Understanding safety life cycles

Similar documents
PROCESS AUTOMATION SIL. Manual Safety Integrity Level. Edition 2005 IEC 61508/61511

DETERMINATION OF SAFETY REQUIREMENTS FOR SAFETY- RELATED PROTECTION AND CONTROL SYSTEMS - IEC 61508

Implementing IEC Standards for Safety Instrumented Systems

SIL explained. Understanding the use of valve actuators in SIL rated safety instrumented systems ACTUATION

Ultima. X Series Gas Monitor

innova-ve entrepreneurial global 1

Failure Modes, Effects and Diagnostic Analysis

Solenoid Valves used in Safety Instrumented Systems

Functional safety. Functional safety of Programmable systems, devices & components: Requirements from global & national standards

Safety Manual VEGAVIB series 60

A study on the relation between safety analysis process and system engineering process of train control system

Accelerometer mod. TA18-S. SIL Safety Report

This manual provides necessary requirements for meeting the IEC or IEC functional safety standards.

The IEC61508 Operators' hymn sheet

Safety Manual. Process pressure transmitter IPT-1* 4 20 ma/hart. Process pressure transmitter IPT-1*

Safety Manual VEGAVIB series 60

The Best Use of Lockout/Tagout and Control Reliable Circuits

Safety-critical systems: Basic definitions

Every things under control High-Integrity Pressure Protection System (HIPPS)

Safety manual for Fisher GX Control Valve and Actuator

A GUIDE TO RISK ASSESSMENT IN SHIP OPERATIONS

THE IMPROVEMENT OF SIL CALCULATION METHODOLOGY. Jinhyung Park 1 II. THE SIL CALCULATION METHODOLOGY ON IEC61508 AND SOME ARGUMENT

Partial Stroke Testing. A.F.M. Prins

Valve Communication Solutions. Safety instrumented systems

DeZURIK. KGC Cast Knife Gate Valve. Safety Manual

DeZURIK Double Block & Bleed (DBB) Knife Gate Valve Safety Manual

PL estimation acc. to EN ISO

Failure Modes, Effects and Diagnostic Analysis

Section 1: Multiple Choice

FP15 Interface Valve. SIL Safety Manual. SIL SM.018 Rev 1. Compiled By : G. Elliott, Date: 30/10/2017. Innovative and Reliable Valve & Pump Solutions

DeZURIK. KSV Knife Gate Valve. Safety Manual

RESILIENT SEATED BUTTERFLY VALVES FUNCTIONAL SAFETY MANUAL

A quantitative software testing method for hardware and software integrated systems in safety critical applications

Safety Manual OPTISWITCH series relay (DPDT)

C. Mokkapati 1 A PRACTICAL RISK AND SAFETY ASSESSMENT METHODOLOGY FOR SAFETY- CRITICAL SYSTEMS

AUSTRALIA ARGENTINA CANADA EGYPT NORTH SEA U.S. CENTRAL U.S. GULF. SEMS HAZARD ANALYSIS TRAINING September 29, 2011

High Integrity Pressure Protection Systems HIPPS

Functional Safety SIL Safety Instrumented Systems in the Process Industry

Reliability of Safety-Critical Systems Chapter 3. Failures and Failure Analysis

Pneumatic QEV. SIL Safety Manual SIL SM Compiled By : G. Elliott, Date: 8/19/2015. Innovative and Reliable Valve & Pump Solutions

Knowledge, Certification, Networking

SIL Safety Manual. ULTRAMAT 6 Gas Analyzer for the Determination of IR-Absorbing Gases. Supplement to instruction manual ULTRAMAT 6 and OXYMAT 6

Hydraulic (Subsea) Shuttle Valves

Service & Support. Questions and Answers about the Proof Test Interval. Proof Test According to IEC FAQ August Answers for industry.

Eutectic Plug Valve. SIL Safety Manual. SIL SM.015 Rev 0. Compiled By : G. Elliott, Date: 19/10/2016. Innovative and Reliable Valve & Pump Solutions

Solenoid Valves For Gas Service FP02G & FP05G

Section 1: Multiple Choice Explained EXAMPLE

Purpose. Scope. Process flow OPERATING PROCEDURE 07: HAZARD LOG MANAGEMENT

Failure Modes, Effects and Diagnostic Analysis

FUNCTIONAL SAFETY: SIL DETERMINATION AND BEYOND A CASE STUDY FROM A CHEMICAL MANUFACTURING SITE

The IEC61508 Inspection and QA Engineer s hymn sheet

Proposed Abstract for the 2011 Texas A&M Instrumentation Symposium for the Process Industries

Risk Management Qualitatively on Railway Signal System

Transmitter mod. TR-A/V. SIL Safety Report

Failure Modes, Effects and Diagnostic Analysis

Bespoke Hydraulic Manifold Assembly

SPR - Pneumatic Spool Valve

DATA ITEM DESCRIPTION Title: Failure Modes, Effects, and Criticality Analysis Report

Failure Modes, Effects and Diagnostic Analysis

PROCEDURE. April 20, TOP dated 11/1/88

Methods of Determining Safety Integrity Level (SIL) Requirements - Pros and Cons

Lecture 04 ( ) Hazard Analysis. Systeme hoher Qualität und Sicherheit Universität Bremen WS 2015/2016

Session: 14 SIL or PL? What is the difference?

Marine Risk Assessment

Safety Critical Systems

Failure Modes, Effects and Diagnostic Analysis. Rosemount Inc. Chanhassen, MN USA

Reliability of Safety-Critical Systems Chapter 4. Testing and Maintenance

The Safety Case. Structure of Safety Cases Safety Argument Notation

Failure Modes, Effects and Diagnostic Analysis

(C) Anton Setzer 2003 (except for pictures) A2. Hazard Analysis

Advanced LOPA Topics

L&T Valves Limited SAFETY INTEGRITY LEVEL (SIL) VERIFICATION FOR HIGH INTEGRITY PRESSURE PROTECTION SYSTEM (HIPPS) Report No.

The Key Variables Needed for PFDavg Calculation

Identification and Screening of Scenarios for LOPA. Ken First Dow Chemical Company Midland, MI

THE CANDU 9 DISTRffiUTED CONTROL SYSTEM DESIGN PROCESS

Failure Modes, Effects and Diagnostic Analysis

Intrinsic safety 101 hazardous locations

EL-O-Matic E and P Series Pneumatic Actuator SIL Safety Manual

Failure Modes, Effects and Diagnostic Analysis

The Safety Case. The safety case

Achieving Compliance in Hardware Fault Tolerance

Point level switches for safety systems

Transducer mod. T-NC/8-API. SIL Safety Report

TRI LOK SAFETY MANUAL TRI LOK TRIPLE OFFSET BUTTERFLY VALVE. The High Performance Company

New Thinking in Control Reliability

Rosemount 2130 Level Switch

Failure Modes, Effects and Diagnostic Analysis. Rosemount Inc. Chanhassen, Minnesota USA

Using what we have. Sherman Eagles SoftwareCPR.

Module No. # 01 Lecture No. # 6.2 HAZOP (continued)

The IEC61508 Project Manager's & Project Engineer's hymn sheet

Linking Risk and Reliability Mapping the output of risk assessment tools to functional safety requirements for safety related control systems.

Failure Modes, Effects and Diagnostic Analysis

Session One: A Practical Approach to Managing Safety Critical Equipment and Systems in Process Plants

Understanding the How, Why, and What of a Safety Integrity Level (SIL)

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis

Quantitative Risk Analysis (QRA)

YT-3300 / 3301 / 3302 / 3303 / 3350 / 3400 /

Special Documentation Proline Promass 80, 83

Commissioning and safety manual

Transcription:

Understanding safety life cycles IEC/EN 61508 is the basis for the specification, design, and operation of safety instrumented systems (SIS) Fast Forward: IEC/EN 61508 standards need to be implemented by the process owners and operators. The IEC/EN 61508 standard deals specifically with functional safety relating to electrical, electronic, and programmable electronic safety-related systems (E/E/PES). To implement their strategies within these overall safety requirements, plant operators and designers of safety systems follow the directives of IEC/EN 61511, utilizing equipment developed and validated according to IEC/EN 61508 to achieve their defined SIS. By Kristen Barbour The international standard IEC/EN 61508 has been widely accepted as the basis for the specification, design, and operation of safety instrumented systems (SIS). In general, IEC/EN 61508 uses a formulation based on risk assessment: An assessment of the risk is undertaken and, on the basis of this assessment, the necessary safety integrity level (SIL) is determined for components and systems with safety functions. SIL-evaluated components and systems are intended to reduce the risk associated with a device to a justifiable level or tolerable risk. When considering safety in the process industry, there are several relevant national, industry, and company safety standards used when determining and applying safety within a process plant. IEC/EN 61508 (product manufacturer) IEC/EN 61511 (user) ISA-84.01 (USA) (user) These standards need to be implemented by the process owners and operators with the relevant health, energy, waste, machinery, and other directives. These standards, which include terms and concepts that are well-known to specialists in the safety industry, may be unfamiliar to the general user in the process industries. Essentially, the standards give the framework and direction for the application of the overall safety life cycle (SLC), covering all aspects of safety, including conception, design, implementation, installation, commissioning, validation, maintenance, and decommissioning.

The standard IEC/EN 61508 deals specifically with functional safety relating to electrical, electronic, and programmable electronic safety-related systems (E/E/PES). Manufacturers of process instrumentation interface equipment develop and validate devices following the demands of IEC/EN 61508 and provide the relevant information to enable the use of these devices by others within their SIS. To implement their strategies within these overall safety requirements, plant operators and designers of safety systems follow the directives of IEC/EN 61511, utilizing equipment developed and validated according to IEC/EN 61508 to achieve their defined SIS. Tips to consider when analyzing a safety loop: IEC/EN 61508 considers the total instrumentation loop. Much like a chain is only as strong as its weakest link so, too, all the elements in the instrumentation loop play their part. Duplication of a particular block function may need to be applied to achieve the objectives. Do not neglect any steps in assessing the SLC. The instrumentation elements identified within this document are just one part of an SIS. Unless specifically stated, it is not permitted to use more than one channel of a multichannel interface device in the same safety loop. The remaining channels of the device can be used in other independent safety loops. It is wrong to assume that all safety functions are to be implemented in a separate protection system some safety functions may be included in the control system. To prove satisfactory operation, safety functions may need to be exercised and the frequency of conducting these tests is a factor in calculating the probability of failure on demand. Thus, different PFD avg values for components such as Pepperl+Fuchs isolators are calculated for relevant intervals between tests, for example T [proof] of 1 year, 5 years, and 10 years. Within the SLC, the various phases or steps may involve different personnel, groups, or even companies to carry out the specific tasks. For example, the steps can be grouped together and the various responsibilities understood as identified below. Analytical measures The first five steps can be considered as an analytical group of activities and would be carried out by the plant owner/end user, probably working together with expert consultants: Concept Overall scope definition Hazard and risk analysis Overall safety requirements Safety requirements allocation The outputs of these definitions and requirements are considered the inputs to the next stages of activity. Implementation measures

The implementation group comprises the next eight steps and would be conducted by the end user together with chosen contractors and equipment suppliers. 1. Operation and maintenance planning 2. Validation planning 3. Installation and commissioning planning 4. Safety-related systems: E/E/PES implementation 5. Safety-related systems: other technology implementation 6. External risk reduction facilities implementation 7. Overall installation and commissioning 8. Overall safety validation It must be noted that while each of these steps has a simple title, the work involved in carrying out the tasks can be complex and time-consuming. Process operation The third group is essentially one of operating the process with its safeguards and involves the final three steps. These steps are normally carried out by the plant end user and contractors: Overall operation and maintenance Overall modification and retrofit De-commissioning Within the overall SLC, we are particularly interested in considering Step 4 of the implementation phase in greater detail. This step deals with the aspects of any electrical/electronic/programmable electronic systems. Two groups, or types, of subsystems are considered within the functional safety standards: The equipment under control (EUC) carries out the required manufacturing or process activity The control and protection systems implement the safety functions necessary to ensure that the EUC is suitably safe Fundamentally, the goal here is the achievement or maintenance of a safe state for the EUC. You can think of the control system causing a desired EUC operation and the protection system responding to an undesired EUC operation. Do not assume that all safety functions are to be performed by a separate protection system. When any possible hazard is analyzed, and the risks arising from the EUC and its control system cannot be tolerated, it is imperative to find a method of reducing the risks to tolerable levels. Perhaps, in some cases, the EUC or control system can be modified to achieve the required risk-reduction, but in other cases protection systems must be added. These protection systems are designated safety-related systems, whose specific purpose is to mitigate the effects of a hazardous event or to prevent that event from occurring. One phase of the SLC is the analysis of the hazards and risks arising from the EUC and its control system. In the standards, the concept of risk is defined as the probable rate of

occurrence of a hazard (accident) causing harm the degree of severity of harm So, risk can be seen as the product of incident frequency and incident severity. Often, the consequences of an accident are implicit within the description of an accident, but, if not, they should be made explicit. There are a wide range of methods applied to the analysis of hazards and risk around the world, and an overview is provided in both IEC/EN 61511 and IEC/EN 61508. The step of clearly identifying hazards and analyzing risk is one of the most difficult to carry out, particularly if the process being studied is new or innovative. With historical plant data or industry-specific methods or guidelines, the analysis may be readily structured, but it is still complex and time-consuming. Methods used to analyze hazards and risk include techniques such as: HAZOP - HAZard and OPerability study FME(C)A - Failure Mode Effect (and Criticality) Analysis FMEDA - Failure Mode Effect and Diagnostics Analysis ETA - Event Tree Analysis FTA - Fault Tree Analysis These methods, and the relevant standards used in the analysis, balance the risks associated with the EUC (i.e., the consequences and probability of hazardous events) using relevant, dependable safety functions. This balance includes the tolerability of the risk. For example, the probable occurrence of a hazard with a negligible consequence could be considered tolerable, whereas a catastrophic event would be an intolerable risk. If, in order to achieve the required level of safety, the risks of the EUC cannot be tolerated according to the criteria established, then safety functions must be implemented to reduce the risk. The goal is to ensure that the residual risk the probability of a hazardous event occurring even with the safety functions in place is less than or equal to the tolerable risk. In Figure 1, the risk posed by the EUC is reduced to a tolerable level using a necessary risk reduction strategy. The reduction of risk can be achieved by a combination of items rather than depending upon only one safety system and can comprise organizational measures as well. These risk reduction measures and systems must achieve an actual risk reduction that is greater than or equal to the necessary risk reduction.

While there may be some overall methods and mechanisms described in the safety requirements of the standards, these requirements are further broken down into specific safety functions to achieve a defined task. In parallel with this allocation to specific safety functions, a measure of the dependability or integrity of those safety functions is required. SIL measures how reliably the safety function is performing according to a defined specification. More precisely, the IEC standards state the safety integrity of a system can be defined as the probability (likelihood) of a safety-related system performing the required safety functions under all the stated conditions within a stated period of time. The specification of the safety function includes both the actions to be taken in response to the existence of particular conditions and the time for that response to take place. Probability of failure To categorize the safety integrity of a safety function, the probability of failure is considered in effect, the inverse of the SIL definition, looking at failure-to-perform rather than success. It is generally easier to identify and quantify possible conditions and causes leading to the failure of a safety function than it is to guarantee the desired action of a safety function when called upon. Two classes of SIL are identified, depending on the service provided by the safety function: Safety functions that are activated when required (on demand mode) the probability of failure-to-perform correctly Safety functions that are in place continuously (continuous mode) the probability of a dangerous failure is expressed in terms of a given period of time (per hour) IEC/EN 61508 requires that when safety functions are to be performed by the E/E/PES, the safety integrity is specified in terms of a SIL. The probabilities of failure are related to one of four SILs (Table 1).

The protection functions, whether performed within the control system or a separate protection system, are referred to as safety-related systems. If, after analysis of possible hazards arising from the EUC and its control system, it is decided that there is no need to designate any safety functions, IEC/EN 61508 requires that the dangerous failure rate of the EUC control system shall be below the levels given as SIL1. So, even when a process may be considered as benign, with no intolerable risks, the control system must be shown to have a rate not lower than 10-5 dangerous failures per hour. An important consideration for any safety-related system is the level of certainty that the required safe response or action will take place when it is needed. This is normally determined as the likelihood that the safety loop will fail to act when required. This rate is normally expressed as a probability. The standards apply both to safety systems operating on demand, such as an emergency shutdown (ESD) system, and to systems operating continuously or in high demand, such as the process control system. For a safety loop operating in the demand mode of operation, the relevant factor is the PFD avg, which is the average probability of failure on demand (PFD). For a continuous or high-demand mode of operation, the probability of a dangerous failure per hour (PFH) is considered, rather than PFD avg. With all the factors taken into consideration, the PFD avg can be calculated. Once the PFD avg for each component part of the system has been calculated, the PFD avg of the whole system is simply the sum of the component PFD avg. An FMEA is a way to document the system being considered using a systematic approach to identify and evaluate the effects of component failures and to determine what could reduce or eliminate the chance of failure. An FMEDA extends the FMEA techniques to include on-line diagnostic techniques and identify failure modes relevant to SIS design. Once the possible failures and their consequences have been evaluated, the various operational states of the subsystem can be associated using the Markov models. One other factor needed to apply to the calculation is the interval between tests, which is known as the proof time or the proof test interval. This variable may depend on not only the practical implementation of testing and maintenance in the relevant system, subsystem, or component, but also the desired end result. By varying the proof time within the model, the subsystem or safety loop may be suitable for use with a different SIL. Practical and operational considerations are often the guide when establishing proof times. The IEC/EN 61508 standard states that a SIL can be properly associated only with a specific safety function as implemented by the related safety loop and not with a stand-alone

instrument or single piece of equipment. In this context, it is possible to state the compliance with the requirements of a specific SIL only after analyzing the entire safety loop. However, it is possible to analyze a single building block of a typical safety loop and provide evidence that this item can be used to obtain a required SIL-rated safety loop. Since all the elements of a safety loop are interdependent in achieving the goal, it is relevant to check that each piece is suitable for the purpose. For our example, consider a single electronic, intrinsic safety isolator as our component. Within the context of this example, the safety loop is a control system intended to implement a safety function. Figure 2 shows a typical safety loop, including the intrinsic safety isolators (signal input and signal output) for hazardous area protection. Further, we will assume the required SIL has been determined to be SIL2. Note, this example is for reference only and does not imply that a full safety loop assessment has been performed. Considering that the typical safety loop as shown is made of many serially connected blocks, all of which are required to implement the safety function, the available PFD budget (< 10-2 as for SIL2, see Table 1) must be shared among all the relevant blocks. For example, a reasonable, rather conservative, goal is to assign to the isolator no more than 10 percent of the available PFD budget. This results in a PFD limit at the isolator level of ~10-3 or 0.1 percent. However, it should be understood that the selected value is only a reasonable guess and does not imply that there is no need to evaluate the PFD at the safety loop level or that the safety contribution of the intrinsic safety isolator can be neglected. The PFD value for the complete safety device is calculated from the values of the individual components. Since sensors and actuators are installed in the field, these are exposed to chemical and physical loading (process medium, pressure, temperature, vibration, etc.). Accordingly, the risk of faults is relatively high for these components. For this reason, 25 percent of the overall PFD is assigned to the sensors, and 40 percent to the actuators. Thus, 15 percent remains for the fault tolerant control system, and 10 percent each for the interface modules. The interface modules and control system typically have no contact with the process medium since they are normally housed in the protected control room. In this example, and to demonstrate that the relevant isolators are suitable to be used within a SIL2 safety loop, a comprehensive FMEA analysis was carried out. The FMEA covered 100

percent of the components and took into account the different, applicable failure modes, including intermittent and de-rating failures. This is the recommended procedure, according to IEC/EN 61508, with respect to other non-quantitative or semi-quantitative approaches. As a result of the FMEA, the PFD avg can be calculated for each of the relevant isolators and is shown to be less than 10-3, thus enabling their possible use within this specific application. Overall, the concept of the SLC introduces a structured approach for risk analysis and for the operation of a safe process. If safety systems are used to reduce risks to a tolerable level, then these safety systems must exhibit a specified SIL. This summarizes the approach one needs to take regarding the proper establishment of a safety instrumented system and provide a basis for additional research and learning. ABOUT THE AUTHOR Kristen Barbour (pa-info@us.pepperl-fuchs.com), product marketing manager for Pepperl+Fuchs of Twinsburg, Ohio, has worked in the technology field for 14 years, specializing in industrial automation. She holds a B.S. degree in education from the University of Toledo. Source: http://www.isa.org/intechtemplate.cfm?section=focus_areas1&template=/contentmanagemen t/contentdisplay.cfm&contentid=92318