability tests of the best cell [ITO (or FTO)/G-TiO 2 (or S-TiO 2 ) /CH 3 NH 3 PbI 3 /spiro-meotad/moo 3 /Ag] stored in a glove box under N 2. 7

Fig. S8: Histograms of the performance (current-density, open-circuit voltage, power conversion efficiency, and fill factor) of 51 G-TiO 2 and S-TiO 2 devices, measured under 1 Sun light illumination (100 mw cm 2 ). 8

Fig. S9: Tauc plots of G-TiO 2 (dark cyan) and S-TiO 2 (burgundy). 9

Fig. S10: AFM images of (a) glass/fto/s-tio 2, (b) glass/fto/s-tio 2 /CH 3 NH 3 PbI 3, (c) glass/ito/g-tio 2 and (d) glass/ito/g-tio 2 /CH 3 NH 3 PbI 3. 10

Fig. S11: J-V curves of PSCs based on G-TiO 2 ETL with various thicknesses prepared from different concentrations of G-TiO 2 suspension. 11

Reference 1 J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert and H. J. Snaith, Nano Lett., 2013, 14, 724-730. 2 H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345, 542-546. 3 K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate and H. J. Snaith, Energy Environ. Sci., 2014, 7, 1142-1147. 4 Z. Liu, Q. Chen, Z. Hong, H. Zhou, X. Xu, N. De Marco, P. Sun, Z. Zhao, Y.-B. Cheng and Y. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 11076-11083. 5 H. Li, W. Shi, W. Huang, E.-P. Yao, J. Han, Z. Chen, S. Liu, Y. Shen, M. Wang and Y. Yang, Nano Lett., 2017, 17, 2328-2335. 6 H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang and Y. Zhao, Science, 2017, 355, 722-726. 7 Z. Yang, S. Zhang, L. Li and W. Chen, J. Materiomics, 2017. 8 W. Qiu, T. Merckx, M. Jaysankar, C. M. de la Huerta, L. Rakocevic, W. Zhang, U. Paetzold, R. Gehlhaar, L. Froyen and J. Poortmans, Energy Environ. Sci., 2016, 9, 484-489. 9 Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu, X. Li and H. Han, Solar RRL, 2017, 1. 10 M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry and M. F. van Hest, Nat. Energy, 2017, 2, nenergy201738. 11 A. Priyadarshi, L. J. Haur, P. Murray, D. Fu, S. Kulkarni, G. Xing, T. C. Sum, N. Mathews and S. G. Mhaisalkar, Energy Environ. Sci., 2016, 9, 3687-3692. 12 A. Agresti, S. Pescetelli, A. L. Palma, A. E. Del Rio Castillo, D. Konios, G. Kakavelakis, S. Razza, L. Cinà, E. Kymakis and F. Bonaccorso, ACS Energy Lett., 2017, 2, 279-287. 12

13 P. S. Shen, J. S. Chen, Y. H. Chiang, M. H. Li, T. F. Guo and P. Chen, Adv. Mater. Interfaces, 2016, 3. 14 M. R. Leyden, Y. Jiang and Y. Qi, J. Mater. Chem. A, 2016, 4, 13125-13132. 15 A. Fakharuddin, A. L. Palma, F. Di Giacomo, S. Casaluci, F. Matteocci, Q. Wali, M. Rauf, A. Di Carlo, T. M. Brown and R. Jose, Nanotechnology, 2015, 26, 494002. 16 H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang and M. Grätzel, Nature, 2017, 550, 92-95. 17 S. Razza, F. Di Giacomo, F. Matteocci, L. Cina, A. L. Palma, S. Casaluci, P. Cameron, A. D'epifanio, S. Licoccia and A. Reale, J. Power Sources, 2015, 277, 286-291. 18 M. Yang, D. H. Kim, T. Klein, Z. Li, M. O. Reese, B. Tremolet de Villers, J. Berry, M. F. van Hest and K. Zhu, ACS Energy Lett., 2018. 19 P. Li, C. Liang, B. Bao, Y. Li, X. Hu, Y. Wang, Y. Zhang, F. Li, G. Shao and Y. Song, Nano Energy, 2018, 46, 203-211. 13