Status review update for Pacific salmon and steelhead listed under the Endangered Species Act

Similar documents
ESCA. Endangered Species Conservation Act of 1969 Changed in 1973 to ESA Amended several times

Summary of HSRG Findings for Chum Populations in the Lower Columbia River and Gorge

Perspectives of a State Director Selective fisheries as a tool in fisheries management and salmon recovery

Salmon Challenge. Salmon evolution and obstacles to survival

Salmon Recovery Planning in Washington

September 4, Update on Columbia basin Salmon and Steelhead Recovery Planning

Strategies for mitigating ecological effects of hatchery programs

PRESEASON REPORT III COUNCIL ADOPTED MANAGEMENT MEASURES

PRESEASON REPORT III COUNCIL ADOPTED MANAGEMENT MEASURES


PRESEASON REPORT III ANALYSIS OF COUNCIL ADOPTED MANAGEMENT MEASURES

29.0 CALIFORNIA CENTRAL VALLEY STEELHEAD ESU

ESTIMATED RETURNS AND HARVEST OF COLUMBIA RIVER FALL CHINOOK 2000 TO BY JOHN McKERN FISH PASSAGE SOLUTIONS

PRESEASON REPORT III ANALYSIS OF COUNCIL ADOPTED MANAGEMENT MEASURES

PRESEASON REPORT II PROPOSED ALTERNATIVES

PRESEASON REPORT II ANALYSIS OF PROPOSED REGULATORY OPTIONS FOR 2009 OCEAN SALMON FISHERIES

Draft Central Valley Salmon and Steelhead Recovery Plan

PRESEASON REPORT II PROPOSED ALTERNATIVES

PRESEASON REPORT III COUNCIL ADOPTED MANAGEMENT MEASURES

"Recommended Improvements for the Next Pacific Salmon Treaty"

PRESEASON REPORT III COUNCIL ADOPTED MANAGEMENT MEASURES

PRESEASON REPORT II PROPOSED ALTERNATIVES

Application of IP Models for Salmon and Steelhead Recovery Planning in California

OREGON AND WASHINGTON DEPARTMENTS OF FISH AND WILDLIFE JOINT STAFF REPORT - WINTER FACT SHEET NO.

PRESEASON REPORT III ANALYSIS OF COUNCIL ADOPTED MANAGEMENT MEASURES

Of the Salmon and For the Salmon

Addressing Critical Uncertainties in the Reintroduction of Chum Salmon to Oregon Tributaries of the Columbia River. Kris Homel

Press Release New Bilateral Agreement May 22, 2008

NOAA Technical Memorandum NMFS VIABILITY ASSESSMENT FOR PACIFIC SALMON AND STEELHEAD LISTED UNDER THE ENDANGERED SPECIES ACT: SOUTHWEST

We recommend that whenever possible you use the following guidelines for choosing the most sustainable options in 2010.

Pacific Fishery Management Council NEWS RELEASE WEST COAST SALMON SEASON DATES SET

Old Document: Sandy River Coho Final HGMP 78 pages (1.18 MB) 12/10/2013 3:11:23 PM

CHAPTER II CHINOOK SALMON MANAGEMENT CENTRAL VALLEY CHINOOK STOCKS. Management Objectives. Regulations to Achieve Objectives.

Brian Missildine Natural Resource Scientist Hatchery Evaluation and Assessment Team Lead Washington-British Columbia Annual General Meeting Kelowna,

MEMORANDUM. Joan Dukes, NPCC. Michele DeHart. DATE: August 5, Data Request

June 3, 2014 MEMORANDUM. Council Members. Stacy Horton, Policy Analyst, Washington. SUBJECT: Final 2012 Hatchery Fin Clip Report

Stock Assessment of Anadromous Salmonids, 2003 Report Number: OPSW-ODFW

Early Marine Migrations. General geography Four general patterns Influence of genetics

Endangered and Threatened Wildlife and Plants; Recovery Plan for the. SUMMARY: We, the U.S. Fish and Wildlife Service (Service), announce the

for Salmon and Watersheds

Backgrounder and Frequently Asked Questions

Proposed 2018 Fisheries Management Measures to Support Recovery of Interior Fraser River Steelhead

The following language describing the performance standards was taken from the Reasonable and Prudent Alternative Table of Actions in the 2008 BIOP:

Michael Tehan, Assistant Regional Administrator, Interior Columbia Basin Office

Throughout the Pacific Northwest, salmon and steelhead have been listed under the Endangered Species Act because their existence is either threatened

[FWS R1 ES 2015 N076; FXES FF01E00000] Endangered and Threatened Wildlife and Plants; Revised Draft Recovery Plan for

COMPREHENSIVE MANAGEMENT PLAN FOR PUGET SOUND CHINOOK: HARVEST MANAGEMENT COMPONENT. Puget Sound Indian Tribes. And

Okanagan Sockeye Reintroduction

CHAPTER 4 DESIRED OUTCOMES: VISION, GOALS, AND OBJECTIVES

Implementation Toolkit

Pacific Fishery Management Council NEWS RELEASE

Report on Science Center Activities

Discussion Paper: February 15, 2018

Maintaining biodiversity in mixed-stock salmon fisheries in the Skeena watershed

May 28, SUBJECT: Management Recommendations from ISRP/ISAB s Tagging Report #2009-1

Conservation and Consumption: Nez Perce Tribe Duty and Obligation

SALMON FACTS. Chinook Salmon. Oncorhynchus tshawytscha

2012 Bring Back the Natives Awarded Projects

Declining patterns of Pacific Northwest steelhead trout spawner abundance and marine survival

Washington Trollers Association

Covered Species Accounts Central Valley Spring-Run Chinook Salmon

Endangered and Threatened Species; Take of Anadromous Fish. AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric

Comparative Survival Study

HATCHERY AND GENETIC MANAGEMENT PLAN (HGMP)

LOWER COLUMBIA SALMON AND STEELHEAD RECOVERY AND SUBBASIN PLAN. Technical Foundation Executive Summary

Salmon and Steelhead Spawning Survey Methods Stratification of Estimates

Union Pacific Railroad

THE OREGON. PLAN for Salmon and Watersheds. Stock Assessment of Anadromous Salmonids, Report Number: OPSW-ODFW

March 6, SUBJECT: Briefing on Columbia River Basin salmon and steelhead returns for 2017 and run forecasts for 2018

FINAL HATCHERY AND GENETIC MANAGEMENT PLAN (HGMP)

The Salmonid Species. The Salmonid Species. Definitions of Salmonid Clans. The Salmonid Species

Ned Currence, Nooksack Indian Tribe

Coded Wire Tag Elimination from Management Questions

HOW HEALTHY ARE HEALTHY STOCKS?

The Blue Heron Slough Conservation Bank

UNIT 4E. SALMON SUPPLEMENTAL INFORMATION

How Do We Know How Many Salmon Returned to Spawn? Implementing the California Coastal Salmonid Monitoring Plan in Mendocino County, California

California Steelhead: Management, Monitoring and Recovery Efforts

? 13. Okanogan River Sockeye (15) 1 Not Warranted Not Available Sockeye Salmon. Lake Wenatchee Sockeye (16) 1 Not Warranted Not Available Steelhead

August 2, 2016 MEMORANDUM. Council Members. SUBJECT: Bull trout ESA litigation update

10/29/ :08 AM. Mountain Whitefish, Mussels (freshwater) and Eulachon (candlefish)(smelt) The current Program makes no mention of these species

CHINOOK SALMON SACRAMENTO RIVER WINTER-RUN ESU, CENTRAL VALLEY SPRING-RUN ESU, AND CENTRAL VALLEY FALL AND LATE FALL-RUN ESU

High Seas CWT Recoveries in 2012 and 2013

PRE-SEASON PLANNING FOR FRASER SALMON and STOCKS OF CONCERN. Forum on Conservation and Harvest Planning for Fraser Salmon January 22, 2010

Wild Steelhead Coalition Richard Burge Conservation VP September 11, 2006

California Steelhead: Management, Monitoring and Recovery Efforts

Agenda Item E.2.g Supplemental Public Comment 2 April 2012

NMFS salmon management support projects presented by Steve Lindley and Pete Lawson

WFC 50 California s Wild Vertebrates Jan. 11, Inland Waters (Lakes and Streams) Lisa Thompson

A.19 CENTRAL VALLEY SPRING-RUN CHINOOK SALMON (ONCORHYNCHUS TSHAWYTSCHA)

COLUMBIA RIVER SALMON AND STEELHEAD HARVEST 1980 TO by John McKern for The Columbia-Snake River Irrigators Association

APPROVED WORK WINDOWS FOR FISH PROTECTION FOR ALL MARINE/ESTUARINE AREAS. excluding THE MOUTH OF THE COLUMBIA RIVER (BAKER BAY)

Salmon Enhancement Program

TABLE OF CONTENTS. -i-

Management Strategies for Columbia River Recreational and Commercial Fisheries: 2013 and Beyond

Coho. Oregon Native Fish Status Report 13

Past, Present and Future Activities Being Conducted in the Klamath River Basin Related to the Protection and Recovery of Fish and Their Habitat

Columbia River Sturgeon in Decline. Recommendation for Harvest Reform

Fish Tech Weekly Outline January 14-18

Hatcheries: Role in Restoration and Enhancement of Salmon Populations

Transcription:

StatusreviewupdateforPacificsalmonand steelheadlistedundertheendangeredspeciesact PacificNorthwest 1 MichaelFord(ed.),TomCooney,PaulMcElhany,NormaSands,LaurieWeitkamp, JeffreyHard,MichelleMcClure,RobertKope,JimMyers,AndrewAlbaugh,Katie Barnas,DavidTeel,PaulMoranandJeffCowen * NorthwestFisheriesScienceCenter ConservationBiologyDivision * Operations,ManagementandInformationDivision December10,2010 Citeas:FordMJ(ed.),CooneyT,McElhanyP,SandsN,WeitkampL,HardJ,McClure M,KopeR,MyersJ,AlbaughA,BarnasK,TeelD,MoranP,CowenJ.2010.Status reviewupdateforpacificsalmonandsteelheadlistedundertheendangeredspecies Act:Northwest.DraftU.S.DepartmentofCommerce,NOAATechnicalMemorandum NOAA TM NWFSC XXX. 1 AnequivalentreportforCaliforniaisavailable:Williams,T.H.,S.T.Lindley,B.C. Spence,andD.A.Boughton.Draft(December2010).StatusreviewupdateforPacific salmonandsteelheadlistedundertheendangeredspeciesact:southwest.draft U.S.DepartmentofCommerce,NOAATechnicalMemorandumNOAA TM SWFSC XXX. 1

TableofContents TableofContents...2 Introductionandsummaryofconclusions...3 Methods...7 ESUBoundaries...11 Cohosalmon PugetSoundandWashingtonCoastESUs...13 LowerColumbiaRiverandMiddleColumbiaRiverBoundaries...26 ESUstatussummaries...41 UpperColumbiaRiverspring runchinooksalmon...42 UpperColumbiaRiversteelhead...56 SnakeRiverspring/summer runchinooksalmon...68 SnakeRiverFall runchinooksalmon...93 SnakeRiversockeyesalmon...103 SnakeRiverBasinsteelhead...115 PugetSoundChinooksalmon...131 HoodCanalsummer runchumsalmon...163 PugetSoundcohosalmon... 178 LakeOzetteSockeyesalmon...194 PugetSoundsteelhead...203 LowerColumbiaRiverChinooksalmon...237 UpperWillametteRiverChinooksalmon...252 ColumbiaRiverchumsalmon...264 LowerColumbiaRivercohosalmon...272 MiddleColumbiaRiversteelhead...289 LowerColumbiaRiversteelhead...312 UpperWillamettesteelhead...324 ClimateChange... 332 2

Introductionandsummaryofconclusions TheEndangeredSpeciesAct(ESA)requiresthattheNationalMarine FisheriesService(NMFS)reviewthestatusoflistedspeciesunderitsauthorityat leasteveryfiveyearsanddeterminewhetheranyspeciesshouldberemovedfrom thelistorhaveitslistingstatuschanged.injuneof2005,nmfsissuedfinallisting determinationsfor16evolutionarilysignificantunits(esus)ofpacificsalmon (Oncorhynchussp.)andinJanuaryof2006NMFSissuedfinallistingdeterminations for10distinctpopulationsegments(dps)ofsteelhead(o.mykiss,theanadromous formofrainbowtrout) 2.NMFSisthereforeconductingareviewin2010andearly 2011of27ofthe28currentlylistedPacificsalmonidESUs/DPSsofWestCoast Pacificsalmon(FR75:13082 seehttp://www.nwr.noaa.gov/publications/fr Notices/2010/upload/75FR13082.pdf) 3. ThereviewisbeingconductingbytheNMFSNorthwestandSouthwest Regions,andthisreportisinresponsetoa23February2010requestfromthe RegionstotheNorthwestandSouthwestFisheriesScienceCenterstoprovidea scientificsummaryoftheriskstatusofthesubjectesus/dpss.inthelastformal statusreview(goodetal.2005)thebiologicalreviewteam(brt)categorizedeach ESUaseither indangerofextinction, likelytobecomeendangered or notlikely tobecomeendangered,basedontheesu sabundance,productivity,spatial structureanddiversity.inthisreport,foreachlistedesu/dps,wesummarize whetherthereisnewinformationsincethe2005/2006listingstoindicatethatan ESUislikelytohavemovedfromoneofthethreebiologicalriskcategoriesto another.wefocusinparticularon1)informationonesu/dpsboundaries,and2) trendsandstatusinabundance,productivity,spatialstructureanddiversity.the informationinthereportwillbeincorporatedintotheregions review,andthe Regionswillmakefinaldeterminationsaboutanyproposedchangesinlisting status,takingintoaccountnotonlybiologicalinformationbutalsoongoingor plannedprotectiveefforts. Oneofthenotabledifferencesbetween2010/2011andthelaststatusreview in2005(goodetal.,2005)isthedevelopmentofviabilitycriteriaforalllisted salmonesus.nmfsinitiateditssalmonrecoveryplanningin2000,andthe2005 statusreviewincorporatedinformationthatwasavailablefromtherecovery planningprocessatthattime.inparticular,in2000nmfspublishedguidelinesfor developingviability(recovery)criteriaforpacificsalmon(mcelhanyetal.,2000) andlaunchedaseriesofregionaltechnicalrecoveryteamstodevelopviability 2 ForPacificsalmon,NMFSusesits1991ESUpolicy,thatstatesthatapopulationorgroupof populationswillbeconsideredadistinctpopulationsegmentifitisanevolutionarilysignificant Unit.ThespeciesO.mykissisunderthejointjurisdictionoftheNMFSandtheFishandWildlife Service,soinmakingitslistingJanuary2006determinationsNMFSelectedtousethe1996Joint FWS NMFSDPSpolicyforthisspecies. 3 TheOregonCoastcohosalmonESUwasreviewedin2010,andthereforeisnotincludedinthis report. 3

criteriaforeachlistedesu/dps(seehttp://www.nwfsc.noaa.gov/trt/index.cfm). However,atthetimeof2005statusreview,onlyoneTRT(PugetSoundChinook) hadproducedfinalviabilitycriteria,andnoformalrecoverygoalshadbeenadopted foranyesu/dps.incontrast,in2010allesus/dpsshavetrt developedviability criteriaandseveralhaveformalrecoverygoals(table1and http://www.nwr.noaa.gov/salmon Recovery Planning/ESA Recovery Plans/Draft Plans.cfm).Wherepossible,therefore,thisreviewsummarizescurrentinformation withrespecttoboththeviabilitycriteriadevelopedbythetrtsandtherecovery goalsidentifiedinfinalrecoveryplans 4.Wealsoprovidedescriptionsofspawning abundanceandtrendsfollowingthemethodsofthe2005statusreviewtoallow directcomparisontothatreport. InadditiontosummarizingESU/DPSstatus,wealsoprovidesome informationthatwillbeusefulforevaluatingtrendsinthreats.theoriginallistings identifiedarangeoffactorsthatthreatenedtheviabilityoflistedsalmon.although thespecificcompositionofthreatsvariedamongesus,ingeneralmostesuswere threatenedbysomecombinationofthe fourh s harvest,hydropower,habitat degradationandhatcheryproduction.someofthesethreats,suchasharvest,are wellmonitoredandrelativelyeasytoquantify.others,suchashabitatdegradation, arenotmonitoredinacoordinatedwayacrossmultiplejurisdictionsmakingtrend evaluationdifficult.inthisreport,wesummarizetrendsinharvestimpactsand somesimpleaspectsofhatcheryimpactsusingreadilyavailabledata.forhabitat, weusedrecoveryplansanddatabasesofhabitatrestorationactivitiestosummarize thehabitatthreatsidentifiedforesuandthetypesofactivitiesthathavebeen conductedtoaddressthosethreats.thisanalysisisunderreview,andwill thereforebeincludedinasubsequentreport.inaddition,wehaveinitiatedwork thatwillusesatelliteimagerytosummarizetrendsinlanduseforseveralesus.we donotsummarizeinformationrelatedtohydropower,becausethistopic (particularlyinthecolumbiariver)isalreadythesubjectofextensivereview(see http://www.nwr.noaa.gov/salmon Hydropower/index.cfm).Globalclimatechange potentiallyhasfarreachingimpactsonpacificsalmonids,andwethereforeprovide abriefsummaryofnewinformationonhowclimatechangemayaffectesalisted salmonandsteelhead. 4 TherecoveryplansbasedtheirgoalsupontheworkoftheTRTs,sothecriteriaintherecovery plansaresimilartothetrtcriteria.thetrtcriteriawereintendedtobeflexible,however,toallow forlocalcontrolofrecoveryplandevelopment.insomecases,therefore,therecoveryplancriteria arenotidenticaltothetrtcriteria. 4

Table1 ListofviabilityreportscompletedbyTechnicalRecoveryTeams.See http://www.nwfsc.noaa.gov/trt/pubs.cfmand http://swfsc.noaa.gov/textblock.aspx?division=fed&id=2242forlinkstothereports. Domain Puget Sound - Chinook Puget Sound Hood Canal Summer Chum Puget Sound Lake Ozette Sockeye Willamette/Lower Columbia Oregon Coast Interior Columbia Basin North Central California Coast Southern Oregon Northern California Coast Southern-Central California Coast California Central Valley Viability Criteria document name Planning ranges and preliminary guidelines for the delisting and recovery of the Puget Sound Chinook salmon evolutionarily significant unit 2002 Determination of Independent Populations and Viability Criteria for the Hood Canal Summer Chum Salmon Evolutionarily Significant Unit 2009 Viability Criteria for the Lake Ozette Sockeye Salmon Evolutionarily Significant Unit 2009 Revised viability criteria for salmon an steelhead in the Willamette and Lower Columbia Basins 2003 and 2006 2006 Biological recovery criteria for the Oregon Coast Coho Salmon Evolutionarily Significant Unit 2007 Viability criteria for application to Interior Columbia Basin salmonid ESUs 2007 A framework for assessing the viability of threatened and endangered salmon and steelhead in North-Central California Coast recovery domain 2007 Framework for assessing viability of threatened Coho salmon in the Southern Oregon/Northern California Coast Evolutionarily Significant Unit 2007 Viability criteria for steelhead of the south-central and southern California coast 2007 Framework for assessing viability of threatened and endangered Chinook salmon and steelhead in the Sacramento-San Joaquin Basin 2007 Year completed AsummaryofourconclusionsispresentedinTable2.Naturalorigin abundanceofmostesus/dpsshasincreasedsincetheoriginalstatusreviewsinthe mid 1990s,butdeclinedsincethetimeofthelaststatusreviewin2005.Risksfrom harvestandhatcheryproductionhaveimprovedconsiderablyformanyesussince themid 1990s,andhaveremainedlargelystablesince2005.Analysisoftrendsin habitatwasnotincludedinthisreport.overall,theinformationwerevieweddoes notsuggestthatachangeinbiologicalriskcategoryislikelyforanyofthecurrently listedesu/dpss. 5

Table2 Currentlistingstatusandsummaryofconclusions Species ESU 2005 risk category Chinook Upper Columbia spring In danger of extinction Snake River Likely to become spring/summer endangered Snake River fall Likely to become endangered Upper Willamette Likely to become spring endangered Lower Columbia Likely to become endangered Puget Sound Likely to become endangered Coho Lower Columbia In danger of extinction Puget Sound Not likely to become endangered Sockeye Snake River In danger of extinction Lake Ozette Likely to become endangered Chum Hood Canal Likely to become summer endangered Columbia River Likely to become endangered Steelhead Upper Columbia In danger of extinction Snake River Likely to become endangered Middle Columbia Likely to become endangered Upper Willamette Likely to become endangered Lower Columbia Likely to become endangered Puget Sound Likely to become endangered Listing status Endangered Threatened Threatened Threatened Threatened Threatened Threatened Species of Concern Endangered Threatened Threatened Threatened Threatened Threatened Threatened Threatened Threatened Threatened Update indicates change in risk category? No No No No No No No No No No No No No No No No No No 6

Methods Thisreportincludesbothasetofcommonanalysesconductedforeach ESU/DPSaswellasESU/DPSspecificanalysesdevelopedbytheindividualTRTs. Here,wedescribeonlythecommonsetofanalysis;seetheindividualESU/DPS sectionsadescriptionoftheanalysisthatpertaintospecificesus/dpss. Abundanceandtrends AllofthePacificNorthwestTRTsspentconsiderable timeandeffortdevelopingspawningabundancedataforthepopulationsthey identifiedwithinesus.inalmostallcasestheseestimatesarederivedfromstate, tribalorfederalmonitoringprograms.therawinformationuponwhichthe spawningabundanceestimatesweredevelopedconsistofnumeroustypesofdata includingreddcounts,damcounts,carcasssurveys,informationonpre spawning mortality,distributionwithinpopulations,etc,whichthetrtsusedtodevelop estimatesofnaturaloriginspawningabundance.itisimportanttorecognizethat spawningabundanceestimatesandrelatedinformationsuchasthefractionof spawnersthatarenaturaloriginarenot facts thatareknownwithcertainty. Rather,theyareestimatesbasedonavarietyofsourcesofinformation,someknown withgreaterprecisionoraccuracythanothers.ideally,theseestimateswouldbe characterizedbyaknownlevelofstatisticaluncertainty.however,forthemostpart suchastatisticalcharacterizationiseithernotpossibleorhasnotbeenattempted. Thespawningtimeseriessummarizedhereandreferencestothemethodsfortheir developmentareavailablefromthenorthwestfisheriessciencecenter ssalmon PopulationSummarydatabase: https://www.webapps.nwfsc.noaa.gov/apex/f?p=238:home:0. Weusedtheabundancetimeseriestocalculateseveralsummarystatistics, followingthemethodsdescribedofthelastmajorstatusreviewupdatein2005 (Goodetal.2005).Recentabundanceofnaturalspawnersisreportedasthe geometricmean(andrange)ofthemostrecentdata.geometricmeanswere calculatedforthemostrecent5years.zerovaluesinthedatasetwerereplaced withavalueof1,andmissingdatavalueswithinamultipleyearrangewere excludedfromgeometricmeancalculations. Short andlong termtrendswerecalculatedfromtimeseriesofthetotal numberofadultspawners.short termtrendswerecalculatedusingdatafrom1995 tothemostrecentyear,withaminimumof10datapoints.long termtrendswere calculatedusingalldatainatimeseries.trendwascalculatedastheslopeofthe regressionofthenumberofnaturalspawners(log transformed)overthetime series;tomediateforzerovalues,1wasaddedtonaturalspawnersbefore transformingthedata.trendwasreportedintheoriginalunitsasexponentiated slope,suchthatavaluegreaterthan1indicatesapopulationtrendingupward,anda valuelessthan1indicatesapopulationtrendingdownward.theregressionwas calculatedas:ln(n+1)=β 0 +β 1 X+ε,whereNisthenaturalspawnerabundance,β 0 istheintercept,β 1 istheslopeoftheequation,andεistherandomerrorterm. Confidenceintervals(95%)fortheslope,intheiroriginalunitsofabundance,were calculatedasexp(ln(b 1 ) t 0.05(2),df s b1 )<β 1 <exp(ln(b 1 )+t 0.05(2),df s b1 ),whereb 1 isthe 7

estimateofthetrueslope,β 1,t 0.05(2),dfisthetwo sidedt valueforaconfidencelevel of0.95,dfisequalton 2,nisthenumberofdatapointsinthetimeseries,ands b1 isthestandarderroroftheestimateoftheslope,b 1. Wealsocalculatedshortandlong termpopulationgrowthrates,λ,following themethodsdescribedingoodetal.(2005)andimplementedinthecomputer programspaz(http://www.nwfsc.noaa.gov/trt/wlc/spaz.cfm). Hatcheryreleases Weplottedtrendsinhatcheriesreleaseswithinthe geographicboundariesofthespawningpopulationsofeachesu.alldatawas obtainedfromtheregionalmarkinformationsystem(rmis)database,maintained bytheregionalmarkprocessingcenter(rmpc)aspartofthepacificstatesmarine FisheriesCommission(PSMFC http://www.rmpc.org/external/rmis standardreporting.html).throughinterviewswithindividualsatpsc,wdfw,odfw, USFWS,Tribes,andIDFGitwasdeterminedthatalldata,ornearlyalldatainthe caseofodfw,hasbeensubmittedtothermisfromtheyear1990topresent.inthe caseofodfwallreleasesfrom2004topresentareinrmis,andallcwtreleases areinrmisfrom1990to2003withanunknownamountofnon CWTsubmittedas well. Thefollowingagencies,WDFW,ODFW,USFWS,NWIFC,CRITFC,andIDFG werequeriedinthestatesofwa,orandidtoobtainallreleasesofallspeciesinthe RMISandcreateamasterdataset.Severalattributeswerethenconvertedfrom codeusedwithinrmistoamoreintuitivenomenclature.allspeciesthatwerenot Chinook,Chum,Coho,SockeyeorSteelheadwereremoved. RMISreportsreleasetotalsin4differentcategories, cwt_1st_mark_count, cwt_2nd_mark_count, non_cwt_1st_mark_count,and non_cwt_2nd_mark_count. Thesewereallsummedtoobtainatotalreleaseforeachreleaseevent.Releaseage wascalculatedasreleaseyear broodyear 1forfallspawners(mostsalmon)and asreleaseyear broodyearforspringspawners(steelhead).ageszerowere consideredsub yearlingsandage1orgreaterwereconsideredyearlings. DeterminingreleaselocationbyESUandPacificSalmonCommission(PSC) basinwasamulti stepprocess.allreleasesinrmisareassignedapscregionand PSCBasincode.Thesecodeswereconvertedfromcodetofullnames.After obtaininggisbasinlayerdatafrompscitwasdeterminedthatpscbasinsare largerthantrtdefinedsalmonpopulationboundaries,yetsmallerthanesu boundaries.throughgismappingusingtheesriarcmapsoftwarealistofesus andthepscbasinscontainedwithinthemwascreated.fromthislistitwas possibletosumallreleasesinallpscbasinsthatcorrespondedtoeachesu.some ofthereleaseswerenotdirectlyassociatedinthermisdatabasetoaspecificpsc basinandweregivena Generallocation label.usingreleaselocationcomment fields,hatcherylocations,andotherinvestigativetoolsthese General releaseswere assignedapscbasin. Harvest Wecompileddataontrendsintheadultequivalentexploitation rateforeachesu/dps.itisimportanttonotethatmagnitudeandtrendofan exploitationratecannotbeinterpreteduncriticallyasatrendinlevelofriskfrom harvest.analysesrelatingexploitationratetoextinctionriskorrecovery probabilityhavebeenconductedinaquantitativewayforseveralesus(fordetal., 8

2007;NMFS,2001;NWFSC,2010)andqualitativelyforothers(NMFS,2004).See specificesu/dpssectionsfordetails. References FordM,SandsN,McElhanyP,etal.(2007)AnalysestosupportareviewofanESA jeopardyconsultationonfisheriesimpactinglowercolumbiarivertule Chinooksalmon.NationalMarineFisheriesServiceNorthwestFisheries ScienceCenterandNorthwestRegionalOffice,Seattle,WA.October5,2007. GoodTP,WaplesRS,AdamsP(2005)UpdatedstatusoffederallylistedESUsofWest Coastsalmonandsteelhead.U.S.Dept.Commer.,NOAATech.Memo.NMFS NWFSC 66.,p.598. McElhanyP,RuckelshausMH,FordMJ,WainwrightTC,BjorkstedtEP(2000)Viable SalmonidPopulationsandtheRecoveryofEvolutionarilySignificantUnits. NOAATechnicalMemorandumNMFS NWFSC42,156p. NMFS(2001)RAP Ariskassessmentprocedureforevaluatingharvestmortality onpacificsalmonids.nationalmarinefisheriesservice,northwestregion, SustainableFisheriesDivisionandNorthwestFisheriesScienceCenter, ResourceUtilizationandTechnologyDivision. NMFS(2004)NOAAFisheries'approachtomakingdeterminationspursuanttothe EndangeredSpeciesActabouttheeffectsofharvestactionsonlistedPacific salmonandsteelhead.nationalmarinefisheriesservice,northwestregion, SustainableFisheriesDivision. NWFSC(2010)LowerColumbiaRiverTuleChinookSalmonLife cyclemodeling. June1,2010.NorthwestFisheriesScienceCenter.. Sourcesforharvestinformation: CTCinprep.2010annualreportoftheexploitationrateanalysisandmodel calibration.pacificsalmoncommission,chinooktechnicalcommittee. PugetSoundIndianTribesandWashingtonDepartmentofFishandWildlife. 2010.PugetSoundSteelheadHarvestManagementPlan(draft).Submittedto NMFSNWRegion,January7,2010. TAC2009.2009JointStaffReport:stockstatusandfisheriesforfallChinook salmon,cohosalmon,chumsalmon,summersteelhead,andwhitesturgeon. JointColumbiaRiverManagementStaff,OregonDepartmentofFish& Wildlife,WashingtonDepartmentofFishandWildlife.July16,2009.57p. TAC2010.2010JointStaffReport:stockstatusandfisheriesforspringChinook, summerchinook,sockeye,steelhead,andotherspecies,andmiscellaneous regulations.jointcolumbiarivermanagementstaff,oregondepartmentof Fish&Wildlife,WashingtonDepartmentofFishandWildlife.February2, 2010.89p. 9

10

ESUBoundaries 5 ESUandDPSDefinition Inestablishingwhetherapetitionedbiological entitycanbelistedundertheu.s.endangeredspeciesact(esa)itmustfirstbe determinedwhethertheentitycanbeconsidereda species undertheesa.the ESAallowslistingnotonlyoffulltaxonomicspecies,butalsonamedsubspeciesand distinctpopulationssegments(dpss)ofvertebrates.theesa,asamendedin1978, however,providesnospecificguidancefordeterminingwhatconstitutesadps. Waples(1991)developedtheconceptofEvolutionarilySignificantUnits(ESUs)for defininglistableunitsundertheesa.thisconceptwasadoptedbynmfsin applyingtheesatoanadromoussalmonidsspecies(nmfs1991).thenmfspolicy stipulatesthatasalmonpopulationsorgroupofpopulationsisconsideredadpsifit representsanesuofthebiologicalspecies.anesuisdefinedasapopulationor groupofpopulationsthat1)issubstantiallyreproductivelyisolatedfrom conspecificpopulations,and2)representsandimportantcomponentinthe evolutionarylegacyofthespecies.in2006,thenmfsdepartedfromitspracticeof applyingtheesupolicytoo.mykisspopulations,andinsteadappliedthejoint USFWS NMFSDPSdefinitionindetermining species ofo.mykissforlisting consideration(71fr834;january5,2006).thischangewasinitiatedbecauseo. mykissarejointlyadministeredwiththefwsandthefwsdoesnotusetheesu policyintheirlistingdecisions(71fr834;january5,2006).underthejointu.s. FishandWildlifeService(FWS)andNMFSDPSpolicyagroupoforganismsisaDPS ifitisboth discrete and significant fromothersuchpopulations.evidenceof discretenesscanincludebeing markedlyseparatedfromotherpopulationsofthe sametaxonasaconsequenceofphysical,physiological,ecological,andbehavioral factors,andevidenceofsignificanceincludespersistenceinanunusualorunique ecologicalsetting,evidencethatagroup sextinctionwouldresultinasignificantgap intherangeofthetaxon,ormarkedlydifferentgeneticcharacteristicsfromother populations(seedpspolicy;61fr4722fordetails).thedpspolicywasintended tobeconsistentwiththeesupolicy,andbothpoliciesutilizethesametypesof information.however,nmfshasconcludedthatunderthedpspolicyresidentand anadromousformsofo.mykissarediscrete(andhencearedifferentdpss),whereas biologicalreviewteamshavegenerallyconcludedthatresidentandanadromouso. mykisswithinacommonstreamarepartofthesameesuifthereisnophysical barriertointerbreeding(seegoodetal.2005foranextensivediscussionofthis issue). Informationthatcanbeusefulindeterminingthedegreeofreproductive isolationincludesincidenceofstraying,ratesofrecolonization,degreeofgenetic differentiation,andtheexistenceofbarrierstomigration.insightintoevolutionary significanceordiscretenesscanbeprovidedbydataongeneticandlifehistory 5 Sectionauthors:JimMyers,LaurieWeitkamp,DavidTeel 11

12 characteristics,habitatdifferences,andtheeffectsofstockstransfersor supplementationefforts. LifehistorycharacteristicsthathavebeenusefulinestablishingESUandDPS boundariesinclude:juvenileemigrationandadultreturntiming,agestructure, oceanmigrationpatterns,bodysizeandmorphology,andreproductivetraits(i.e. eggsize).populationgeneticstructurecanbeveryinformativeforestimatingthe degreeofreproductiveisolationamongpopulations.similarly,mark/recapture studiesprovideinformationonthelevelofinterpopulationmigration,although straying doesnotnecessarilyresultinsuccessfulintrogression. Habitatandecologicalinformationhasbeenextensivelyusedtoestablish ESUandDPSboundaries,especiallywherethereislittlepopulationspecific informationavailable.giventhehighlevelofhomingfidelityexhibitedby salmonidsandtheassociateddegreeoflocaladaptationinlifehistorytraits,habitat characteristicsbecomeausefulproxyforputativedifferencesinlifehistorytraits. Similarly,biogeographicboundariesandthedistributionandESUstructureof similarspecieshavebeenusedwhereinformationonthe species inquestionis lacking. IninitiallydefiningthestructureofESUsandDPSstheBiologicalReview Teamsanalyzedavarietyofdifferentdatatypesofvaryingquality.Atthetime,the BRTsrecognizedthatESUboundarieswouldnotnecessarilybediscrete,rathera transitionalzonecoveringoneormorebasinsmightexistattheinterfacebetween putativeesus.insomecases,especiallywheretherewasnotageographicfeature torelyupon,therewassomedegreeofuncertaintyintheidentificationofesu boundaries.populationspecificinformationwasfrequentlylimitedandinsome casesnaturalpopulationsinthetransitionalzonehadbeenextirpatedormodified bythetransferoffishbetweenbasins.ultimately,thebrtshaveusedthebest availableinformationtoassigntransitionalpopulationsintoanesus/dpsswiththe understandingthatifadditionalinformationbecameavailablethedecisions regardingtheboundariescouldberevisited. NewInformation ThemajorityoftheESUsandDPSsforPacificsalmonand steelheadwereinitiallydefinedinthelate1990saspartofthecoastwidestatus reviewprocessundertakenbythenmfs.intheintervening15years,themost markedchangeinpopulationmonitoringhasarguablybeenintheanalysisof geneticvariation.initially,themajorityofthegeneticsinformationwasdeveloped usingthestarch gelelectrophoresisofallozymes.theutilizationofdna microsatellitetechnologyinfisheriesduringthelast10yearshasprovidedawealth ofadditionalgeneticinformation.overall,thistechniquehasprovidedafinerlevel ofdiscriminationthanwaspossiblewithallozymes.furthermore,sincetheinitial listingstherehavebeenextensivemonitoringeffortsthroughoutthewestcoast. Thus,thequalityandquantityofgeneticinformationavailabletoaddresstheissue ofesuanddpsdelineationhasimprovedconsiderably. Foranumberofpopulations,monitoringeffortsoverthatlast15yearshave expandedtheexistingdatabasesonabundance,spawntiming,andmigratory patterns.additionally,themass markingofhatchery originjuvenileshasimproved

thequalityofthedatacollected,especiallyregardingthelife historydataof naturally producedfish. Informationofalltypes,frompublishedandunpublishedsources,was reviewedinordertoassesswhethersufficientdataexistedtojustifya reconsiderationoftheesuboundary.muchoftherelevantinformationhadalready beensummarizedbythetechnicalrecoveryteams(trts)intheiridentificationof populationswithinlistedesusanddpss(table3).thisreviewwillnotexplicitly discussalloftheinformationthatwasconsidered,butratherfocusesoninformation pertainingtoesusanddpssthatwouldpotentiallyjustifyfurtherinvestigation regardingchangesinboundaries. Table3 TechnicalRecoveryTeamreportsonpopulationstructurewithinlistedPacificNorthwest EvolutionarilySignificantUnits(ESUs)andDistinctPopulationSegments(DPSs).See http://www.nwfsc.noaa.gov/trt/pubs.cfmforcopiesofthesereports. Domain Population structure document name Year completed Puget Sound - Chinook Puget Sound Hood Canal Summer Chum Puget Sound Lake Ozette Sockeye Willamette/Lower Columbia Oregon Coast Interior Columbia Basin Independent Populations of Chinook Salmon in Puget Sound 2006 Determination of Independent Populations and Viability Criteria for the Hood Canal Summer Chum Salmon Evolutionarily Significant Unit 2009 Identification of an Independent Population of Sockeye Salmon in Lake Ozette, Washington 2009 Historical Population Structure of Pacific Salmonids in the Willamette River and Lower Columbia River Basins 2006 Identification of Historical Populations of Coho Salmon (Oncorhynchus kisutch) in the Oregon Coast Evolutionarily Significant Unit 2007 Independent Populations of Chinook, Steelhead, and Sockeye for Listed Evolutionarily Significant Units Within the Interior Columbia River Domain 2003 Cohosalmon PugetSoundandWashingtonCoastESUs 6 Evolutionarilysignificantunits(ESUs)forWestCoastcohosalmonwere originallydelineatedin1995(weitkampetal.1995).atthattime,sixesuswere identified:1)centralcaliforniacoast,2)northerncalifornia/southernoregon Coasts,3)OregonCoast,4)ColumbiaRiver/SouthwestWashington,5)Olympic Peninsula,and6)PugetSound/StraitofGeorgia(Figure1).In2005,NMFS determinedthatthecolumbiariver/southwestwashingtonesushouldbesplitand 6 CompiledbyLaurieWeitkamp,DavidTeel,andHeatherStout.Northwest FisheriesScienceCenter. 13

thecolumbiariverportionwaslistedundertheu.s.esa,leavingthestatusof southwestwashingtoncohosalmonpopulationsinquestion. Sincetheoriginalstatusreview,newgeneticandlifehistoryinformationhas becomeavailablethatprovidesfurtherinsightintohowcohosalmonarelikely adaptedtohabitatsthroughouttheirrange,resultinginreproductiveisolationand phenotypicvariation.thisnewinformationhasyettobeconsideredforthosecoho salmonesuswhichhavenotbeenevaluatedsincetheoriginalstatusreview. Accordingly,thisanalysiswillfocusoncohosalmonpopulationsthatoccupy freshwaterhabitatsalongthewashingtoncoast,straitofjuandefuca,pugetsound, andsouthernbritishcolumbia.possiblechangestoesuboundarieshave previouslybeenconsideredforcohosalmonfromnortherncaliforniaandoregon andwerefoundtobeconsistentwiththebestscientificinformationandtherefore willnotbediscussedhere(stoutetal.2010). Information related to the original delineation of coho ESU boundaries in the Washington State and Southern British Columbia GeographicandEcologicalCharacteristics FreshwaterhabitatsalongtheWashingtonCoast,StraitofJuandeFuca, PugetSound,andsouthernBritishColumbiaarelargelyinfluencedbyelevationand rainfallandfallintotwoecoregionsatlowelevations(omernik1987):thecoastal Range,whichextendsfromtheOlympicPeninsulatoroughlySanFranciscoBay,and PugetLowland,whichencompassestheeasternStraitofJuandeFucaandlowlands ofpugetsound.acrosstheborderinbritishcolumbia,the GeorgiaDepression ecoregionisessentiallythenorthernextensionofthepugetlowlandecoregion,and coversmostofthestraitofgeorgia(demarchi1996). TheWashingtonCoastistypifiedbyabroadhabitatgradientfromthelow elevationwillapahillsinthesouthtothehigherelevationolympicmountainsinthe north.dominantvegetationthroughoutthisareaissitkaspruceandwestern hemlockandrainfallisconsiderable.atthesouthendofthisrange,thereare extensivemud orsandflatswithinthecolumbiariverestuary,willapabay,and GraysHarbor;duetothesharedgeologyoftheWillapaHillsarea(WDNR2003)and thetransportationofcolumbiariversedimentsnorthwardalongthewashington coast. Becauseoftheirhigherelevationsandassociatedgreaterrainfall,rivers drainingtheolympicpeninsulaarecharacterizedbyhighlevelsofprecipitationand colder,glaciallyinfluenced,headwaters,highaverageflowswitharelativelylong durationofpeakflows,includingasecondsummerpeakresultingfromsnowmelt. TheChehalisRiverdisplayscharacteristicsofbothpartsoftheWashingtoncoast tributariesdrainingthenorthsideofthechehalisriverbasinsharethesame hydrology,topography,andclimateasolympicpeninsularivers,whilesouthern tributarieshavemoreincommonwiththesouthwestwashingtoncoast. TheeasternboundaryoftheOlympicPeninsulaoverlaysanextended transitionzonebetweentheextremelywetolympicpeninsulaandthemuchdrier PugetSound/SalishSea.ThetransitionpointbetweenthewetOlympicPeninsula andtherainshadowfarthereastisthoughttooccureastoftheelwhariver. However,theElwhaRiverisphysicallymoresimilartotheDungenessRiverthanto 14

thosebasinsfartherwest.theelwhaanddungenessriversarebothrelativelylong andbegininalpineareasoftheolympicmountains,whileriverswestoftheelwha Riveraremuchshorter,drainingthelowridgethatseparatestheSolDucRiverfrom thestraitofjuandefuca(weitkampetal.1995). DrainagesenteringtheSalishSeafrombothsidessharemanyofthephysical andenvironmentalfeaturesthatcharacterizethepugetsoundarea.thisregionis drierthantherainforestareaofthewesternolympicpeninsulaandthewestsideof VancouverIslandandisdominatedbywesternhemlockforests.Streamsaresimilar tothoseoftheolympicpeninsula,beingcharacterizedbycoldwater,highaverage flows,arelativelylongdurationofpeakflows,andasecondsnow meltpeak, althoughflowlevelsperbasinareaaremuchlowerthanintheolympicpeninsula (Weitkampetal.1995). 15

Figure1 Evolutionarilysignificantunitsforcohosalmonproposedin1995.Since 2005,LowerColumbiacohoformtheirESU.ReproducedfromWeitkampetal. (1995). LifeHistoryandGeneticalCharacteristics Lifehistorycharacteristics.Weitkampetal.(1995)consideredavarietyof cohosalmonlifehistoryinformationinordertodeterminehowsalmonwere respondingtothevariationinhabitatsdiscussedabove,andthereforeindicatelikely 16

locationsforesusboundaries.athoroughreviewofcohosalmonpopulations characteristicsconcludedthatcohosalmonexhibitconsiderablylessvariationin traitssuchasageatmaturityortimingofadultreturnscomparedwithother salmonidspeciesforwhichesushadbeendelineatedatthattime(primarily ColumbiaRiverChinooksalmonandsockeyesalmonandsteelhead).Inessence, cohosalmonappearedtohavea onesizefitsall modelforlifehistoryvariation, whichgreatlylimitedtheuseofthesetraitsinestablishingesuboundaries. Onelifehistorytraitthatdidshowconsiderablevariationwasmarine distributionpatternbasedonrecoveriesofcodedwiretagsinmarinefisheries, groupedbystateorprovinceofrecovery.basedontherecoveryof1.9millioncoho salmonoriginatingfrom66hatcheriesovera20yearperiod,weitkampetal.(1995) foundthatcohosalmonoriginatingfromaparticularfreshwaterregionshareda commonmarinerecoverypattern,whichdifferedfromthatofadjacentregionwith verylittletransitioninpatterns.basedonthisanalysis,eightrecoverypatterns wereidentifiedcoastwide,includingfourinwashingtonstateandsouthernbritish Columbiaconsistingof1)ColumbiaRiver,2)WashingtonCoast,3)PugetSound, HoodCanal,andStraitofJuandeFuca,and4)southernBritishColumbia.Mostof thesefishwererecoveredinwashingtonandbritishcolumbiamarinewaters, althoughtherelativeproportionvariedbyreleaseregion,leadingtodetectable differencesbetweenregions. Geneticalcharacteristics.Aspartofthecohosalmonstatusreviewin1994, Weitkampetal.(1995)reviewedgeneticstudiesofcohosalmoninCalifornia, Oregon,Washington,BritishColumbia,andAlaska.Nearlyallofthegeneticstudies focusedonparticulargeographicregionsandexceptfortwomitochondrialdna studiesofcohosalmoninoregonandinthecolumbiariver,allwereallozyme studiesemployingfewpolymorphiclociandmostlybasedonsmallnumbersof samples.weitkampetal.(1995)alsocompiledanewallozymesdatasetof53 polymorphiclociand101populationsamplesrangingfromcaliforniatoalaska, withaprimaryfocusonoregon,washington,andsouthernbritishcolumbia. Principalcomponentsanalysis(PCA)andananalysisofgeneticdistancesidentified sevenmajorgeneticclusters(figure2). 17

Figure2 Dendrogramusing53polymorphicallozymeslociandbasedonpariwisegeneticdistance values(csechorddistance)between101samplesofcohosalmonfromthepacificnorthwest.clustervi includespopulationsfromthenorthernwashingtoncoast,straitofjuandefuca,pugetsound,and southernbritishcolumbia.populationsfromthesouthwestwashingtoncoastandthecolumbiariver areinclustervii.reproducedfromweitkampetal.(1995). 18

PopulationsfromPugetSoundandsouthernBritishColumbiagenerally clusteredtogetherandweredistinctfrompopulationsintheinteriorfraserriver. ThesinglepopulationintheStraitofJuandeFuca(HokoRiver)andthosealongthe northernwashingtoncoastclusteredtogetherandweremostgeneticallysimilarto thepugetsound/southernbritishcolumbiacluster.samplesfrompopulations alongthesouthernwashingtoncoastandfromthecolumbiariverformedanother ofthemajorclustersandweredistinctfrombothmorenorthernandsouthern populations.weitkampetal.(1995)notedthattheallozymedataalsorevealedhigh levelsofgeneticheterogeneitywithinthegreaterolympicpeninsula/puget Sound/StraitofGeorgiaareaindicatingfairlyhighreproductiveisolationof individualpopulationsorgroupsofpopulations. SubsequenttotheanalysisconductedbyWeitkampetal.(1995),genetic relationshipsamongcohopopulationsinsouthwestwashingtonandthelower ColumbiaRiverwereinvestigatedaspartofanexaminationofhistoricalpopulation structureofpacificsalmonidsintheregion(myersetal.2006).myersetal.(2006) reviewedastudyconductedbygeneticistsatthecanadiandepartmentoffisheries andoceansthatusedfourmicrosatellitednalociandonehistocompatibilitylocus (Shakleeetal.1999).AlthoughtheShakleeetal.(1999)datasetincludedonlytwo lowercolumbiariver(cowlitzandlewisrivers),thosesamplesformedacluster thatwasdistinctfromtwosamplesfromthesouthwestwashingtoncoastwhich weregeneticallysimilartoseveralsamplesfromthenorthernwashingtoncoast. Myersetal.(2006)alsoanalyzedanallozymedatasetthatincludednewdatanot availableduringthe1994statusreview(teeletal.2003).inthatanalysis,samples fromcolumbiariverandsouthwestwashingtoncohosalmonpopulationsalso formedseparateclusters(figure3). NewInformationonWashingtonStateandSouthernBritishColumbiaESUs LifeHistoryandGeneticalCharacteristics Lifehistorycharacteristics.Asdescribedabove,onelineoflifehistory evidencethatindicatedmajorchangescoastwidewasthemarinedistributionsof cohosalmonbasedonrecoveriesofcodedwiretagged(cwt)hatcheryfish. WeitkampandNeely(2002)redidthisanalysis,usingthesamecodedwiretag (CWT)databasebutincludingmorehatcheries(90vs.60)andsmallerandtherefore morenumerousrecoveryareastohelpunderstandhowmarinedistributionsvaried betweenhatcheriesandregions.theyalsoincluded36wildpopulationsintheir analysistoevaluatetheinfluenceofhatcheryeffectsonmarinedistributions.like theearlieranalysis,theyfoundthatwildandhatcherysalmonfromthesame freshwaterregionsharedacommonrecoverypattern,andthattherecovery patternsabruptlychangedacrossregions,withlittleornotransitionbetween regions. 19

Figure3 Figure3.(Myersetal.2006)Multidimensionalscalingandminimumspanningtreeof pairwisechorddistancevalues(cavalli SforzaandEdwards1967)among27samplesofcohosalmon fromlowercolumbiariverandsouthwestwashingtoncoast.analysiswasbasedondatafor61gene loci.samplesfromlowercolumbiariverpopulationsareidentifiedbywhitesquares;thosefrom southwestwashingtonareidentifiedbyblacksquares.numericcodescorrespondtothoseintable1of Myersetal.(2006). ForcohosalmonfromWashingtonandsouthernBritishColumbia,the analysisindicatedseveraldiscretegroupsbasedongeographiclocationofthe populations(figure4).whetheronlyhatcherypopulationswereconsideredor bothhatcheryandwild,thepatternsweresimilar.inparticular,hatcheryandwild cohosalmonpopulationsfromstraitofgeorgia(clusterfinfigure4),pugetsound andeasternstraitofjuandefuca(clusterh),washingtoncoastandwesternstrait ofjuandefuca(clusteri)andlowercolumbiariver(clusterj)eachformedwell separatedclusters.thedividinglinebetweenclustershandi(pugetsoundand Washingtoncoast)occurredbetweentheDungenessandElwhahatcheries (hatcheries55and56,respectively,infigure4). GeneticReviewforCohoSalmon Geneticalcharacteristics.TheDNAdatasetforBritishColumbiacohosalmon reportedbyshakleeetal.(1999)andthesubsequentanalysesofthosedataby Beachametal.(2001)includedseveralsamplesfromtheWashingtoncoast,Straitof JuandeFuca,andPugetSound.Intheiranalyses,Washingtonsampleswere geneticallydistinctfrombritishcolumbiasamples.withinthewashingtoncluster, coastalpopulationsclusteredseparatelyfromaclusterthatincludedpopulationsin 20

PugetSound,HoodCanal,andJuandeFuca(DungenessandElwha).Anotherrecent geneticstudyofcohosalmonanalyzed11microsatellitednalociinsamples rangingfromcaliforniatosouthernbritishcolumbiaincluding29populationsin coastalwashingtonandpugetsoundand11inthelowercolumbiariver(van Doorniketal.2007).Theiranalysisrevealedsixmajorclustersofpopulations includingacolumbiarivercluster,awashingtoncoastcluster,aclusterofpuget SoundandHoodCanalpopulationsandasouthernBritishColumbiacluster(Van Doorniketal.2007,Figure5).TheColumbiaRiverpopulationgrouphad Figure4 Dendogrambasedonmarinerecoverypatternsof90hatcheryand36wildcohosalmon population.namesindicatethefreshwaterreleaseregion.reproducedfromweitkampandneely (2002). 21

22

Figure5 Neighbor joiningdendrogramgeneratedfromcavalli SforzaandEdwards (1967)chord distancesfor84cohosalmonsamplescollectedwithinsixregionsofthepacificcoast.bootstrapvalues (%)fortheregionsareshown.reproducedfromvandoorniketal.(2007). thehighestbootstrapvalueamongtheclusters(97%)illustratingstrongsupportfor geneticdifferentiationfromcoastalpopulations.lowerbootstrapvalueswere associatedwiththewashingtoncoast(24%),pugetsound/hoodcanal(28%)and southernbritishcolumbia(33%)clusters.vandoorniketal.(2007)discussed theirfindingsrelativetoesudeterminationsandtothepopulationstructuring reportedinpreviousstudies.theyobservedageneralconcurrencewithearlier cohosalmongeneticstudies,includingrelativelyweakgeographicpopulation structureoverall.additionally,concurringwithbeachametal.(2001),theyfound thatpugetsoundpopulationsandthoseinbritishcolumbiawerecloselyrelated, butclusteredseparately.vandoorniketal.(2007)alsonotedthatincontrastto Beachametal.(2001),theyfoundthatsamplesfromtheStraitofJuandeFuca (Hoko,ElwhaandDungenessriversandSnowCreek)weregeneticallymoresimilar towashingtoncoastalpopulationsthanthoseinpugetsound. 23

ArecentgeneticstudyofPacificsalmonintheElwhaRiverincluded microsatellitednadataforseveralcohosalmonpopulationsinjuandefuca (Winansetal.2008).WeusedthesenewdatacombinedwiththedataofVan Doorniketal.(2007)toevaluategeneticrelationshipswithinandamongregional groupsofhatcheryandnaturallyproducedcohosalmoninthepacificnorthwest (Table4). Table4 MeanpairwiseFstvaluesbetweenregionalgroupingsofPacificNorthwestcohosalmon populations.valueswerecomputedusing11microsatellitednalociandcomparisonswereconducted betweenindividualpopulationsineachregion.boldvaluesarecomparisonswithineachregion.data arefromvandoorniketal.(2007)andwinansetal.(2008). PopulationorRegion 1 2 3 4 5 6 7 8 1 EastVancouverIsland 0.023 0.028 0.038 0.027 0.028 0.041 0.034 0.058 2 SouthernBCmainland 0.010 0.028 0.021 0.023 0.034 0.031 0.052 3 LowerFraserRiver 0.018 0.026 0.030 0.036 0.038 0.051 4 PugetSound/HoodCanal 0.013 0.019 0.028 0.023 0.048 5 JuandeFuca 0.017 0.025 0.020 0.041 6 NorthernWashingtoncoast 0.021 0.027 0.041 7 SouthernWashingtoncoast 0.014 0.045 8 ColumbiaRiver 0.017 AverageFstvalues(ametricindicatingtheamountofgeneticdifferentiation) incomparisonsofpopulationswithinregionsweremostlysmallerthanvaluesin among regioncomparisons(range=0.010 0.023).Thelargestwithin regionfst valuewasforeastvancouverisland(0.023)largelyduetothedivergenceeffectof thegoldstreamhatcherypopulation.thesecondlargestwithin regionfstwasthe northernwashingtoncoastgroup(0.021)primarilybecausetheofthenaturaland hatcherysummer runcohosalmonpopulationsinthesolducriver,whichwere geneticoutliers.among regioncomparisonsshowedthatcolumbiariver populationswerethemostgeneticallydistinctgroupofpopulationsintheanalysis (0.041 0.058).Moderatelevelsofdifferentiationwereevidentforcomparisonsof PugetSound/HoodCanalpopulationswithStraitofGeorgiapopulations(0.021 0.027)andwithnorthernWashingtoncoastalpopulations(0.028).Thevaluesfor bothoftheseamong regioncomparisonswerelargerthanthewithin PugetSound/ HoodCanalcomparisons(0.019).AveragevaluesforJuandeFucapopulationsin comparisonswithpugetsound/hoodcanal(0.019)weresmallerthanin comparisonswithnorthernwashingtoncoastalpopulations(0.025).thedifference inthesetwosetsofcomparisonswaslargelyduetocomparisonsinvolvingsolduc summerrunsamples.whenthosesampleswerenotincludedintheanalysis,juan defucapopulationshadthesameaveragefstvaluesincomparisonswiththe northernwashingtoncoastaswithpugetsound/hoodcanal. Otherinformation.BecausecohosalmonwerethefirstPacificsalmon speciesforwhichcoast wideesusweredelineated,boundariesforotherpacific salmonesuswerenotavailableforcomparison.thisbiogeographicinformationis usefulbecauseitindicateshowotherpacificsalmonspeciesrespondtothesame suiteofenvironmentalconditionsthatcohosalmoninteractwith.westcoastesus 24

havebeendelineatedforpink(hardetal.1996),chum(johnsonetal.1997), sockeye(gustafsonetal.1997),andchinooksalmon(myersetal.1998),and steelhead(busbyetal.1996).eachnativesockeyesalmonpopulationisconsidered anesu,sothepatternofsockeyesalmonesusprovideslittleinsighttocohosalmon. ForspecieswithmultiplepopulationsperESU,ESUconfigurationsin WashingtonState(excludingtheColumbiaRiver)andsouthernBritishColumbiaare somewhatvariablealthoughmosthaveseveralbreakpointsincommon.for example,withinthesalishsea,esusfortwospecies(chinooksalmon,steelhead) didnotcrosstheborderintocanadabutmoreorlessstoppedattheborder(the NorthForkoftheNooksackRiverbeingthenorthern moststream).bycontrast, oddyearpinkandfallchumsalmonesus,likecohosalmon,includedbothpuget SoundandtheStraitofGeorgia.WhetherSalishSeaESUsdidordidnotinclude Canadianpopulations,however,inallcasestheElwhaRiverwasincludedinthe PugetSoundESU,ratherthanintheOlympicPeninsulaorWashingtonCoastESU. ForWashingtonCoastESUs,therewasconsiderablediversityinESU configurations.chinooksalmonhaveasinglewashingtoncoastesu,which stretchesfromjustwestoftheelwhariverto(butnotincluding)thelower ColumbiaRiver.ChumsalmonhaveasimilarESUconfigurationtoChinooksalmon, exceptthatitalsoincludestheoregoncoasttothesouthernendofthespecies range(alsoexcludingthelowercolumbiariver)andwasappropriatelynamedthe PacificCoastESU.Steelhead,liketheoriginalcohosalmonconfiguration,havetwo ESUsontheWashingtonCoast:anOlympicPeninsulaESUandaWashingtonCoast ESUwhichincludestheColumbiaRiverdownstreamoftheCowlitzRiver. Finally,conservationunits(CUs)havebeententativelydesignedforPacific salmonpopulationsinbritishcolumbia(holtbyandciruna2007).althoughnot identicaltoesus,thefoundationofconservationunitsissimilarinthattheyare basedonhabitat,lifehistoryandgeneticdiversity,andareintendedtocapturethe majorblocksofdiversityexhibitedbypacificsalmonwithinbritishcolumbia. Forcohosalmon,43CUshavebeenidentified,including5withinthe CanadianportionofthePugetSound/StraitofGeorgiaESUs.TheseCUsare:Lower FraserA,LowerFraserB,Howe Burrard(immediatelynorthoftheFraserRiver), BoundaryBay(immediatelysouthoftheFraserRiver),GeorgiaStraitMainland,and GeorgiaStraitEastCoastofVancouverIsland. Conclusions Based on the new genetic and life history information presented here, it appears that there is new information that indicates that the current ESU configuration for Washington Coast, Strait of Juan de Fuca, Puget Sound, and Strait of Georgia coho salmon populations would benefit from additional review. Both genetic and life history (marine distribution) information suggest that there is geographically-based diversity within the Puget Sound/Strait of Georgia ESU which warrants further examination. Doing so may result in a Puget Sound ESU that, like Chinook and steelhead ESUs, does not include Canadian populations. For Washington coast populations, the new information also indicates that a single Washington coast ESU may be most consistent with the data. However, where the boundary for it and the Puget Sound ESU should be placed will need further consideration. 25

LowerColumbiaRiverandMiddleColumbiaRiverBoundaries 7 Thissectionreviewsnewinformationregardingtheboundariesbetweenthe LowerColumbiaRiverChinooksalmonESUandtheMiddleColumbiaRiverChinook salmonspringrunesu,betweenthelowercolumbiariversteelheaddpsandthe MiddleColumbiaRiversteelheadDPS(Figure6).Theseboundarieshavebeen uncertainduetolimitedorambiguousdata.here,wehavereviewnewgenetic informationthatmayhelpclarifytheseboundaries.specifically,newanalyseshave utilizedmicrosatellitednabasedmeasuresofgeneticvariationratherthantheless sensitiveallozymebasedmethodsusedinearlierreviews.insomecasesnew sampleshavebeenaddedtotheanalysis,butthemajorityofthesamplesarethe sameonesusedintheinitialbrtassessments. 7 Sectionauthors:JimMyers,JonHess,MelaniePaquin,andPaulMoran. 26

Figure6 CurrentboundariesbetweentheLowerandMiddleColumbiaRiversteelheadDPSs.The currentboundarybetweenthelowerandmiddlecolumbiariverchinooksalmonesusrunsbetween thewhitesalmonandtheklickitatriversandthehoodanddeschutesrivers. InformationrelatedtotheoriginaldelineationofsteelheadDPSboundariesinthe ColumbiaRiver Busbyetal(1996)reviewedbiologicalandgeographicinformationon steelheadpopulationsinthecolumbiariver.intheidentificationofdps(thenesu) boundarybetweenthelowercolumbiaandmiddlecolumbiariverdpss,the characteristicsofthebigwhitesalmonriverandklickitatriversteelhead populationswerefoundtobeintermediatetothetwodps,orsharingsome characteristicswitheitherofthedps.fifteenmilecreek,whichisupstreamofthe HoodandKlickitatRiversatRKm309(butbelowthehistoricallocationofCelilo Falls),containsonlywinter runsteelhead.oregondepartmentoffishandwildlife includesseveralsmalltributaries,mosier,mill,andfifteenmilecreeksintheirmid ColumbiaGeneConservationGroup(Kostow1995). DespitethefactthatFifteenmileCreekcontainsonlywinter runsteelhead, Busbyetal(1996)assignedthispopulationtotheMiddleColumbiaRiverDPSbased 27

primarilyongeneticsimilaritytointeriorcolumbiariverbasinsteelhead. Alternatively,allozymeanalysisbyShrecketal.(1984)foundthatFifteenmileCreek looselygroupedwithlowercolumbiariverpopulations,althoughthedendrogram clusteredfifteenmilecreekwithskamaniahatcherypopulationsandsomesnake Riverpopulations. SubsequentanalysisbyCurrens(1997)indicatedthatsteelheadfrom FifteenmileCreekareintermediatetoCoastalandInteriorColumbiaBasinsteelhead populationswithanaffinitytointeriorpopulations(figure7).phelpsetal.(1997) groupedadultsteelheadandjuvenileo.mykissfromthebigwhite,littleklickitat, andklickitatriverswiththeinlandmajorancestrallineage(mal)forsteelhead. Samplesfromtheseriversformedtheirowndendrogramclusterrelativetoother Inlandsteelheadsamples.LateranalysisbyPhelpsetal.(2000)indicatedthattheO. mykissfromtheyakimaandklickitatriversweredistinctfromeachother. Additionally,Phelpsetal.(2000)observedthatthereappearedtobelittle introgressionbyhatchery(skamaniahatchery)summerrunsteelheadon presumptive native summersteelheadsamples.alternatively,rawding(1995)in alettertothebrtsuggestedthattheeasternboundaryofthecoastalo.mykiss shouldbeattheklickitatriver.rawdingsuggestedthattheruntiming,age structure,andlifehistoryofklickitatriversteelheadwasmoresimilartocoastal forms. Figure7 Figure6.UPGMAdendrogramofLowerColumbiaandDeschutesRiversteelheadbasedonCSE chorddistances.datafromcurrens(1997).graphfrommcclureetal.(2003).lowercolumbia populationsareingreen,interiorcolumbiapopulationsareinred.eightmilecreeko.mykissare thoughttoberesidentrainbowtrout(currens1997). GeographicandEcologicalCharacteristics 28

IncontrasttotheothersteelheadpopulationsintheMiddleColumbia SteelheadDPS,theBigWhiteSalmonandKlickitatriversandFifteenmileCreekare locateddownstreamfromthedallesdam,nearthehistoricallocationofcelilofalls (RKm320),animportanthistoricalmigrationobstacle,whichnowliessubmerged undercelilolakefollowingtheconstructionofthedallesdamin1957.celilofalls alsoliesnearthecascadecrest,whichdemarksthetransitionbetweenthewetter westerncascadeslopesandthedrierinteriorcolumbiariverbasin.thebigwhite SalmonandKlickitatRiverbasinsalsolieinthewithintheEasternCascade EcoregionratherthantheColumbiaBasinEcoregionthatliesimmediatelytothe eastoftheklickitatriver.fifteenmilecreekliesinthecolumbiabasinecoregion. TheBigWhiteSalmonRiverenterstheColumbiaRiveratRKm270,downstreamof themouthofthehoodriver,rkm272(winterandsummersteelheadfromthe HoodRiverweredesignatedasbeingpartoftheLowerColumbiaRiverDPS),while theklickitatriverentersthecolumbiariveratrkm289.shrecketal.(1984) determinedthatenvironmentalconditionsintheklickitatandhoodriverswere mostsimilartofifteenmilecreekusingparameterssuchasgradient,precipitation, landformcategory,geologicalcategory,vegetationtype,soiltype,elevation,and distancetothemouthofthecolumbiariver. LifeHistoryandGeneticalCharacteristics MostMiddleColumbiaRiversteelheadsmoltat2yearsofageandspend1to 2yearsinsaltwaterpriortore enteringfreshwater.withinthemiddlecolumbia RiverSteelheadDPS,theKlickitatRiverisunusualinthatitproducesbothsummer andwintersteelhead,andthesummersteelheadaredominatedby2 ocean steelhead,whereasotherriversinthisregionproduceaboutequalnumbersofboth age 1 and2 oceamsteelhead(table5).busbyetal.(1995)notedthatthebrt considereddifferentscenariosforthecompositionofthemiddlecolumbiariver DPSwithrespecttothedownstreamandupstreamboundaries.Lifehistory informationforklickitatriversteelheadismoresimilartolowercolumbiariver SteelheadthantootherpopulationswithwithintheMiddleColumbiaRiverDPS; additionally,schrecketal.(1986)placedklickitatriversteelheadinthecoastal steelheadbasedongenetic,morphometric,meristicandlifehistorycharacteristics. However,aswasdescribedabove,othergeneticanalyses(Phelpsetal.1994,Leider etal.1995)suggestacloseraffinityforklickitatriversteelheadwiththeinland steelheadgroup.busbyetal.(1996)indicatedthattherewasconsiderable variabilityintherelativerelationshipbetweendifferentsamplesfromtheklickitat River,suggestingthattemporalsamplesmightrepresentfishfromdifferentnative, resident,orhatcherypopulations. Table5 Oceanagefrequencyforselectedsteelheadpopulations.Dataarefromadultsteelheadand indicateageatthefirstspawningmigration.tableisadaptedfrombusbyetal.1996.datafromhowell etal.(1985)exceptwhereindicated. Population Run type 0 1 2 3 4 N 29

CowlitzR. O 0.64 0.34 0.02 56 KalamaR. O 0.04 0.76 0.20 1363 KalamaR. S 0.20 0.74 0.06 909 WashougalR. O 0.14 0.71 0.14 141 WindR. S 0.05 0.68 0.26 19 HoodR. O 0.06 0.73 0.21 * HoodR. S 0.08 0.77 0.15 * KlickitatR. S 0.16 0.79 0.05 148 DeschutesR. S 0.53 0.47 100 JohnDayR. S 0.51 0.44 0.04 115 *DatafromKostow2003 NewInformationonLowerColumbiaandMiddleColumbiaRiverSteelhead. In1998,theWestCoastSteelheadBRTreviewedinformationregardingthe UpperWillametteandMiddleColumbiaRiverDPSs(Busbyetal1999).Inresponse totheinitialfindingsofthebrt,odfwsuggestedthatthemiddlecolumbiariver DPSbeadjustedsothatthewinter runpopulations(e.g.fifteenmilecreek)be includedinthelowercolumbiariverdps.atthetime,therewasnonewbiological informationavailabletojustifytheredelineationofthedpsboundaries.thebrt didacknowledgethetherewasconsiderableuncertaintyregardingthedps boundariesandthatamoreintensivereviewofexistinggeneticandecological, environmentalandlifehistoryinformationwaswarranted. TherelationshipbetweensteelheadpopulationsintheWhiteSalmon, Klickitat,Hoodrivers,andFifteenmileCreekandCoastalandInlandlineages remainedtopicaloutsideofthebrtdiscussions.o.mykisspopulationsalongthe CascadeCrestwereidentifiedasatransitionalzonebetweencoastalandinland residentandanadromousform(benhke2002). SincetheinitialdelineationoftheDPSboundariessubstantialnewgenetic informationhasbecomeavailable.insomecasespreviouslyanalyzedsampleshave beenreanalyzedusingmicrosatellitednamarkersinsteadofallozymemarkers.in general,microsatellitednaismorevariableandthereforemayprovideafinerlevel ofresolutioninpopulationanalysis.additionally,newgeneticsampleshavebeen acquiredfrompresumptivepopulationsinareaofthecascadecrest.astudyby Winansetal.(2004)indicatedthatsteelheadsamplesfromtheKlickitatRiverwere distinctfromsteelheadinthemiddleanduppercolumbiariveraswellasthesnake River;however,therewerenoLowerColumbiaRiversamplesincludedinthe analysisandthemajorityofthesampleswerecollectedintheearly1990s,aperiod whenthemarkingofhatcherysteelheadwasnotcommonplace.therewas considerablevariabilityintherelationshipsamongthefoursamplesitesinthe KlickitatRiver:LowerKlickitatRiver,BowmanCreek,UpperKlickitatRiver,and LittleKlickitatRiver,suggestingthatdifferentsourcepopulationswerebeing sampled(includingpossiblehatchery originsummerrun).amorerecentstudyby Narumetal.(2006)usingDNAmicrosatelliteanalysis,indicatedthattherehadbeen minimalintegrationbetweennaturally producedandhatcheryorigin(skamania 30

Hatchery)summerrunsteelhead.Unfortunately,therewerenoout of basin populationsincludedintheanalysisandtherelationshipbetweennatural populationsintheklickitatriverandthoseinthelowercolumbiaandmiddle ColumbiasteelheadDPSswasnotassessed. Kostow(2003)indicatedthatFifteenmileCreekwastheeasternmostbasin inthecolumbiariverthatcontainedcoastalcutthroattrout(o.clarki).thiswould furtherunderscorethehistoricalimportanceofcelilofallsasabiologicalboundary betweencoastalandinlandassemblages. AstudybyHessetal.(2008)reanalyzedsamplesfromtheKlickitatand WhiteSalmonRivers(includingbothanadromousandresidentO.mykiss).Inthis comparisonthewhitesalmonandklickitatriversampleswereintermediate betweencoastalandinteriorpopulations,withsamplesfrom8and15milecreeks clearlylyingintheinteriorclusterofsteelheadpopulations(figure8).outliersin thewhitesalmonriverwereresidentfishlocatedabovelongstandingnatural barriers(althoughtherewassomesuggestionthatrainbowtroutmayalsohave beenstockedintheseheadwaterregions). Figure8 Principalcomponentsanalysisofallelefrequencydataforsteelheadpopulationinthe ColumbiaRiverBasin.Theanalysisisbasedonallelefrequenciesat12microsatelliteloci.Eachsymbol representsapopulationsample,andthedistancebetweensymbolsisproportionaltothegenetic differencesbetweentherespectivepopulations.colorscorrespondtofourdps:thelower,middleand UpperColumbiaRiver,andtheSnakeRiver.ReproducedfromHessetal.(2008). InformationrelatedtotheoriginaldelineationofChinookDPSboundariesinthe ColumbiaRiver 31

ThecoastwideChinooksalmonBRT(Myersetal.1998)initiallyreviewed biologicalandgeographicinformationonchinookpopulationsincalifornia,idaho, Oregon,andWashington.IntheidentificationoftheboundarybetweentheLower ColumbiaandMiddleColumbiaRiverESUs,availablelifehistorycharacteristics werereviewed.theconstructionofconditdam(rkm4)onthebigwhitesalmon Riverin1913eliminatedanadromousaccesstothemajorityofthebasin.Thereis littlehistoricaldocumentationavailableregardingthecharacteristicsofthespring andfall runchinookthatexistedinthebigwhitesalmonriverotherthanthe existenceofthoseruns.fall runfishfromthebigwhitesalmonwereusedto establishtheu.s.bureauoffisheriesspringcreekhatchery,laterthespringcreek NFH,in1901.TheSpringCreekNFHfall runpopulationhasbecomethedefacto representativesampleforthehistoricalwhitesalmonriverpopulations. GeographicandEcologicalCharacteristics TheMiddleColumbiaspring run ChinooksalmonESUincludesonepopulationlocateddownstreamfromtheDalles Dam(CeliloFalls),theKlickitatRiverspringrun.CeliloFallsalsowashistorically locatednearthecascadecrest,whichdemarksthetransitionbetweenthewetter westerncascadeslopesandthedrierinteriorcolumbiariverbasin.thebigwhite SalmonandKlickitatRiverbasinsalsoliewithintheEasternCascadeEcoregion ratherthanthecolumbiabasinecoregionthatliesimmediatelytotheeastofthe KlickitatRiver.TheBigWhiteSalmonRiverenterstheColumbiaRiveratRKm270, downstreamofthemouthofthehoodriver,rkm272(winterandsummer steelheadfromthehoodriverweredesignatedasbeingpartofthelowercolumbia RiverDPSandHoodRiverspringandfall runchinooksalmonarepartofthelower ColumbiaRiverESU),whiletheKlickitatRiverenterstheColumbiaRiveratRKm 289. LifeHistoryandGeneticalCharacteristics Historically,onlyspring run ChinooksalmonwerepresentintheKlickitatRiver.LyleFalls,actuallyaseriesof fallsandcascadesnearthemouthoftheklickitatriver(rkm2),wasapparentlya barriertofall runchinooksalmon(thesefishwouldhavereturnedduringlowflow conditionsatthefalls).rawding(1998)suggeststhatfall runchinooksalmonmay havespawnedinkilometerortwoofriverthatexistedbelowthefalls.muchofthis fall runhabitatwasinundatedwiththefillingofthebonnevillepoolinthe1930s. ThereissomediscussionintheChinookSalmonStatusReview(Myersetal.1998) regardingthestatusoftheklickitatriver.marshalletal.(1995)reportedthatthe springrunintheklickitatriverhassomegeneticandlife historysimilaritiesto LowerColumbiaRiverspringruns(Figure9).WDFWincludedtheKlickitatRiver spring runintheirlowercolumbiarivermajorancestrallineage(mal).genetic analysisofchinooksalmoninthecolumbiariver,runaspartofthecoastwide statusreview,indicatedthatklickitatriverspringrunfishwereintermediate betweenlowercolumbiariverocean typechinooksalmonandmid Columbia Riverstream typechinooksalmon 32

Figure9 DendrogramofLowerColumbiaRiverChinookSalmonpopulations.Reproducedfrom Marshall1998. 33

(Figure10)(Myersetal.1998).Marshall(1998)inalateranalysisofLowerand Mid ColumbiaRiverChinooksalmonsamplesfoundthattheKlickitatRiverspring runchinooksampleclusteredmostcloselywiththenflewisriver,cowlitzriver, andkalamariverspring runchinooksalmonsamples. Figure10 Multidimensionalscaling(MDS)ofCavalli SforzaandEdwards(1967)chorddistancesbased on31allozymelocibetween55compositesamplesofchinooksalmonfrompopulationsinthecolumbia Riverdrainage.TheOcean/StreamlinewasaddedsubsequenttothedecisiontoplaceKlickitatspring runinthemiddlecolumbiariverspringrunesu. BasedontherecoveriesfromhatcheryoriginCWTmarkedfish,veryfewfish wererecoveredfromcoastalfisheries,acharacteristicassociatedwithstream type fish.agedatatakenfromscalesduringtheearly1900sindicatedthatklickitatriver springrunfishoutmigratedasyearlings(rich1920).finally,vertebralcountsfrom KlickitatRiverspring runfishclusteredwithinteriorcolumbiariverbasinstreamtypechinookpopulations(schrecketal.1986).usinganindexofgenetic, morphometric,andecologicalinformation,schrecketal.(1986)concludedthatthe KlickitatRiverspringrundidnotclusterwitheitherlowerorupperColumbiaRiver Chinooksalmonpopulations.Theresultsofthestudiesdonepriortothe1998 StatusReviewwerethoughttobeconfoundedbythereleaseofChinooksalmon frombothlower(cowlitzandwillametteriver)andupper(carsonnfh)river sources(myersetal.1998). NewInformationonLowerColumbiaandMiddleColumbiaRiverChinooksalmon ESUs. 34

AswiththesteelheadpopulationsintheColumbiaRiverBasin,abasinwide Chinooksalmonmicrosatellitebaselinehasbeenrecentlydeveloped.CWT recoveriesfromklickitathatcheryspringrunchinooksalmonfrom1997to2007 weresimilartothoseexaminedbythebrtinthe1990s;afewspringrunchinook salmonwererecoveredinthecoastalfisheries(fromcaliforniatoalaska).whether theserecoveriesareindicativeofthetransitionalnatureofthepopulation(from oceantostreamtype)orsimplyrandomrecoveriesremainsunclear. ReanalysisofColumbiaRiverChinooksalmonusingmicrosatelliteDNA variabilitypresentsacomplicatedpictureofpopulationstructurewithinthe KlickitatRiver(Hessetal.2010).TheKlickitatHatcherysampleismorealigned withinterior(stream type)springrunpopulations,whilethenaturallyspawning springrunchinooksalmonappeartobeamixturebetweencoastalandinterior lineages(figure11).itisalsonotcleartowhatdegreeout of basinintroductions intotheklickitathatcheryhaveinfluencedthepresentgeneticstructure,orwhether fall runchinooksalmon(providedaccesstotheupperriverviaafishladderbuiltin the1950s)mayhaveinterbredwithspringrunchinookonthenaturalspawning grounds. Figure11 ProportionofsamplethatassignedtothreemajorColumbiaRiverChinooklineages. ReproducedfromHessetal.(2010). Conclusions TheboundarybetweencoastalandinteriorpopulationsofChinooksalmon, cohosalmonandsteelheadcoincideswithamajorbiogeographicbarrierthatlies alongthecascadecrest,andforaquaticspeciesmayhavebeendelineatedbycelilo Falls.Lifehistory,genetic,andecologicalinformationindicatethattheBigWhite SalmonandKlickitatRiverbasinsformpartofatransitionalzonebetweenthetwo regions.atthetimeofthecoastwidestatusreviewsinthemid 1990s,therewas considerabledisagreementontheplacementofpopulationswithinthistransitional zone.newinformation,primarilydnamicrosatellitevariation,underscoresthe transitionalnatureofpopulationsinthisarea.theextirpationandpotential 35

alternation(viahatcherytransfers)ofsomepopulationsfurthercloudstheissueof populationassignment.withinthetransitionzoneitisrelativelyclearthatthe HoodRiversteelheadareassociatedwithLowerColumbiaRiverpopulations(based onpreviousandcurrentstudies)andgiventherelativelocationsofthemouthsof thehood,bigwhite,andklickitatrivers,thelackofdefinitivegeneticinformation, andsomelife historyinformationsuggestionsconnectionswiththelowerriver,it maybereasonabletoassignthebigwhiteandklicktatriversteelheadtothelower ColumbiaRiverDPS.The15 milecreekpopulation,however,appearstobeclearly associatedwiththeinteriorcolumbiasteelheadlineage. GiventhetransitionalnatureoftheKlickitatRiverChinooksalmon populationitmightbereasonabletoassignthatpopulationtothelowercolumbia RiverChinooksalmonESU.AscohopopulationsinthegorgeandinteriorColumbia regionshavebeenlargelyextirpated,geneticanalyseshavenotbeenconductedof cohointhisregion.theoriginallowercolumbiacohoesuboundarywasassigned basedlargelyonextrapolationfrominformationabouttheboundariesforchinook andsteelhead.itmaythereforereasonabletoassigntheklickitatpopulationtothe LowerColumbiacohoESU.ThiswouldestablishacommonboundaryforChinook salmon,cohosalmon,chumsalmon,andsteelheadatthecelilofalls(dallesdam). References Beacham,T.D.,J.R.Candy,K.J.Supernault,T.Ming,B.Deale,A.Schulze,D.Tuck,K. H.Kaukauna,J.R.Irvine,K.M.Miller,andR.E.Wither.2001.Evaluationand applicationofmicrosatelliteandmajorhistocompatibilitycomplexvariation forstockidentificationofcohosalmoninbritishcolumbia.transactionsof theamericanfisheriessociety130:1116 1149. Benhke,R.J.2002.TroutandsalmonofNorthAmerica.FreePress,NewYork. Bjorkstedt,E.P.,B.C.Spence,J.C.Garza,D.G.Hankin,D.Fuller,W.E.Jones,J.J.Smith, andr.macedo.2005.ananalysisofhistoricalpopulationstructurefor evolutionarilysignificantunitsofchinooksalmon,cohosalmon,and steelheadinthenorth CentralCaliforniaCoastRecoveryDomain.NOAA TechnicalMemorandumNOAA TM NMFS SWFSC 382.231p. Boughton,D.A.,H.Fish,K.Pipal,J.Goin,F.Watson,J.Cadagrande,J.Cadagrande,and M.Stoecker.2005.Contractionofthesouthernrangelimitforanadromous Oncorhynchusmykiss.NOAATechnicalMemorandumNOAA TM NMFS SWFSC 380.29p. Boughton,D.A.,P.B.Adams,E.Anderson,C.Fusaro,E.Keller,E.Kelley,L.Lentsch,J. Nielsen,K.Perry,H.Regan,J.Smith,C.Swift,L.Thompson,andF.Watson. 2006.SteelheadoftheSouth Central/SouthernCaliforniaCoast:population characterizationforrecoveryplanning.noaatechnicalmemorandum NOAA TM NMFS SWFSC 394.123p. 36

Boughton,D.A.,P.B.Adams,E.Anderson,C.Fusaro,E.Keller,E.Kelley,L.Lentsch,J. Nielsen,K.Perry,H.Regan,J.Smith,C.Swift,L.Thompson,andF.Watson. 2007.Viabilitycriteriaforsteelheadofthesouth centralandsouthern Californiacoast.NOAATechnicalMemorandumNMFS SWFSC 407. Boughton,D.A.,Fish,H.,Pope,J.,Holt,G.2009.Spatialpatterningofhabitatfor Oncorhynchusmykissinasystemofintermittentandperennialstreams. EcologyofFreshwaterFish1892 105. Busby,P.J.,T.C.Wainwright,G.J.Bryant,L.J.Lierheimer,R.S.Waples,F.W. Waknitz,andI.V.Lagomarsino.1996.StatusreviewofWestCoaststeelhead fromwashington,idaho,oregon,andcalifornia.u.s.dept.commer.,noaa Tech.Memo.NMFS NWFSC 27. Busby,P.,R.Gustafson,G.Matthews,J.Myers,M.Ruckelshaus,T.Wainwright,R. Waples,J.Willliams,P.Adams,G.Bryant,andC.Wingert.1999.Updated reviewofthestatusoftheupperwillametteriverandmiddlecolumbia RiverESUs[sic]ofsteelhead(Oncorhychusmykiss).WestCoastSteelhead BiologicalReviewTeamreport36p. Clemento,A.J.,E.C.Anderson,D.Boughton,D.Girman,andJ.C.Garza.Inpress (2009).PopulationgeneticstructureandancestryofOncorhynchusmykiss populationsaboveandbelowdamsinsouth centralcalifornia.conservation Genetics. Garza,J.C.,S.M.Blankenship,C.Lemaire,andG.Charrier.(2008)Geneticpopulation structureofchinooksalmon(oncorhynchustshawytscha)incalifornia s CentralValley.82p. Garza,J.C.,andD.E.Pearse.2008.PopulationgeneticstructureofOncorhynchus mykissinthecaliforniacentralvalley.finalreportforcaliforniadepartment offishandgamecontract#po485303withuniversityofcalifornia,santa CruzandNOAASouthwestFisheriesScienceCenter,110ShafferRd.Santa Cruz,CA95060.54p. Hess,J.E.,Paquin,M.,Moran,P.,andMyers,J.2008.Phylogeographyandgenetic characterizationofinlandandcoastalsteelheadlineagesinthecolumbia RiverBasin.Posterprestnedatthe2008CoastwideSalmonGenetics Symposium. Hess,J.E.,Myers,J.,andMoran,P.2010.Examinationofthephylogenetic relationshipsamongcollectionsofcolumbiariverbasinchinook, Oncorhynchustshawytscha,andevolutionaryprocessesthatreducedgenetic diversityofstream typecomparedtoocean typelineages.nwfscreport, datedaugust31,2010. 37

Kostow,K.2003.Evolutionarilysignificantunitboundariesandstatusassessmentin ahighlypolymorphicspecies,oncorhynchusmykiss,inthecolumbiabasin. 18August2003draftrep.NOAAFisheriesServiceandOregonDept.Fishand Wildlife.(AvailablefromODFW,P.O.Box59,Portland,OR97207.) Kostow,K.1995.BiennialreportonthestatusofwildfishinOregon.(Availablefrom ODFW,P.O.Box59,Portland,OR97207.) Lawson,P.W.,E.P.Bjorkstedt,M.W.Chilcote,C.W.Huntington,J.S.Mills,K.M.S. Moore,T.E.Nickelson,G.H.Reeves,H.A.Stout,T.C.Wainwright,andL.A. Weitkamp.2007.IdentificationofhistoricalpopulationsofCohosalmon (Oncorhynchuskisutch)intheOregoncoastevolutionarilysignificantunit. U.S.Dept.Commer.,NOAATech.Memo.NMFS NWFSC 79,129p. Lindley,S.T.,R.Schick,B.P.May,J.J.Anderson,S.Greene,C.Hanson,A.Low,D. McEwan,R.B.MacFarlane,C.Swanson,andJ.G.Williams.2004.Population structureofthreatenedandendangeredchinooksalmonesusin Califrornia scentralvalleybasin.noaatechnicalmemorandumnoaa TM NMFS SWFSC 360.56p. Lindley,S.T.,R.S.Schick,A.Agrawal,M.Goslin,T.E.Pearson,E.Mora,J.J.Anderson, B.May,S.Greene,C.Hanson,A.Low,D.McEwan,R.B.MacFarlane,C. Swanson,andJ.G.Williams.2006.HistoricalpopulationstructureofCentral Valleysteelheadanditsalterationbydams.SanFranciscoEstuaryand WatershedScience4(1):Article3 Lindley,S.T.,R.S.Schick,E.Mora,P.B.Adams,J.J.Anderson,S.Greene,C.Hanson,B. P.May,D.R.McEwan,R.B.MacFarlane,C.Swanson,andJ.G.Williams.2007. FrameworkforassessingviabilityofthreatenedandendangeredChinook salmonandsteelheadinthesacramento SanJoaquinBasin.SanFrancisco EstuaryandWatershedScience5(1):Article4. Marshall,A.1998.GeneticanalysisofmainstemColumbiaRiver,belowBonneville Dam,Chinookspawners.LettertoK.Harlan(WDFW)fromAnneMarshall (WDFW).2p. McClureM,R.Carmichael,T.Cooney,P.Hassemer,P.Howell,D.McCullough,C. Petrosky,H.Schaller,P.Spruell,andF.Utter.2003.IndependentPopulations ofchinook,steelheadandsockeyeforlistedevolutionarilysignificantunits withintheinteriorcolumbiariverdomain.interiorcolumbiabasin TechnicalRecoveryTeam.171p. Myers,J.,C.Busack,D.Rawding,A.Marshall,D.Teel,D.M.VanDoornik,andM.T. Maher.2006.HistoricalpopulationstructureofPacificsalmonidsinthe WillametteRiverandlowerColumbiaRiverbasins.U.S.Dept.Commer., 38

NOAATech.Memo.NMFS NWFSC 73.Onlineat http://www.nwfsc.noaa.gov/publications/index.cfm Narum,S.,M.S.Powell,R.Evenson,B.Sharp,andA.J.Talbot.2006.Macrosatellites revealpopulationsubstructureofklickitatrivernativesteelheadandgenetic divergencefromandintroducedstock.n.amer.j.fish.man.26:147 155. Narum,S.R.,M.Banks,T.D.Beacham,R.Bellinger,M.Campbell,J.DeKoning,A.Elz,C. Guthrie,C.Kozfkay,K.M.Miller,P.Moran,R.Phillips,L.Seeb,C.T.Smith,K. Warheit,S.Young,andJ.C.Garza(2008)Differentiatingpopulationsatbroadand finegeographicscaleswithmicrosatellitesandsnps.molecularecology17: 3464 3477. Phelps,S.,S.A.Leider,P.L.Hulett,B.M.Baker,andT.Johnson.1997.Genetic analysesofwashingtonsteelhead:preliminaryresultsincorporating36new collectionsfrom1995and1996.progressreport.wdfw.30pp. Phelps,S.,B.M.Baker,andC.A.Busack.2000.Geneticrelationshipsandstockof structureofyakimariverbasinandklickitatriverbasinsteelhead poulations.wdfw.19pp. Rawding,Dan,1995.Whereistheboundarybetweencoastalandinlandsteelhead? LettertoPeggyBusby(NWFSC)fromThomJohnson(WDFW)March31, 2995.7p. Ruckelshaus,M.H.,K.P.Currens,W.H.Graeber,R.R.Fuerstenberg,K.Rawson,N.J. Sands,andJ.B.Scott.2006.IndependentpopulationsofChinooksalmonin PugetSound.U.S.Dept.Commer.,NOAATech.Memo.NMFS NWFSC 78,125 p. Schick,R.S.,A.L.Edsall,andS.T.Lindley.2005.Historicalandcurrentdistribution ofpacificsalmonidsinthecentralvalley,ca.noaatechnicalmemorandum NOAA TM NMFS SWFSC 369.30p. Schreck,C.B.,H.W.Li,C.S.Sharpe,K.P.Currens,P.L.Hulett,S.L.Stone,andS.B. Yamada.1986.StockidentificationofColumbiaRiverChinooksalmonand steelheadtrout.projectno.83 45.U.S.Dept.Energy,BonnevillePower Administration,Portland,OR.(AvailablefromBPA,P.O.Box3621,Portland, OR97208.) Seeb,L.W.,A.Antonovich,M.A.Banks,T.D.Beacham,M.R.Bellinger,M.Campbell, N.A.Decovich,J.C.Garza,C.M.GuthrieIII,P.Moran,S.R.Narum,J.J. Stephenson,K.J.Supernault,D.J.Teel,W.D.Templin,J.K.Wenburg,S.F. Young,andC.T.Smith.(2007)DevelopmentofastandardizedDNAdatabase forchinooksalmon.fisheries.32:540 552. 39

Shaklee,J.B.,T.D.Beacham,L.Seeb,andB.A.White.1999.Managingfisheriesusing geneticdata:casestudiesoffourspeciesofpacificsalmon.fisheries Research.43:45 78. Spence,B.C.,E.P.Bjorkstedt,J.C.Garza,J.J.Smith,D.G.Hankin,D.Fuller,W.E. Jones,R.Macedo,T.H.Williams,andE.Mora.2008.Aframeworkfor assessingtheviabilityofthreatenedandendangeredsalmonandsteelheadin thenorth CentralCaliforniaCoastRecoveryDomain.U.S.Departmentof Commerce,NOAATechnicalMemorandumNMFS 423. Teel,D.J.,D.M.VanDoornik,D.R.Kuligowski,andW.S.Grant.2003.Geneticanalysis ofjuvenilecohosalmon(oncorhynchuskisutch)offoregonandwashington revealsfewcolumbiariverwildfish.fish.bull.101:640 652. VanDoornik,D.M.,D.J.Teel,D.R.Kuligowski,C.A.Morgan,andE.Casillas.2007. Geneticanalysesprovideinsightintotheearlyoceanstockdistributionand survivalofjuvenilecohosalmon(oncorhynchuskisutch)offthecoastsof WashingtonandOregon.NorthAmericanJournalofFisheriesManagement. 27:220 237. Waples,R.1991.Pacificsalmon,Oncorhynchusspp.,andthedefinitionof species undertheendangeredspeciesact.marinefisheriesreview53:11 22. Weitkamp,L.A.,T.C.Wainright,G.J.Bryant,G.B.Milner,D.J.Teel,R.G.Kope,andR.S. Waples.1995.StatusreviewofcohosalmonfromWashington,Oregon,and California.U.S.Dep.Commer.NOAATech.Memo.NMFS NWFSC 24,258p. Williams,T.H.,E.P.Bjorkstedt,W.G.Duffy,D.Hillemeier,G.Kautsky,T.E.Lisle,M. Mccain,M.Rode,R.G.Szerlong,R.S.Schick,M.N.Goslin,AndA.Agrawal. 2006.HistoricalpopulationstructureofcohosalmonintheSouthern Oregon/NorthernCaliforniacoastsevolutionarilysignificantunit.NOAA TechnicalMemorandumNOAA TM NMFS SWFSC 390.xxxp. Winans,G.A.,M.M.Paquin,D.M.VanDoornik,B.M.Baker,P.Thornton,D.Rawding,A. Marshall,P.Moran,andS.Kalinowski.2004.Geneticstockidentificationof steelheadinthecolumbiariverbasin:anevaluationofdifferentmolecular markers.northamericanjournaloffish.management.24:672 685. Winans,G.A.,M.L.McHenry,J.Baker,A.Elz,A.Goodbla,E.Iwamoto,D.Kuligowski, K.M.Miller,M.P.Small,P.Spruell,andD.VanDoornik.2008.Genetic InventoryofAnadromousPacificSalmonidsoftheElwhaRiverPriortoDam Removal.NorthwestScience.82:128 14 40

ESUstatussummaries 41

UpperColumbiaRiverspring runchinooksalmon 8 TheUpperColumbiaSpring RunChinookSalmonESUincludesnaturally spawningspring runchinooksalmoninthemajortributariesenteringthecolumbia RiverupstreamofRockIslandDamandtheassociatedhatcheryprograms (70FR37160).TheESUwaslistedasEndangeredundertheESAin1998(affirmed in2005). SummaryofpreviousBRTconclusions ThepreviousBRTstatusreviewoftheUpperColumbiaRiverSpring Run ChinookSalmonESUwasreportedinGoodetal.(2005).Aslightmajority(53%)of thecumulativevotescastbythebrtmembersplacedthisesuinthe dangerof extinction category,withthenextcategory, likelytobecomeendangered, receivingasubstantialnumberofvotesaswell(45%).the2005brtreviewnoted thatuppercolumbiaspringchinookpopulationshad reboundedsomewhatfrom thecriticallylowlevels observedinthe1998review.althoughthebrtconsidered thisanencouragingsign,theynotedthattheincreasewaslargelydrivenbyreturns inthetwomostrecentspawningyearsavailableatthetimeofthereview.thebrt ratingswerealsoinfluencedbythefactthattwooutofthethreeextantpopulations inthisesuweresubjecttoextremehatcheryinterventionmeasuresinresponseto theextremedownturninreturnsduringthe1990s.goodetal.(2005)statedthat thesemeasureswere...astrongindicationoftheongoingriskstothisesu,although theassociatedhatcheryprogramsmayultimatelyplayaroleinhelpingtorestore naturallyself sustainingpopulations. BriefReviewofRecoveryPlanning TheInteriorColumbiaBasinTechnicalRecoveryTeamhasidentifiedthree extantpopulationswithinthisesu(ictrt,2003).populationswereidentified basedongeneticanalysisandthedistributionofspawningreachesvs.adispersal curvederivedfromcwtrecoveriesfromreturningsupplementationreleases.the threeextantpopulationsrepresentnaturalproductionoriginatingfromspawning areasintheuppersectionsofthewenatcheeriver,entiatriverandmethowriver. Thelowermainstemsectionsofeachoftheseriversalsosupportproductionof SummerRunChinookfromaseparateChinookSalmonESU.OneotherUpper Columbiadrainagethatremainsaccessibletoanadromousfish,theOkanoganRiver, mayhavehistoricallysupportedanadditionalspringchinookpopulation.the ICTRTclassifiedtheextantpopulationsasasingleMajorPopulationGroup(the NorthCascadesMPG).TwolargemainstemColumbiaRiverdams(ChiefJosephDam andgrandcouleedam)blockanadromousaccesstohistoricaltributaryhabitats upstreamoftheextantpopulations.theictrtconcludedthatitislikelythat additionalpopulationsofuppercolumbiaspringchinooksalmonoccupied tributaryhabitatsupstreamoftheseblockages.basedontheamountand distributionofhabitatthatwouldhavebeenhistoricallysuitedtostreamtype Chinookproduction,uptosixadditionalpopulationsmayhaveexistedhistorically upstreamofthecurrentblockages.theictrtrecognizedthatthereissome 8 Sectionauthor:TomCooney 42

uncertaintyaswhethersomeoftheseareaswereoccupiedbyspringchinookvs. summerchinook. TRTandRecoveryPlanCriteria NOAAFisheries(NationalMarineFisheriesServiceadoptedarecoveryplan foruppercolumbiaspringchinookandsteelheadin2007(fr72#194.57303 57307).ThePlanwasdevelopedbytheUpperColumbiaSalmonRecoveryBoard (UCSRB)andisavailablethroughtheirwebsite(http://www.ucsrb.com/).The UpperColumbiaSalmonRecoveryPlan soverallgoalis...toachieverecoveryand delistingofspringchinooksalmonandsteelheadbyensuringthelong term persistenceofviablepopulationsofnaturallyproducedfishdistributedacrosstheir nativerange. Twoincrementallevelsofrecoveryobjectivesarespecificallyincorporated intotheuppercolumbiasalmonrecoveryplan.increasingnaturalproduction sufficientlytoupgradeeachuppercolumbiariveresufrom endangered to threatened statusisstatedasaninitialobjectiveintheplan.theplanincludes threespecificquantitativereclassificationcriteriaexpressedrelativetopopulation viabilitycurves(ictrt,2007).abundanceandproductivityofnaturallyproduced SpringChinookwithineachoftheextantUpperColumbiapopulations,measuredas 8 yeargeometricmeans(representingapproximatelytwogenerations),mustfall abovetheviabilitycurverepresentingtheminimumcombinationsprojectingtoa 10%riskofextinctionover100years.Theplanalsoincorporatesexplicitcriteria forspatialstructureanddiversityadoptedfromtheictrtviabilityreport.the meanscoreforthethreemetricsrepresentingnaturalratesandspatiallymediated processesshouldresultinamoderateorlowerriskineachofthethreepopulations andallthreatsdefinedashighriskmustbeaddressed.inaddition,themeanscore fortheeightictrtmetricstrackingnaturallevelsofvariationshouldresultina moderateorlowerriskscoreatthepopulationlevel. Achievingrecovery(delisting)ofeachESUviasufficientimprovementinthe abundance,productivity,spatialstructureanddiversityisthelonger termgoalof theucsrbplan.theplanincludestwospecificquantitativecriteriaforassessing thestatusofthespringchinookesuagainsttherecoveryobjective; The12 year geometricmean(representingapproximatelythreegenerations)ofabundanceand productivityofnaturallyproducedspringchinookwithinthewenatchee,entiatand Methowpopulationsmustreachalevelthatwouldhavenotlessthana5% extinction risk(viability)overa100yearperiod and ataminimum,theupper ColumbiaSpringChinookESUwillmaintainatleast4,500naturallyproduced spawnersandaspawner:spawnerratiogreaterthan1:1distributedamongthe threepopulations.theminimumnumberofnaturallyproducedspawners (expressedas12yeargeometricmeans)shouldexceed2,000eachforthe WenatcheeandMethowRiverpopulationsand500withintheEntiatRiver. MinimumproductivitythresholdswerealsoestablishedinthePlan.The12year geometricmeanproductivityshouldexceed1.2spawnersperparentspawnerfor thetwolargerpopulations(wenatcheeandmethowrivers),and1.4forthesmaller EntiatRiverpopulation.TheICTRThadrecommendedthatatleasttwoofthethree extantpopulationsbetargetedforhighlyviablestatus(lessthan1%riskof extinctionover100years)becauseoftherelativelylownumberofextant 43

populationsremainingintheesu.theucplanadoptedanalternativeapproachfor addressingthethelimitednumberofpopulationsintheesu 5%orlessriskof extinctionforallthreeextantpopulations. TheUpperColumbiaSalmonRecoveryPlanalsocallsfor..restoringthe distributionofnaturallyproducedspringchinooksalmonandsteelheadto previouslyoccupiedareaswherepractical;andconservingtheirgeneticand phenotypicdiversity. SpecificcriteriaincludedintheUCSRBPlanreflecta combinationofthespecificcriteriarecommendedbytheictrt(ictrt,2007)and intheearlierqareffort(fordetal.2001).theplanincorporatesspatialstructure criteriaspecifictoeachspringchinookpopulationinsection4.4.1.forthe WenatcheeRiverpopulation,thecriteriacallforobservednaturalspawninginfour ofthefivemajorspawningareasaswellasinatleastoneoftheminorspawning areasdownstreamoftumwaterdam.inthemethowriver,naturalspawning shouldbeobservedinthreemajorspawningareas.ineachcase,themajor spawningareasshouldincludeaminimumof5%ofthetotalreturntothesystemor 20redds,whicheverisgreater.TheEntiatRiverSpringChinookpopulationincludes asinglehistoricalmajorspawningarea. ThePlancallsformeetingorexceedingthesamebasicspatialstructureand diversitycriteriaadoptedfromtheictrtviabilityreportforrecoveryasfor reclassification(seeabove). NewDataandUpdatedAnalyses AnnualabundanceestimatesforeachoftheextantpopulationsinthisESU aregeneratedbasedonexpansionsfromreddsurveysandcarcasssampling.index areareddcountshavebeenconductedintheseriversystemssincethelate1950 s. Multiplepasssurveysinindexareascomplementedbysupplementalsurveys coveringthemajorityofspawningreacheshavebeenconductedsincethemid 1980 s.formorerecentyears,estimatesofannualreturnstothewenatcheeriver populationalsoreflectcountsandsamplingdataobtainedatatrapatthetumwater Damonthemainstemriverdownstreamofspringchinookspawningareas.The previousbrtreviewofthisesu(reportedingoodetal.,2005)consideredreturns throughthe2001spawningyear.theictrtcompiledstatusreviewsforupper ColumbiaSpringChinookbasedondatacoveringuptothe2003returnyear(ICTRT, 2009).Estimatesarenowavailableupthroughthe2008spawningyear.In addition,rockyreachandwellsdamcountsofadultspringchinookpassageare availablethroughthecurrentreturnyear(2010).thesecountsareaggregates includingnaturalproduction,returnsfromdirectedsupplementationprogramsand returnsofnon ESUhatcheryChinook. Standardabundanceandtrends Recentyeargeometricmeanspawningabundanceestimatesforeachofthe threeextantuppercolumbiaspringchinookpopulationsaresummarizedintable 6.Totalspawningabundance,includingbothnaturaloriginandhatcheryfish,has increasedrelativetothelevelsreportedinthepreviousbrtreview.thegeometric meanabundancesofbothnaturaloriginandhatcheryspawnersarehigherforeach populationrelativetothepreviousreviewandtothelevelsjustpriortolisting.the relativeincreaseinhatcheryoriginspawnersinthewenatcheeandmethowriver 44

populationshasbeendisproportionatelyhighreflectingthelargeincreasein releasesfromthedirectedsupplementationprogramsinthosetwodrainages. ThereisnodirecthatcherysupplementationprogramintheEntiatRiverbasin. HatcheryoriginspawnersintheEntiatRiversystemarepredominatelystraysfrom theentiatnationalfishhatcheryreleases.theentiatnfhspringchinookrelease programwasdiscontinuedin2007.giventhe3 6yearlifespanofUpperColumbia springchinookstocks,thenumberofhatcheryfishonthespawninggroundsinthe EntiatRivershoulddeclinesubstantiallyoverthenextfewyears. Table6.Estimatedspawningabundance(totalspawners,naturaloriginspawners,percentnatural origin)foruppercolumbiaspringchinookpopulations. Population Wenatchee River Total Spawners ( 5 year geometric mean, range) Listing Prior Current (1991-1996) (1997-2001) (2003-2008) 167 Entiat River 89 Methow River 325 470 (119-4,446) 111 (53-444) 680 (79-9,904) 1,554 (936-2,119) 253 (207-317) 1,327 (984-1,801) Natural Spawning Areas Natural Origin ( 5 year geometric mean) Prior (1997-2001) Listing (1991-1996) Current (2003-2008) Listing (1991-1996) % Natural Origin (5 year average) Prior (1997-2001) Current (2003-2008) NA 274 489 69% 58% 31% NA 65 111 82% 58% 46% NA 282 402 78% 41% 29% AnnualspawningescapementsforallthreeoftheextantUpperColumbia SpringChinookpopulationsshowedsteepdeclinesduringthelate1980sandearly 1990s,leadingtoextremelylowabundancelevelsinthemid 1990s(Figure12). Thesteepdownwardtrendreflectstheextremelylowreturnratesfor naturalproductionfromthe1990 94broodyears(Figure13).Priortotheearly 1980s,broodyearreturn per spawnerestimatesweregenerallyabovereplacement atlowtomoderateparentescapementlevels.broodyearreplacementrateswere consistentlybelow1.0evenatlowparentspawnerlevelsthroughoutthe1990s. Steeplydecliningtrendsacrossindicesoftotalspawnerabundancewereamajor considerationinthe1997brtriskassessmentpriortoformallistingoftheesu. TheshorttermtrendassessmentdevelopedforthepreviousBRTanalysis(Goodet al.2005)wasslightlypositiveorneutralacrossthepopulations.thetrendintotal spawnerssince1995hasbeenpositiveforallthreepopulations,witharelatively lowprobabilitythatthetruevaluesarebelow1.0(table7). Table7.Shorttermtrend(expressedasslopeoflogsofannualnaturaloriginspawnerabundance1995 2009.Expressedas5yeargeometricmeans(95%CI,probabilitythetrendexceeds1.0).) Population Short-term trend 1998 BRT (1987-97) Previous (1990-2001) 1998 BRT (1987-97) Estimate 0.88 0.99 1.16 Wenatchee River (CI) Prob>1.0 0.82-1.18) 0.43 (1.04-1.30) 0.994 Entiat River Estimate 0.801 1.01 1.16 45

Methow River (CI) Prob>1.0 Estimate (CI) Prob>1.0 (0.87-1.16) 0.53 0.85 1.2 (0.62-1.28) 0.25 Theshorttermindicesofpopulationgrowthrateindicatethatnaturaloriginreturns havetrendedupwardssince1995atahigheraverageratethanduringtheperiod leadinguptothe2005brtreview(table8).estimatedpopulationgrowthrates assumingthathatcheryoriginspawnersandnaturaloriginspawnersare contributingtonaturalproductionatthesameratearebelowreplacementforall threepopulations.possiblecontributingfactorswouldincludedensitydependent effects,differencesinspawningdistributionrelativetohabitatqualityandreduced fitnessofhatcheryoriginspawners. Table8.ShorttermpopulationgrowthrateestimatesforUpperColumbiaSpringChinookpopulations. Population Wenatchee River Entiat River Methow River Short-term Lambda (1.05-1.28) 0.996 1.2 (1.03-1.40) 0.988 Hatchery effectiveness= 0 Hatchery effectiveness= 1.0 2005 BRT Current 2005 BRT Current (1990-2001) (1995-2008) (1990-2001) (1995-2008) 0.91 1.11 0.83 0.92 (0.05-16.5) (0.18-7.06) (0.05-12.84) (0.12-7.14) 0.37 0.70 0.28 0.36 0.94 (0.13-7.00) 0.39 0.92 (0.03-24.6) 0.40 1.12 (0.18-7.14) 0.71 1.15 (0.08-16.12) 0.69 0.89 (0.14-5.58) 0.29 0.84 (0.04-18.8) 0.30 CurrentabundanceestimatesforallthreeUpperColumbiaSpringChinook populationsarewellbelowthelevelsobservedinthe1960s(figure12).expressed asanaverageannualdecline,totalspawningabundancehasdeclinedtheequivalent of2% 4%peryear(Table9).Indicesofpopulationgrowthratehaveshowna similaraveragedecline,withrelativelylowprobabilitiesthattheactualgrowth ratesexceeded1.0. Table9.LongtermtrendmetricsforUpperColumbiaSpringChinookpopulations. 0.995 (0.14-6.87) 0.49 0.85 (0.04-20.4) 0.32 Trendintotal Spawners Lambda(HF=0) Lambda(HF=1) Population Years Estimate(CI) Estimate(CI) Prob>1 Estimate(CI) Prob>1 Wenatchee Entiat Methow 1960 2008 0.94(0.92 0.95) 0.96(0.83 1.10) 0.26 0.91(0.80 1.04) 0.08 1960 2008 0.96(0.94 0.97) 0.98(0.87 1.10) 0.33 0.94(0.85 1.05) 0.12 1960 2008 0.94(0.92 0.96) 0.96(0.82 1.13) 0.31 0.90(0.76 1.06) 0.08 46

Figure12 UpdatedspawningabundanceforUpperColumbiaSpringChinookpopulations.Thedarkline indicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(includingnaturally spawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthe greenshadedareaindicates+/ 1standarddeviationaroundthemean. 47

Figure13 TrendofbroodyearspawnertospawnerreturnrateestimatesfortheUpperColumbiaRiverspring ChinooksalmonESUpopulations.Filledmarkers:parentspawnerestimatebelow75%ofminimumabundance threshold.openmarkers:parentescapementgreaterthan75%ofminimumabundancethreshold. Otherdata TheICTRTcurrentproductivitymetricincorporatesarelativeadjustmentforannualSAR estimatestoreducetheimpactofshorttermclimatevariability(ictrt,2007,ictrt, 2010).TheSARindexusedforallthreeUpperColumbiaRiverSpringChinookpopulation dataseriesusesnaturaloriginsmolttoadultestimatesderivedfromsmoltandadult monitoringofproductionfromthechiwawariveralongwithalongerdataseriesofsmolt toadultreturnsurvivalestimatesforleavenworthhatcheryreleases.theindices representcumulativeoutofbasinsurvivals(downstreampassage,oceanlifestages, upstreampassageincludingharvestescapementrates).thesarseriesusedbytheictrt toevaluatepopulationstatusendedwiththe2001broodyear(2003outmigrationyear). FouradditionalyearsofSARestimatesarenowavailableforbothseries(Figure14).SAR estimatesforthe2002 2004broodoutmigrantswerelowerthantherelativelyhighSARs associatedwiththe1995through1998broodyears,butwellabovetheextremelylow survivalsobservedforthe1990and1991broods. 48

Figure14 Smolttoadultreturnrateestimates.ChiwawaRivernaturalproductionSAR:broodyearadult returnstothewenatcheeriverdividedbyestimatedsmoltsproduced.leavenworthhatcheryspringchinook SAR:broodyearadultreturnsdividedbysmoltrelease. SmoltProduction NaturalproductionofspringChinookfromtheChiwawaRivertributarytotheWenatchee Riverhasbeenmonitoredsince1991(Hillmanetal,2010).Smolttrapsatthemouthofthe ChiwawaRiverandinthedownstreamWenatcheeRivermainstemallowforgenerating annualestimatesoftotalsmoltproductionresultingfromspawninginthechiwawariver. MostofthesmoltsleavingtheWenatcheeRiverfromproductionintheChiwawaRiver emigrateasyearlingsinthespringoftheirsecondyearoflife.aportionofchiwawariver productionmovesdownstreaminthesummerandfallandoverwintersinthemainstem WenatcheeRiverbeforeemigratinginthespring(Figure15).Smoltproductionfromthe ChiwawaRiverhasincreasedsincetheearly1990s,withpeakproductionoccurringin 2001and2002. Figure15 EstimatednumberofnaturaloriginsmoltsproducedfromspawningintheChiwawaRiver(tributary withinthewenatcheeriverspringchinookpopulation.fromhillmanetal.2010(table5 15). 49

TRTmetrics Table10.ViabilityassessmentsforUpperColumbiaspringChinooksalmonpopulationsintheNorthCascades MPG.SpatialstructureanddiversityriskratingsfromICTRT(2008). Population Wenatchee River 1987-2009 1981-2003 Entiat River 1999-2009 1981-2003 Methow River 1999-2009 Abundance/Productivity Metrics ICTRT Minimum Threshold 2000 500 2000 Natural Spawning Abundance 449 (119-1,050) 222 (18-1,050) 105 (27-291) 59 (10-291) 307 (79-1,979) ICTRT Productivity 0.61 (0.40-0.95) 0.93 (0.57-1.53) 1.08 (0.75-1.55) 0.72 (0.59-0.93) 0.45 (0.26-0.8) Integrated A/P Risk High (High) High (High) Spatial Structure and Diversity Metrics Natural Processes Risk Diversity Risk Integrated SS/D Risk Overall Viability Rating Low High High HIGH RISK Moderate High High HIGH RISK 1981-2003 180 0.80 (High) (20-1,979) (0.52-1.24) Okanogan River n/a n/a n/a n/a n/a n/a n/a High Low High High HIGH RISK Overallabundanceandproductivity(A/P)remainsratedatHigh Risk fortheeachofthe threeextantpopulationsinthismpg/esu(table10).the10 yeargeometricmean abundanceofadultnaturaloriginspawnershasincreasedforeachpopulationrelativeto thelevelsforthe1981 2003seriesbuttheestimatesremainbelowthecorresponding ICTRTthresholds.Estimatedproductivity(spawnertospawnerreturnrateatlowto moderateescapements)wasonaveragelowerovertheyears1987 2009thanforthe previousperiod(table10).thecombinationsofcurrentabundanceandproductivityfor eachpopulationresultinahighriskratingwhencomparedtotheictrtviabilitycurves. Thecompositespatialstructure/diversity(SS/D)risksforallthreeoftheextant populationsinthismpgareratedathigh(table27).thespatialprocessescomponentof thess/driskislowforthewenatcheeriverandmethowriverpopulationsandmoderate fortheentiatriver(lossofproductioninlowersectionincreaseseffectivedistanceto otherpopulations).allthreeoftheextantpopulationsinthismpgareratedathighriskfor diversity,drivenprimarilybychronicallyhighproportionsofhatchery originspawnersin naturalspawningareasandlackofgeneticdiversityamongthenatural originspawners (ICTRT,2008). Basedonthecombinedratingsforabundance/productivityandspatialstructure/diversity, allthreeoftheextantpopulationsofuppercolumbiaspringchinookremainratedathigh overallrisk(figure16). 50

Figure16 NorthCascadesspringChinooksalmonMPGpopulationriskratingsintegratedacrossthefourviable salmonidpopulation(vsp)metrics.viabilitykey:hv HighlyViable;V Viable;M Maintained;HR HighRisk (doesnotmeetviabilitycriteria). Harvest SpringChinooksalmonfromtheupperColumbiabasinmigrateoffshoreinmarinewater andwhereknownimpactsinoceansalmonfisheriesaretoolowtobequantified.theonly significantharvestoccursinthemainstemcolumbiariverintribalandnon tribalfisheries directedathatcheryspringchinookfromthecolumbiaandwillametterivers.priorto 1980,estimatedharvestratesontheaggregaterunofspringChinooksalmontotheupper ColumbiaandSnakeRiverbasinaveragedapproximately55%(WDFW,2002).Fisheries managementmeasureswereimplementedbeginninginthe1970storeduceharvestrates inresponsetoasharpdeclineinannualreturns.exploitationrateshaveremained relativelylow,generallybelow10%,thoughtheyhavebeenincreasinginrecentyears (Figure17).Theincreasesinrecentyearshaveresultedfromincreasedharvestsallowed inresponsetorecordreturnsofhatcheryspringchinooktothecolumbiariverbasin. Figure17 TotalexploitationrateforupperColumbiaRiverspringChinooksalmon.DatafromtheColumbia RiverTechnicalAdvisoryCommittee(TAC2010). 51

Hatcheryreleases TrendsinhatcheryreleaseswithinthespawningandrearingareasoftheESUhavebeen fairlyflatsincethemid 1990s,withtheexceptionofcohosalmonreleaseswhichhave increased(figure18).trendssince2005havegenerallybeenflat. 52

Figure18 TrendsinhatcheryreleaseswithinthespawningandrearingareaoftheUpperColumbiaspring ChinookESU.Thedottedlineandsharedareaindidatesthelong termmeanandstandarddeviationrespectively. Datasource:RMIS. 53

UpperColumbiaSpringChinook:UpdatedRiskSummary TheUpperColumbiaSpringChinookESUisnotcurrentlymeetingtheviability criteria(adaptedfromtheictrt)intheuppercolumbiarecoveryplan.increasesin naturaloriginabundancerelativetotheextremelylowspawninglevelsobservedinthe mid 1990sareencouraging;however,averageproductivitylevelsremainextremelylow. Largescaledirectedsupplementationprogramsareunderwayintwoofthethreeextant populationsintheesu.theseprogramsareintendedtomitigateshort termdemographic riskswhileactionstoimprovenaturalproductivityandcapacityareimplemented.while theseprogramsmayprovideshort termdemographicbenefits,therearesignificant uncertaintiesregardingthelong termrisksofrelyingonhighlevelsofhatcheryinfluence tomaintainnaturalpopulations.theuppercolumbiarecoveryplanincludesanumberof strategiesforimprovingsurvivalintributaryhabitatsandthemainstemmigrationcorridor alongwithcomplementaryharvestmanagementandhatcherymanagementregimes.the timeframesforimplementingactionsandforthoseactionstoresultinimprovedsurvivals varyacrossstrategies.improvedpassagesurvivalsrelativetoconditionsprevalentatthe timeoflistingareexpectedtoberelativelyimmediate.giventheanticipatedaction implementationscheduleandassumptionsregardingtimelagsforrealizingtargethabitat improvementsincorporatedintotheucrecoveryplan,improvementsinsurvivaldueto changesinhabitatconditionsareexpectedaccrueovera10 50yearperiod.Overall,the viabilityoftheuppercolumbiaspringchinooksalmonesuhaslikelyimprovedsomewhat sincethetimeofthelastbrtstatusreview,buttheesuisstillclearlyatmoderate to high riskofextinction. References ICTRT, 2003. Independent populations of chinook, steelhead and sockeye for listed evolutionarily significant units within the interior Columbia River domain. Interior Columbia Basin Technical Recovery Team Technical Review Draft. July 2003. 171 p. ICTRT, 2007. Viability criteria for application to interior Columbia Basin salmonid ESUs. Interior Columbia Basin Technical Recovery Team. Technical Review Draft. March 2007. 91 p + appendices and attachments. ICTRT(2008)Currentstatusreviews:InteriorColumbiaBasinsalmonESUsandsteelhead DPSs.Vol.2.UpperColumbiaRiverspringChinooksalmonESUandupper ColumbiaRiversteelheadDPS.167p. Hillman,T.,M.Miller,J.Miller,M.Tonseth,T.MillerandA.Murdoch.2010.Monitoringand evaluationofthechelancountypudhatcheryprograms.rept.tohcphatchery committee.237p.+attachments UpperColumbiaSalmonRecoveryBoard(2007).UpperColumbiaspringchinooksalmon andsteelheadrecoveryplan.307p.http://www.nwr.noaa.gov/salmon Recovery Planning/Recovery Domains/Interior Columbia/Upper Columbia/upload/UC_Plan.pdf 54

WashingtonDepartmentofFishandWildlife.2000.Statusreport:ColumbiaRiverfishruns andfisheries1938 2000.WashingtonDept.ofFishandWildlifeandOregonDept.of FishandWildlifejointfisheriesstaffreport.324p. 55

56 UpperColumbiaRiversteelhead 9 TheUpperColumbiaSteelheadDPS..includesallnaturallyspawnedanadromousO. mykiss(steelhead)populationsbelownaturalandmanmadeimpassablebarriersin streamsinthecolumbiariverbasinupstreamfromtheyakimariver,washington,tothe US Canadaborder,aswellassixartificialpropagationprograms:theWenatcheeRiver, WellsHatchery(intheMethowandOkanoganRivers),WinthropNFH,OmakCreekandthe Ringoldsteelheadhatcheryprograms.TheUpperColumbiaSteelheadDPSwasoriginally listedundertheesain1997,itiscurrentlydesignatedasthreatenedbynoaafisheries. NOAAFisherieshasdefinedDPSsofsteelheadtoincludeonlytheanadromous membersofthisspecies(70fr67130).ourapproachtoassessingthecurrentstatusofa steelheaddpsisbasedevaluatinginformationtheabundance,productivity,spatial structureanddiversityoftheanadromouscomponentofthisspecies.(goodetal.2005;70 FR67130).Manysteelhead(O.mykiss)populationsalongtheWestCoastoftheU.S.cooccurwithconspecificpopulationsofresidentrainbowtrout.Werecognizethattheremay besituationswherereproductivecontributionsfromresidentrainbowtroutmaymitigate short termextinctionriskforsomesteelheaddpss(goodetal.2005;70fr67130).we assumethatanybenefitstoananadromouspopulationresultingfromthepresenceofa conspecificresidentformwillbereflectedindirectmeasuresofthecurrentstatusofthe anadromousform. SummaryofpreviousBRTconclusions The2005BRTcitedlowgrowthrate/productivityasthemostseriousriskfactorfor theuppercolumbiariversteelheaddps.inparticular,thebrtconcludedthatthe extremelylowreplacementrateofnaturalspawnershighlightedinthe1998review continuedthroughthesubsequentbroodcycle.the2005brtassessmentalsoidentified verylownaturalspawnerabundancevs.interimescapementobjectivesandhighlevelsof hatcheryspawnersinnaturalareasascontributingriskfactors.the2005brtreportdid notethatthenumberofnaturallyproducedsteelheadreturningtospawnwithinthisdps hadincreasedoverthelevelsreportedinthe1998statusreview.aswiththemid ColumbiaandSnakeRiverDPSreviews,the2005BRTrecognizedthatresidentO.mykiss wereassociatedwithanadromoussteelheadproductionareasforthisdps.thereview statedthatthepresenceofresidento.mykisswasconsideredamitigatingfactorbymanyof thebrtmembersinratingextinctionrisk. BriefReviewRecoveryPlanning TheInteriorColumbiaTechnicalRecoveryTeam(ICTRT)identifiedfourextant populationsofanadromouso.mykisswithinthisdps,witheachofthepopulationsusinga majortributarytotheuppercolumbiariverforspawningandjuvenilerearing(the Wenatchee,Entiat,MethowandOkanoganRivers).TheICTRTalsoconcludedthatCrab Creekcouldhavehistoricallysupportedanadditionalpopulation,althoughitisnotclear thatthepopulationwouldhavebeenindependentofproductionintheotherfourupstream drainages.grandecouleeandchiefjosephdamsareupstreamofallfourextant populationswithinthedps.theictrtidentifiedseveraldrainagesenteringthecolumbia Riverabovetheseanadromousblocksthatcouldhavehistoricallysupportedadditional populations. 9 Sectionauthor:TomCooney

TRTandRecoveryPlanCriteria NOAAFisheries(NationalMarineFisheriesServiceadoptedarecoveryplanfor UpperColumbiaSpringChinookandsteelheadin2007(FR72#194.57303 57307).The PlanwasdevelopedbytheUpperColumbiaSalmonRecoveryBoard(UCSRB)andis availableat:http://www.nwr.noaa.gov/salmon Recovery Planning/Recovery Domains/Interior Columbia/Upper Columbia/Upper Col Plan.cfm. TheUpperColumbiaSalmonRecoveryPlan(UCRecoveryPlan)hasasanoverall goal...toachieverecoveryanddelistingofspringchinooksalmonandsteelheadby ensuringthelong termpersistenceofviablepopulationsofnaturallyproducedfish distributedacrosstheirnativerange.theucrecoveryplanincludesquantitativemetrics forassessingesustatusbasedonthestatusofcomponentpopulations.thequantitative recoverycriteriaandobjectivesintheplanarebasedonthebiologicalviabilitycriteria recommendedbytheictrt. TheUpperColumbiaSalmonRecoveryPlanincludesthreespecificquantitative reclassificationcriteriaexpressedrelativetopopulationviabilitycurves(ictrt,2007). Abundanceandproductivityofnaturallyproducedsteelheadwithineachoftheextant UpperColumbiapopulations,measuredas8yeargeometricmeans(representing approximatelytwogenerations),mustfallabovetheviabilitycurverepresentingthe minimumcombinationsprojectingtoa10%riskofextinctionover100yearstobe classifiedasviable.inaddition,theplanincorporatesexplicitcriteriaforspatialstructure anddiversityadoptedfromtheictrtviabilityreport.themeanscoreforthethree metricsrepresentingnaturalratesandspatiallymediatedprocessesshouldresultina moderateorlowerriskineachofthethreepopulationsandallthreatsdefinedashighrisk mustbeaddressed.inaddition,themeanscorefortheeightictrtmetricstracking naturallevelsofvariationshouldresultinamoderateorlowerriskscoreatthepopulation level. Achievingrecovery(delisting)ofeachESUviasufficientimprovementinthe abundance,productivity,spatialstructureanddiversityisthelonger termgoalofthe UCSRBPlan.ThePlanincludestwospecificquantitativecriteriaforassessingthestatusof thesteelheaddpsagainsttherecoveryobjective; The12 yeargeometricmean (representingapproximatelythreegenerations)ofabundanceandproductivityofnaturally producedsteelheadwithinthewenatchee,entiatandmethowpopulationsmustreacha levelthatwouldhavenotlessthana5%extinction risk(viability)overa100yearperiod and ataminimum,theuppercolumbiasteelheaddpswillmaintainatleast3,000 naturallyproducedspawnersandaspawner:spawnerratiogreaterthan1:1distributed amongthethreepopulations.theminimumnumberofnaturallyproducedspawners (expressedas12yeargeometricmeans)shouldexceed1,000eachforthewenatcheeand MethowRiverpopulationsand500eachfortheEntiatRiverandOkanoganRiver populations.minimumproductivitythresholdswerealsoestablishedintheplan.these naturalspawnerabundancecriteriareplacetheinterimtargetsreferencedinthe2005brt report.the12yeargeometricmeanproductivityshouldexceed1.1spawnersperparent spawnerforthetwolargerpopulations(wenatcheeriverandmethow),and1.2forthe smallerentiatriverandokanoganpopulations.theictrthadrecommendedthatatleast twoofthefourextantpopulationsbetargetedforhighlyviablestatus(lessthan1%riskof extinctionover100years)becauseoftherelativelylownumberofextantpopulations 57

remainingintheesu.theucplanadoptedanalternativeapproachforaddressingthe limitednumberofpopulationsintheesu 5%orlessriskofextinctionforatleastthreeof thefourextantpopulations. TheUpperColumbiaSalmonRecoveryPlanalsocallsfor restoringthe distributionofnaturallyproducedspringchinooksalmonandsteelheadtopreviously occupiedareaswherepractical;andconservingtheirgeneticandphenotypicdiversity. SpecificcriteriaincludedintheUCSRBPlanreflectacombinationofthespecificcriteria recommendedbytheictrt(ictrt,2007)andanearlierpre TRTanalyticalproject(Ford etal.2001).theplanincorporatesspatialstructurecriteriaspecifictoeachsteelhead populationinsection4.4.2.forthewenatcheeriverpopulation,thecriteriarequire observednaturalspawninginfourofthefivemajorspawningareasaswellasinatleast oneoftheminorspawningareasdownstreamoftumwaterdam.inthemethowriver, naturalspawningshouldbeobservedinthreemajorspawningareas.ineachcase,the majorspawningareasshouldincludeaminimumof5%ofthetotalreturntothesystemor 20redds,whicheverisgreater.TheEntiatRiverSpringChinookpopulationincludesa singlehistoricalmajorspawningarea. ThePlancallsformeetingorexceedingthesamebasicspatialstructureand diversitycriteriaadoptedfromtheictrtviabilityreportforrecoveryasfor reclassification(seeabove). NewDataandUpdatedAnalyses The2005BRTreportincludedstatusassessmentsoftheUpperColumbiaSteelhead DPSbasedondatathroughthe2003broodyear(2002runyear).Estimatesofspawning escapementsinuppercolumbiasteelheadpopulationtributariesarenowavailable throughthe2008/2009cycleyears,alongwithpreliminaryestimatesoftheaggregate counts(brokenoutbyhatcheryandwild)overpriestrapidsdamforthe2009/2010cycle year. Standardabundanceandtrends Themostrecentestimates(fiveyeargeometricmean)oftotalandnaturalorigin spawnerabundancearehigherforallfourpopulationsandthepriestrapidsdam aggregaterunrelativetothe2005brtreviewtimeperiod(table11,figure19).annual returnsduringthemostrecentfive yearserieswereallabovethepopulationspecific rangesinreturnsforthefiveyearperiodreportedinthe2005brtreview.inspiteofthe recentincreases,naturaloriginreturnsremainwellbelowtargetlevels. Hatcheryoriginreturnscontinuetoconstituteahighfractionoftotalspawnersin naturalspawningareasforthisdps.estimatesofnaturaloriginspawnerabundanceare higherforthemostrecentcycle.thepatternintheproportionofnatural originspawner amongpopulationsforthemostcurrentfive yearcyclewassimilartothatreportedinthe 2005BRTreview.NaturaloriginproportionswerethehighestintheWenatcheeRiver. EstimatedproportionsofnaturaloriginintheMethowandOkanoganRiverremainedat extremelylowlevels. 58

Table11.Recentabundanceandproportionnaturalorigincomparedtoestimatesatthetimeoflistingandinthe previousbrtreview.abundanceestimates(fiveyeargeometricmeanwithrangeinparentheses)corresponding tothetimeoflistingandthe2005brt Population North Cascades MPG Wenatchee River Total Spawners ( 5 year geometric mean, range) Listing Prior Current (1991- (1997-2001) (2005-2009) 1995) 1,880 Entiat River 121 Methow River 1,184 Okanogan River 723 696 (343-1,655) 265 (132-427) 1,935 (1417-3,325) 1,124 (770-1,956) 1,891 (931-3608) 530 (300-892) 3,504 (2,982-4,394) 1,832 (1,483-2,260) Natural Spawning Areas Natural Origin ( 5 year geometric mean) Listing Prior Current (1991- (1997- (2005-1995) 2001) 2009) 458 59 251 84 326 (241-696) 46 (31-97) 162 (68-332) 53 (22-109) 819 (701-962) 116 (99-137) 505 (361-703) 152 (104-197) Listing (1991-1995) % Natural Origin (5 year average) Prior (1997-2001) Current (2005-2009) 24% 48% 47% 48% 19% 23% 21% 9% 15% 12% 5% 9% Aggregate Count at Priest Rapids Dam 8,420 14,592 16,989 1,147 3,007 3,604 14% 19% 19% Table12.Trendinnaturaloriginspawners.UpperColumbiaSpringChinook.Comparisonofcurrenttrendsto priorreviews. Wenatchee River Entiat River Methow River Okanogan River Population Estimate (CI) Prob>1.0 Estimate (CI) Prob>1.0 Estimate (CI) Prob>1.0 Estimate (CI) Prob>1.0 1998 BRT (1987-97) 0.86 (0.81 0.92) 0.0002 0.86 (0.80 0.91) 0.0001 0.91 (0.80 1.03) 0.05 0.90 (0.79 1.02) 0.04 Short-term trend Previous (1990-2001) 1.05 (1.02 1.07) 0.99 1.04 (1.02 1.07) 0.99 1.08 (1.05 1.12) 1.00 1.03 (1.01 1.05) 0.99 Current (1995-2008) 1.11 (1.04 1.17) 0.99 1.11 (1.05 1.17) 0.99 1.17 (1.11 1.24) 1.00 1.16 (1.10 1.22) 1.00 TheshorttermtrendmetricsforeachoftheUpperColumbiasteelheadpopulationsare alsoabovethelevelsassociatedwiththepriorreview.naturaloriginspawnersincreased atanaveragerateof11% 17%peryearovertheperiod1995 2009(Table12).The estimatedpopulationgrowthrate,assumingahatcheryeffectivenessof0,increasedata similarannualrateacrossallfourpopulationsovertheperiod1995 2009(Table13). 59

Table13.ShortTerm(since1995)populationgrowthrate(lambda)estimates.Currentestimatesvs.2005BRT shorttermtimeseries. Population Wenatchee River Entiat River Methow River Okanogan River Estimate (CI) Prob>1.0 Estimate (CI) Prob>1.0 Estimate (CI) Prob>1.0 Estimate (CI) Prob>1.0 Short-term Lambda Hatchery effectiveness= 0 Hatchery effectiveness= 1.0 2005 BRT Current 2005 BRT Current (1990-2001) (1995-2008) (1990-2001) (1995-2008) 0.94 1.10 0.72 0.88 (0.36 2.44) (0.25 4.92) (0.21 2.50) (0.16 4.87) 0.27 0.71 0.09 0.25 0.95 (0.33 2.78) 0.33 0.93 (0.14 6.16) 0.35 0.93 (0.13 6.95) 0.36 1.11 (0.26 4.66) 0.73 1.17 (0.31 4.38) 0.81 1.15 (0.33 4.06) 0.80 0.74 (0.62 0.89) 0.01 0.61 (0.18 2.11) 0.06 0.54 (0.14 2.08) 0.05 0.77 (0.18 3.24) 0.13 0.70 (0.23 2.12) 0.07 0.61 (0.22 1.70) 0.05 60

Figure19 AnnualspawningabundanceforUpperColumbiaSteelheadpopulations.Thedarklineindicates naturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(includingnaturallyspawning hatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthegreen shadedareaindicates+/ 1standarddeviationaroundthemean. 61

Figure20 ReturnperspawnerestimatesforUpperColumbiaRiversteelheadpopulations.Upper)hatchery effectiveness=1.0.lower)hatcheryeffectiveness=0.30.filledmarkers:parentspawnerestimatebelow75%of minimumabundancethreshold.openmarkers:parentescapementgreaterthan75%ofminimumabundance threshold. AnnualspawningescapementestimatesforUpperColumbiaSteelheadpopulationsare availablegoingbacktothelate1970 s(figure19).thelong termtrendsinnaturalorigin spawnersarepositive,rangingfromanannualizedaverageof3%peryearforthe OkanoganRiverrto8%peryearfortheMethowRiverpopulation(Table14).Thelong termpopulationgrowthrate(lambda)estimatesaresubstantiallyaffectedbyassumptions regardingthefitnessofhatcheryfish.ifitisassumedthathatcheryoriginfishare contributingtobroodyearnaturalproductionatthesamerateasnaturaloriginparent spawners,thetheoreticallongtermgrowthrateisstronglynegativeacrossallpopulations. Longtermpopulationgrowthrateestimatescalculatedundertheassumptionthathatchery fisharenotcontributingtoobservednaturalproductionrepresentanindexoftrendsin broodyearnaturalproduction.populationlevelestimatesunderthisassumptionare positiveforallpopulationsandaresimilartotrendsintotalspawners. 62

Table14.LongtermtrendsinnaturaloriginspawningabundanceforUpperColumbiaSteelheadpopulations. Trendin naturalorigin Spawners Lambda (HF=0) Lambda(HF=1) Population Years Estimate(CI) Estimate(CI) Prob>1 Estimate(CI) Prob>1 Wenatchee 1978 2009 1.05(1.02 1.07) 1.07(0.87 1.32) 0.78 0.80(0.67 0.98) 0.02 Entiat 1978 2009 1.04(1.02 1.07) 1.05(0.86 1.27) 0.71 0.79(0.67 0.93) 0.007 Methow 1977 2009 1.08(1.05 1.12) 1.08(0.89 1.32) 0.82 0.67(0.59 0.77) 0.0003 Okanogan 1977 2009 1.03(1.01 1.05) 1.03(0.86 1.23) 0.66 0.56(0.49 0.65) 0.0001 63

CurrentStatus:RecoveryPlanandICTRTViabilityCriteria AllfourpopulationsofUpperColumbiasteelheadremainratedathighriskafter incorporatingsixadditionalyearsofstatusinformationintotheassessmentagainstictrt viabilitycriteria(table15,table16).themostrecentestimatesofnaturalorigin abundance(10yeargeometricmean)andnaturaloriginproductivityatlowtomoderate parentabundanceremainwellbelowminimumsdefinedbytheictrtviabilitycurvesfor thedps.spawningescapementsintonaturalareas,especiallyforthemethowand Okanoganpopulations,continuetoshowahighproportionofhatcheryorigin. Productivities,assumingthatthehatcheryoriginandnaturaloriginspawnersare contributingtonaturalproductionatthesameeffectiveness,arebelowreplacementeven atlowtomoderatespawninglevelsforallfourpopulations.recentgeometricmean naturaloriginabundanceandproductivityestimatesarethehighestforthewenatchee River,thepopulationwiththelowestrelativeproportionofhatcheryspawners. Table15.ViabilityassessmentsforUpperColumbiaRiversteelheadpopulations.Updatedtoreflectreturnyears through2009. Population Wenatchee River 2000-2009 1994-2003 Entiat River 2000-2009 1994-2003 Methow River 2000-2009 1994-2003 Okanogan River 2000-2009 1994-2003 ICTRT Minimum Threshold 1000 500 1000 750 Abundance/Productivity Metrics Natural Spawning Abundance 795 (365-1947) 559 (241-1947) 112 (52-263) 79 (31-263) 468 (256-703) 289 (68-554) 147 (84-212) 95 (22-181) ICTRT Productivity 0.87 (0.44-1.74) 0.84 (0.68-1.39) 0.55 (0.35-0.88) 0.48 (0.3-0.66) 0.32 (0.14-0.72) 0.28 (0.12-0.81) 0.15 (0.06-0.35) 0.12 (0.07-0.21) Integrated A/P Risk High (High) High (High) High (High) High (High) Spatial Structure and Diversity Metrics Natural Processes Risk Diversity Risk Integrated SS/D Risk Overall Viability Rating Low High High HIGH RISK Moderate High High HIGH RISK Low High High HIGH RISK High High High HIGH RISK WiththeexceptionoftheOkanoganpopulation,theUpperColumbiapopulationsratedas lowriskforspatialstructure.thehighriskratingsforss/darelargelydrivenbychronic highlevelsofhatcheryspawnerswithinnaturalspawningareasandlackofgenetic diversityamongthepopulations.thebasicmajorlifehistorypatterns(summera run type,tributaryandmainstemspawning/rearingpatterns,andthepresenceofresident populationsandsubpopulations)appeartobepresent.allofthepopulationswereratedat 64

highriskforcurrentgeneticcharacteristics.geneticssamplestakeninthe1980sindicate littledifferentiationwithinpopulationsintheuppercolumbiariverdps. Table16 NorthCascadesMPGsteelheadpopulationriskratingsintegratedacrossthefourviablesalmonid population(vsp)metrics.viabilitykey:hv HighlyViable;V Viable;M Maintained;HR HighRisk(doesnot meetviabilitycriteria). SpatialStructure/DiversityRisk VeryLow Low Moderate High VeryLow (<1%) HV HV V M Abundance/ Productivity Risk Low (1 5%) Moderate (6 25%) High (>25%) V V M M M HR V HR HR HR M HR Wenatchee Entiat Methow Okanogan Harvest Summer runsteelheadfromtheinteriorcolumbiariverbasinaredividedinto2 runsbymanagers:thea run,andtheb run.theserunsarebelievedhavedifferencesin timing,butmanagersseparatethemonthebasisofsizealoneinestimatingtheabundance ofeachrun.thea runisbelievedtooccurthroughoutthemiddlecolumbia,upper Columbia,andSnakeRiverBasins,whiletheB runisbelievedtooccurnaturallyonlyinthe SnakeRiverESU,intheClearwaterRiver,MiddleForkSalmonRiver,andSouthFork SalmonRiver. Steelheadwerehistoricallytakenintribalandnon tribalgillnetfisheries,andin recreationalfisheriesinthemainstemcolumbiariverandintributaries.inthe1970s, retentionofsteelheadinnon tribalcommercialfisherieswasprohibited,andinthemid 1980s,tributaryrecreationalfisheriesinWashingtonadoptedmark selectiveregulations. Steelheadarestillharvestedintribalfisheries,inmainstemrecreationalfisheries,and thereisincidentalmortalityassociatedwithmark selectiverecreationrecreational fisheries.themajorityofimpactsonthesummerrunoccurintribalgillnetanddipnet fisheriestargetingchinooksalmon.becauseoftheirlargersize,theb rumfisharemore vulnerabletothegillnetgear.consequently,thiscomponentofthesummerrun experienceshigherfishingmortalitythanthea runcomponent(figure21).inrecent years,totalexploitationratesonthea runhavebeenstableataround5%,while exploitationratesontheb runhavegenerallybeenintherangeof15%to20%. 65

Figure21 TotalharvestimpactsonnaturalsummersteelheadaboveBonnevilleDam.Datafor1985 1998from NMFSbiologicalopinion(PeterDygert,NMFS,personalcommunication),andfor1999 2008fromTACrun reconstruction(cindylefleur,wdfwpersonalcommunication). Hatcheryreleases HatcheryreleasesofUpperColumbiaRiversteelheadhavegenerallyfluctuatedbetween 800,000and900,000yearlingsmoltssincethemid 1990 s.(figure22).releasesinthe WenatcheeRiverbasinhavedecreasedwhilereleasesintotheMethowandOkanogan drainageshaveincreasedoverthesameperiod. Figure22 TrendinhatcheryreleasesofUpperColumbiaRiversteelhead.Source:RMIS. 66

UpperColumbiaSteelheadDPS:UpdatedRiskSummary UpperColumbiasteelheadpopulationshaveincreasedinnaturaloriginabundancein recentyears,butproductivitylevelsremainlow.theproportionsofhatcheryorigin returnsinnaturalspawningareasremainextremelyhighacrossthedps,especiallyinthe MethowandOkanoganRiverpopulations.Themodestimprovementsinnaturalreturnsin recentyearsareprobablyprimarilytheresultofseveralyearsofrelativelygoodnatural survivalintheoceanandtributaryhabitats.tributaryhabitatactionscalledforinthe UpperColumbiaRecoveryPlanareanticipatedtobeimplementedoverthenext25years andthebenefitsofsomeofthoseactionswillrequiresometimetoberealized.overall,the newinformationconsidereddoesnotindicateachangeinthebiologicalriskcategorysince thetimeofthelastbrtstatusreview. References ICTRT, 2003. Independent populations of chinook, steelhead and sockeye for listed evolutionarily significant units within the interior Columbia River domain. Interior Columbia Basin Technical Recovery Team Technical Review Draft. July 2003. 171 p. ICTRT, 2007. Viability criteria for application to interior Columbia Basin salmonid ESUs. Interior Columbia Basin Technical Recovery Team. Technical Review Draft. March 2007. 91 p + appendices and attachments. ICTRT(2008)Currentstatusreviews:InteriorColumbiaBasinsalmonESUsandsteelhead DPSs.Vol.2.UpperColumbiaRiverspringChinooksalmonESUandupper ColumbiaRiversteelheadDPS.167p. Hillman,T.,M.Miller,J.Miller,M.Tonseth,T.MillerandA.Murdoch.2010.Monitoringand evaluationofthechelancountypudhatcheryprograms.rept.tohcphatchery committee.237p.+attachments UpperColumbiaSalmonRecoveryBoard(2007).UpperColumbiaspringchinooksalmon andsteelheadrecoveryplan.307p.http://www.nwr.noaa.gov/salmon Recovery Planning/Recovery Domains/Interior Columbia/Upper Columbia/upload/UC_Plan.pdf 67

68 SnakeRiverspring/summer runchinooksalmon 10 TheSnakeRiverSpring SummerChinooksalmonESUincludesallnaturally spawnedpopulationsofspring/summer runchinooksalmoninthemainstemsnakeriver andthetucannonriver,granderonderiver,imnahariver,andsalmonriversubbasins, aswellasfifteenartificialpropagationprograms.theesuwasfirstlistedundertheesain 1992,andthelistingwasreaffirmedin2005. SummaryofpreviousBRTconclusions The2005BRTreportevaluatedthestatusofSnakeRiverSpring/SummerChinook usingdataonreturnsthrough2001,withthemajorityofbrtriskratingpointsbeing assignedtothemostlikelytobeendangeredcategory.thebrtnotedthatalthoughthere wereanumberofextantspawningaggregationswithinthisesu,asubstantialnumberof historicalspawningpopulationshavebeenlost.themostseriousriskfactorforthedps waslownaturalproductivity(spawnertospawnerreturnrates)andtheassociateddecline inabundancetoextremelylowlevelsrelativetohistoricalreturns.largeincreasesin escapementestimatesformany(butnotall)areasforthe2001returnyearwere consideredencouragingbythebrt.howeverthebrtalsoacknowledgedthatreturn levelsarehighlyvariableandthatabundanceshouldbemeasuredoveratleastan8year periodandthatbythismeasurerecentabundancelevelsacrosstheesufallshortof interimobjectives.thebrtwasconcernedaboutthehighlevelofproduction/mitigation andsupplementationhatcheryprogramsacrosstheesu,notingthattheseprograms representongoingriskstonaturalpopulationsandcanmakeitdifficulttoassesstrendsin naturalproductivityandgrowthrates.thephasingoutofthenon nativerapidriveroriginhatcheryprograminthegranderondebasinwasviewedasapositiveaction. BriefReviewRecoveryPlanning TheICTRTidentified27extantand4extirpatedpopulationsofSnakeRiver Spring/SummerChinookthathistoricallyusedtheaccessibletributaryandupper mainstemhabitatswithinthesnakeriverdrainages(ictrt,2003).thepopulationsare aggregatedintofiveextantmajorpopulationgroupings(mpgs)basedongenetic, environmentalandlifehistorycharacteristics.thelowersnakerivermpgincludesthe TucannonRiverandAsotinCreek(extirpated)populations.TheGrandeRonde/Imnaha RiverMPGincludessixpopulationswithintheGrandeRondeRiverdrainageandtwointhe ImnahaRiver.ThreepopulationswithintheSouthForkSalmonRiverdrainageanda fourthinthelittlesalmonriverformanadditionalmpg.chamberlaincreekalongwith sixpopulationsinthemiddleforkdrainageconstitutethenextupstreammpg.theupper SalmonRiverMPGincludesseveralmajortributarypopulationsalongwithtwomainstem sectionsalsoclassifiedasindependentpopulations. NOAAFisherieshasinitiatedrecoveryplanningfortheSnakeRiverdrainage, organizedaroundasubsetofmanagementunitplanscorrespondingtostateboundaries.a tributaryrecoveryplanforoneofthemajormanagementunits,thelowersnakeriver tributarieswithinwashingtonstateboundaries,wasdevelopedundertheauspicesofthe LowerSnakeRiverRecoveryBoardandwasacceptedbyNOAAFisheriesin2005.The LSRBPlanprovidesrecoverycriteria,targetsandtributaryhabitatactionplansforthetwo populationsofspring/summerchinookinthelowersnakempginadditiontothetouchet 10 Sectionauthor:TomCooney

River(Mid ColumbiaSteelheadDPS)andtheWashingtonsectionsoftheGrandeRonde River.PlanningeffortsareunderwayfortheOregonandIdahodrainages.Viabilitycriteria recommendedbytheictrtarebeingusedinformulatingrecoveryobjectiveswithineach ofthemanagementunitplanningefforts. TRTandRecoveryPlanCriteria TherecoveryplansbeingsynthesizedanddevelopedbyNOAAFisherieswill incorporateviabilitycriteriarecommendedbytheictrt(ictrt,2007).theictrt recoverycriteriaarehierarchicalinnature,withesu/dpslevelcriteriabeingbasedonthe statusofnaturaloriginchinooksalmonassessedatthepopulationlevel.adetailed descriptionoftheictrtviabilitycriteriaandtheirderivation(ictrt,2007)canbefound atwww.nwfsc.noaa.gov/trt/col/trt_viability.cfm.undertheictrtapproach,population levelassessmentsarebasedonasetofmetricsdesignedtoevaluateriskacrossthefour viablesalmonidpopulation(vsp)elements abundance,productivity,spatialstructureand diversity(mcelanyetal.2000).theictrtapproachcallsforcomparingestimatesof currentnaturaloriginabundance(measuredasa10yeargeometricmeanofnaturalorigin spawners)andproductivity(estimateofreturnperspawneratlowtomoderateparent spawningabundance)againstpredefinedviabilitycurves.inaddition,theictrt developedasetofspecificcriteria(metricsandexampleriskthresholds)forassessingthe spatialstructureanddiversityrisksbasedoncurrentinformationrepresentingeach specificpopulation.theictrtviabilitycriteriaaregenerallyexpressedrelativeto particularriskthreshold lowriskisdefinedaslessthana5%riskofextinctionovera100 yearperiodandverylowriskaslessthana1%probabilityoverthesametimeperiod. SnakeRiverSpring/SummerChinook:ICTRTExampleRecoveryScenarios TheICTRTrecommendsthateachextantMPGshouldincludeviablepopulations totalingatleasthalfofthepopulationshistoricallypresent,withallmajorlifehistory groupsrepresented.inaddition,theviablepopulationswithinanmpgshouldinclude proportionalrepresentationoflargeandverylargepopulationshistoricallypresent. WithinanyparticularMPG,theremaybeseveralspecificcombinationsofpopulationsthat couldsatisfytheictrtcriteria.theictrtidentifiedexamplescenariosthatwouldsatisfy thecriteriaforallextantmpgs(ictrt,2007;attachment2).ineachcasetheremaining populationsinanmpgshouldbeatorabovemaintainedstatus. LowerSnakeRiverMPG:ThisMPGcontainedtwopopulationshistorically,Asotin Creekiscurrentlyconsideredextirpated.TheICTRTbasiccriteriawouldcallforboth populationsbeingrestoredtoviablestatus.theictrtrecommendedthatrecovery plannersshouldgiveprioritytorestoringthetucannonrivertohighlyviablestatus, evaluatingthepotentialforreintroducingproductioninasotincreekasrecoveryplanning progresses. GrandeRondeMPG:Eighthistoricalpopulations(twocurrentlyconsidered functionallyextirpated).thebasicictrtcriteriacallforaminimumof4populationsat viableorhighlyviablestatus.thepotentialscenarioidentifiedbytheictrtwouldinclude viablepopulationsintheimnahariver(runtiming),thelostine/wallowariver(largesize) andatleastonefromeachofthefollowingpairs:catherinecreekoruppergranderonde (largesizepopulations);andminamriverorwenahariver. SouthForkMPG:TwoofthefourhistoricalpopulationsinthisMPGshouldbe restoredtoviableorhighlyviablestatus.theictrtrecommendsthatthepopulationsin thesouthforkdrainagesshouldbegivenpriorityrelativetomeetingmpgviability 69

objectivesgiventherelativelysmallsizeandthehighlevelofpotentialhatcheryintegration forthelittlesalmonriverpopulation. MiddleForkMPG:TheICTRTcriteriacallforatleastfiveoftheninepopulationsin thismpgtoberatedasviable,withatleastonedemonstratinghighlyviablestatus.the ICTRTexamplerecoveryscenarioincludedChamberlainCreek(geographicposition),Big Creek(largesizecategory),BearValleyCreek,MarshCreek,andeitherLoonCreekor CamasCreek. UpperSalmonMPG:ThisMPGincludedninehistoricalpopulationsoneofwhich, PantherCreek,isconsideredfunctionallyextirpated.TheICTRTexamplerecovery scenarioforthismpgincludesthepahsimeroiriver(summerchinooklifehistory);the LemhiRiverandUpperSalmonMainstem(verylargesizecategory);EastForkSalmon River(largesizecategory)andValleyCreek. NewDataandUpdatedAnalyses ThepreviousBRTreview(Goodetal.,2005)analyzedabundancedataseries compiledforasetofindexareasdistributedacrosstheesu.thosedataseriesgenerally coveredtheperiodbeginningintheearly1960 sandendingwiththe2001returnyear. TheICTRTcoordinatedthedevelopmentofrepresentativetimeseriesformostpopulations inthisesuusingexpansionsfromindexareareddcountsandweirestimates(ictrt, 2010).ThecurrentICTRTdataseriesextendthetimeperiodofrecordthroughatleastthe 2008returnyearforpopulationsacrossalloftheMPGsintheSpring/SummerChinook ESU(Figure23 Figure29). Standardabundanceandtrends Estimatesofnaturaloriginabundanceforthemostrecentfive yearbroodcycleare availablefor24populationsinthesnakeriverspring/summerchinookesu(table17). RelativetothepreviousBRTassessment,escapementsarehigherbymorethan25%for13 populations,lowerbymorethan25%for6populationsandwithin25%for5populations. TheMiddleForkandtheUpperSalmonMPGshavethemostpopulationswithrelatively largeincreasesalthougheachalsohasapopulationthatdecreasedbymorethan50%.the majorityofpopulationsinthesouthforkandthelowergranderondempgwerewithin +/ 25%ofthegeometricmeanabundanceestimates(1997 2001)reportedinthe2005 BRTreport. Short termpopulationtrendsintotalspawnerabundanceweregenerallypositive overtheperiod1995to2008,withsomedifferencesinmagnitudeforpopulationswithin differentmpgs(figure23 Figure29).TrendsformostpopulationsintheMiddleForkand UpperSalmonMPGSarestronglypositive.TwopopulationsintheMiddleForkMPG (MarshCreekandLoonCreek)alongwithone(LemhiRiver)intheUpperSalmonMPGhad relativelyflattrendsintotalabundancesince1995.short termtrendsintotalabundance forthesouthforkmpgwerealsopositivebutatlowerlevelsthaninthemiddleforkand UpperSalmonMPGs,withtheexceptionoftherelativelystrongtrendintheEastFork SouthForkpopulation(Figure25).IntheGrandeRondeMPG,threeofthepopulations exhibitedmoderatelypositivetrends,theremainingthreehadrelativelyflatorslightly negativetrajectoriesintotalspawningabundancesince1995.thesingleextantpopulation inthelowersnakempg,thetucannonriver,hadastronglypositivetrend.relativetothe short termtrendscorrespondingtothetimeperiodsanalyzedbythe2005brt,updated trendsarehigherforamajorityofthepopulations.forthreepopulations(catherine 70

Creek,ImnahaRiverandLemhiRiver),themostrecentshort termtrendswereslightly positivebutaresubstantiallybelowthepriorestimates. Thegenerallypositiveshorttermtrendindicesarelargelydrivenbyacommon temporalpatterninthespawningabundanceestimatesacrosspopulationsinthisesu.the startingpointforthecurrentshorttermtrendindexis1995,whichcorrespondstoan extremelowinreturnswithinalmostalloftheindividualpopulationseries.thoselow returnsweretheresultofextremelylowsurvivalsforproductionfromthe1990 1991 broodyears(figure30).theseriesalsoincluderelativelyhighabundanceestimatesin 2001 2003,reflectingtheaboveaveragesurvivalsforproductionfromspawninginthelate 1990s(Figure30).Spawningescapementsinthemostrecentyearsineachseriesare generallywellbelowthepeakreturnsbutabovetheextremelowlevelsinthemid 1990s. Relativelylongtimeseriesofannualspawningabundanceareavailableformost extantsnakeriverspring/summerchinookpopulations(appendixa).recentreturn levelsareconsistentlylowerthanreturnsintheearlyyearsacrossallseries.when expressedasanaverageannualrateforeachpopulation,thedeclineinspawning escapementsaveragesfrom3%to13%peryear. 71

Figure23 SpawningabundancefortheGrandeRonde/ImanaMajorPopulationGroupintheSnakeRiverspring/summer ChinookESU.Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(including naturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthegreen shadedareaindicates+/ 1standarddeviationaroundthemean. 72

Figure24 SpawningabundancefortheLowerSnakeMajorPopulationGroupintheSnakeRiverspring/summerChinookESU. Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(includingnaturally spawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthegreenshadedarea indicates+/ 1standarddeviationaroundthemean. Figure25 SpawningabundancefortheSouthForkSalmonMajorPopulationGroupintheSnakeRiverspring/summerChinook ESU.Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(includingnaturally spawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthegreenshadedarea indicates+/ 1standarddeviationaroundthemean. 73

Figure26 SpawningabundancefortheMiddleForkSalmonRiverPopulationGroupintheSnakeRiverspring/summerChinook ESU.Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(includingnaturally spawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthegreenshadedarea indicates+/ 1standarddeviationaroundthemean. 74

Figure27 SpawningabundancefortheMiddleForkSalmonRiver(cont.)MajorPopulationGroupintheSnakeRiver spring/summerchinookesu.thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnatural spawners(includingnaturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotal spawers,andthegreenshadedareaindicates+/ 1standarddeviationaroundthemean. 75

Figure28 SpawningabundancefortheUpperSalmonRiverMajorPopulationGroupintheSnakeRiverspring/summerChinook ESU.Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(includingnaturally spawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthegreenshadedarea indicates+/ 1standarddeviationaroundthemean. 76

Figure29 SpawningabundancefortheUpperSalmonRiver(cont.)MajorPopulationGroupintheSnakeRiverspring/summer ChinookESU.Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(including naturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthegreen shadedareaindicates+/ 1standarddeviationaroundthemean. 77

Figure30 SnakeRiverSpring SummerChinook.PopulationrecruitperspawnerestimatesorganizedbyMPG.Recruits expressedasreturnstotributaryspawningareas.filledmarkers:parentspawnerestimatebelow75%ofminimumabundance threshold.openmarkers:parentescapementgreaterthan75%ofminimumabundancethreshold. 78

79

Table17.Recent(fiveyeargeometricmean)estimatesoftotalandnaturaloriginspawningescapementforSnake Riverspring/summerchinookpopulations,organizedbyMPG.Estimatesforallperiodsbasedonmostcurrent populationleveldatasets.theseestimateswerenotavailableatthetimeoflistingorforthe2005brtreviews. Population (organized by major population group) Total Spawners ( 5 year geometric mean, range) Listing Prior Current (1992-1996) (1997-2001) (2005-2009) Natural Spawning Areas Natural Origin ( 5 year geometric mean) Prior (1997-2001) Listing (1992-1996) Current (2005-2009) Listing (1992-1996) % Natural Origin (5 year average) Prior (1997-2001) Current (2005-2009) Lower Snake River Tucannon 120 176 (51 894) 469 (161 1676) 66 68 (5-672) 276 (116-682) 56% 40% 53% Grande Ronde/Imnaha Wenaha Lostine/Wallowa 260 118 Minam 180 Catherine Creek 69 Upper Grande Ronde 76 Imnaha 482 303 (84-899) 265 (132-689) 277 (149-608) 103 (43-512) 34 (4-83) 855 (387-2282) 364 (293-478) 93 812 (443-1778) 73 460 (313-765) 88 205 (143-275) 38 109 (17-419) 33 1094 (727-1996) 225 274 (69-756) 218 (120-541) 262 (142-547) 95 (43-382) 33 (4-83) 347 (158-1119) 325 (270-430) 49% 92% 95% 267 (131-668) 70% 88% 41% 414 (301-697) 63% 97% 95% 80 (42-122) 63% 95% 34% 19 (13-43) 55% 100% 33% 196 (127-281) 50% 46% 25% South Fork Secesh EF/Johnson Cr SF Mainstem 171 87 689 341 (101-1395) 186 (55-1257) 1399 (926-2529) 428 (191-956) 166 266 (141-589) 84 1046 (901-1231) 392 308 (86-1228) 146 (45-1018) 712 (453-1644) 362 (162-811) 97% 96% 93% 113 (63-244) 97% 93% 46% 443 (374-585) 58% 58% 47% Middle Fork Bear Valley Marsh Creek Sulphur Creek Loon Creek Camas Creek 86 27 Big Creek 29 Chamberlain Cr 150 9 7 7 285 (78-739) 67 (1-507) 20 (0-102) 67 (15-635) 34 (9-294) 121 (49 690) 184 (23-1329) 295 (158-440) 86 115 (67-182) 27 45 (15-126) 9 37 (19 100) 7 89 (41-291) 7 109 (44 248) 29 471 (360 558) 150 274 (73-733) 69 (0-497) 20 (0-102) 65 (14 611) 33 (9-282) 117 (46 662) 179 (23-1308) 274 (152-408) 100% 100% 100% 105 (61-165) 100% 100% 100% 43 (14-118) 100% 100% 100% 34 (18 94) 100% 100% 100% 83 (39-263) 100% 100% 100% 101 (42 233) 100% 100% 100% 437 (321-517) 100% 100% 100% Upper Salmon Lower Salmon Mainstem 32 Lemhi River 25 Pahsimeroi River 49 Upper Salmon Mainstem 82 East Fork Salmon 43 Valley Creek 12 Yankee Fork 6 97 (44-231) 141 (69 607) 126 (72-306) 214 (83-1108) 137 (79-402) 43 (14 177) 15 (2-95) 118 (94-221) 53 (38 74) 266 (139-633) 380 (187-638) 214 (77-385) 81 (54 163) 24 (4-341) 32 25 11 67 26 12 6 82 (37-195) 139 (69 582) 96 (72 233) 203 (98-567) 114 (60-354) 42 (13-171) 14 (2-90) 100 (79-186) 100% 100% 100% 53 (38 73) 100% 100% 100% 156 (80-316) 39% 58% 68% 263 (152-408) 83% 78% 79% 188 (68-339 61% 95% 100% 79 (53 158) 100% 100% 100% 23 (4-324) 100% 100% 100% 80

Figure31 Shorttermtrendinnaturaloriginspawningabundanceexp(slopeofln(naturaloriginspawners)vs.year)forSnakeRiverSpring/Summer Chinooksalmonpopulations.Soliddiamond/bar:pointestimateand95%cffor1995 2009.Opendiamond/bar:equivalentstatisticsforpriorreview. 81

Figure32 Shorttermpopulationgrowthrate(lambda)estimatesforSnakeRiverSpring/Summerchinookpopulations.Relativehatcheryeffectivenessset to0.0.soliddiamond/bar:pointestimateand95%cffor1995 2009.Opendiamond/bar:equivalentstatisticsforpriorreview. 82

Figure33 Shorttermpopulationgrowthrate(lambda)estimatesforSnakeRiverSpring/Summerchinookpopulations.Relativehatcheryeffectivenessset to0.0.soliddiamond/bar:pointestimateand95%cffor1995 2009.Opendiamond/bar:equivalentstatisticsforpriorreview. 83

CurrentStatus:ICTRTViabilityCriteria TheoverallviabilityratingsforallofthepopulationsintheSnakeRiver Spring/SummerChinookESUremainatHighRiskaftertheadditionofmorerecentyear abundanceandproductivitydata.undertheapproachrecommendedbytheictrt,the overallratingforanesudependsuponpopulationlevelratingsorganizedbympgwithin thatesu.thefollowingbriefsummariesdescribethecurrentstatusofpopulationswithin eachoftheextantmpgsintheesu,contrastingthecurrentratingswithassessments previouslydonebytheictrtusingdatathroughthe2003returnyear. LowerSnakeRiverMPG(Table18):Abundanceandproductivityremainthemajor concernforthetucannonriverpopulation.naturalspawningabundance(10year geometricmean)hasincreasedbutremainswellbelowtheminimumabundancethreshold forthesingleextantpopulationinthismpg.poornaturalproductivitycontinuestobea majorconcern. GrandeRondeMPG(Table19):TheWenahaRiver,Lostine/WallowaRiverand MinamRiverpopulationsshowedsubstantialincreasesinnaturalabundancerelativetothe previousictrtreview,althougheachremainsbelowtheirrespectiveminimumabundance thresholds.geometricmeanproductivityestimatesremainrelativelylowforall populationsinthempg.theuppergranderondepopulationisratedathighriskfor spatialstructureanddiversitywhiletheremainingpopulationsareratedatmoderate. SouthForkMPG(Table20):Naturalspawningabundance(10yeargeometricmean) estimatesincreasedforthethreepopulationswithavailabledataseries.productivity estimatesforthesepopulationsaregenerallyhigherthanestimatesforpopulationsin othermpgswithintheesu.viabilityratingsbasedonthecombinedestimatesof abundanceandproductivityremainathighrisk,althoughthesurvival/capacitygaps relativetomoderateandlowriskviabilitycurvesaresmallerthanforotheresu populations.spatialstructure/diversityrisksarecurrentlyratedmoderateforthesouth Forkmainstempopulation(relativelyhighproportionofhatcheryspawners)andlowfor theseceshriverandeastforksouthforkpopulations. MiddleForkSalmonMPG(Table21):Naturaloriginabundanceandproductivity remainsextremelylowforpopulationswithinthismpg.asinthepreviousictrt assessment,abundanceandproductivityestimatesforbearvalleycreekandchamberlain Creek(limiteddataseries)aretheclosesttomeetingviabilityminimumsamong populationsinthempg.spatialstructure/diversityriskratingsformiddlefork populationsaregenerallymoderate,largelydrivenbymoderateratingsforgenetic structureassignedbytheictrtbecauseofuncertaintyarisingfromthelackofdirect samplesfromwithinthecomponentpopulations. UpperSalmonRiverMPG(Table22):Abundanceandproductivityestimatesfor mostpopulationswithinthismpgremainatverylowlevelsrelativetoviabilityobjectives. TheUpperSalmonmainstemhasthehighestrelativeabundanceandproductivity combinationofpopulationswithinthempg.spatialstructure/diversityrisk(ss/d)ratings varyconsiderablyacrossthempg.fouroftheeightpopulationsareratedatlowor moderateriskforoverallspatialstructureanddiversityandcouldachieveviablestatus withimprovementsinaverageabundance/productivity.thehighss/driskratingforthe Lemhipopulationisdrivenbyasubstantiallossofaccesstotributaryspawning/rearing habitatsandtheassociatedreductioninlifehistorydiversity.highss/dratingsfor PahsimeroiRiver,EastForkUpperSalmonandYankeeForkaredrivenbyacombinationof 84

habitatlossanddiversityconcernsrelatedtolownaturalabundancecombinedwith chronicallyhighproportionsofhatcheryspawnersinnaturalareas. Table18.LowerSnakeRiverMPG.Summaryofcurrentpopulationstatusvs.ICTRTviabilitycriteria Lower Snake River MPG Population Tucannon 2000-2009 ICTRT Minimum Threshold 750 Abundance/Productivity Metrics Natural Spawning Abundance 269 (58-682) ICTRT Productivity 0.74 (0.52-1.06) Integrated A/P Risk High Natural Processes Risk Spatial Structure and Diversity Metrics Diversity Risk Integrated SS/D Risk Overall Viability Rating Low Moderate Moderate HIGH RISK 1995-2004 182 (11-897) 0.69 (0.48-0.98) High 85

Table19.GrandeRonde/ImnahaMPG.Summaryofcurrentpopulationstatusvs.ICTRTviabilitycriteria Grande Ronde/Imnaha MPG Population Wenaha 2000-2009 ICTRT Minimum Threshold 750 Abundance/Productivity Metrics Natural Spawning Abundance 441 (270-756) ICTRT Productivity 0.72 (0.5-1.06) Integrated A/P Risk High Spatial Structure and Diversity Metrics Natural Processes Risk Diversity Risk Integrated SS/D Risk Overall Viability Rating Low Moderate Moderate HIGH RISK 1995-2004 Lostine/Wallowa 2000-2009 1000 306 (51-756) 320 (120-668) 0.68 (0.5-0.94) 0.77 (0.52-1.14) High High Low Moderate Moderate HIGH RISK 1995-2004 Minam 2000-2009 750 198 (33-541) 467 (301-697) 0.85 (0.58-1.26) 0.86 (0.62-1.2) High High Low Moderate Moderate HIGH RISK 1995-2004 Catherine Creek 2000-2009 750 287 (62-651) 107 (42-382) 1.07 (0.74-1.55) 0.71 (0.49-1.03) High High Moderate Moderate Moderate HIGH RISK 1995-2004 Upper Grande Ronde 2000-2009 1000 87 (34-382) 32 (13-140) 0.73 (0.47-1.14) 0.42 (0.26-0.68) High High High Moderate High HIGH RISK 1995-2004 Imnaha River 2000-2009 750 40 (4-140) 388 (127-1342) 0.42 (0.27-0.68) 0.90 (0.74-1.13) High High Low Moderate Moderate HIGH RISK 1995-2004 378 (74-1342) 0.0.95 (0.77-1.16) High 86

Table20.SouthForkSalmonMPG.Summaryofcurrentpopulationstatusvs.ICTRTviabilitycriteria South Fork MPG Population Secesh River 2000-2009 1995-2004 EF/Johnson Cr 2000-2009 1995-2004 South Fork Main 2000-2009 1995-2004 Little Salmon River ICTRT Minimum Threshold 750 1000 1000 Abundance/Productivity Metrics Natural Spawning Abundance 472 (162-1228) 342 (59-1228) 162 (52-1018) 142 (20-1018) 791 (374-1873) 630 (112-1873) Insufficient data ICTRT Productivity 1.25 (0.96-1.64) 1.23 (0.97-1.55) 1.15 (0.87-1.52) 1.15 (0.91-1.46) 1.21 (0.67-2.2) 1.25 (0.85-1.83) Insufficient data Integrated A/P Risk High High High High High High Insufficient data Spatial Structure and Diversity Metrics Natural Processes Risk Diversity Risk Integrated SS/D Risk Overall Viability Rating Low Low Low HIGH RISK Low Low Low HIGH RISK Low Moderate Moderate HIGH RISK Low Low Low HIGH RISK 87

Table21.MiddleForkSalmonMPG.Summaryofcurrentpopulationstatusvs.ICTRTviabilitycriteria Middle Fork Salmon MPG Population Chamberlain Cr 2000-2009 1995-2004 Big Creek 2000-2009 1995-2004 Lower Middle Fork Salmon 2000-2009 1995-2004 Camas Creek 2000-2009 1995-2004 Loon Creek 2000-2009 1995-2004 Upper Middle Fork Salmon 2000-2009 1995-2004 Sulphur Creek 2000-2009 1995-2004 Bear Valley Creek 2000-2009 1995-2004 Marsh Creek 2000-2009 1995-2004 ICTRT Minimum Threshold 500 1000 500 500 500 750 500 750 500 Abundance/Productivity Metrics Natural Spawning Abundance 605 (239-1308) 249 (23-1308) 146 (42-662) 93 (5-662) Insufficient data 30 (9-282) 30 (0-282) 67 (14-611) 49 (0-611) Insufficient data 37 (0-201) 26 (0-201) 363 (73-1282) 242 (16-1282) 109 (0-861) 51 (0-861) ICTRT Productivity 1.79 (0.38-8.44) 1.77 (0.64-4.94) 0.80 (0.57-1.12) 1.17 (0.83-1.66) Insufficient data 0.74 (0.38-1.29) 0.74 (0.44-1.25) 1.19 (0.63-2.25) 1.01 (0.61-1.68) Insufficient data 0.76 (0.48-1.24) 1.10 (0.62-1.97) 1.23 (0.9-1.68) 1.45 (1.08-1.94) 0.79 (0.53-1.19) 1.06 (0.7-1.62) Integrated A/P Risk High High High High High High High High High High High High High High High High High High Natural Processes Risk Spatial Structure and Diversity Metrics Diversity Risk Integrated SS/D Risk Overall Viability Rating Low Low Low HIGH RISK Very Low Moderate Moderate HIGH RISK Moderate Moderate Moderate HIGH RISK Low Moderate Moderate HIGH RISK Low Moderate Moderate HIGH RISK Low Moderate Moderate HIGH RISK Low Moderate Moderate HIGH RISK Very Low Low Low HIGH RISK Low Low Low HIGH RISK 88

Table22.UpperSalmonMPG.Summaryofcurrentpopulationstatusvs.ICTRTviabilitycriteria Upper Salmon River MPG Population North Fork 2000-2009 1995-2004 ICTRT Minimum Threshold 500 Abundance/Productivity Metrics Natural Spawning Abundance Insufficient data ICTRT Productivity Insufficient data Integrated A/P Risk High High Spatial Structure and Diversity Metrics Natural Processes Risk Diversity Risk Integrated SS/D Risk Overall Viability Rating Low Low Low HIGH RISK Lemhi River 2000-2009 2000 96 (38-582) 0.94 (0.59-1.52) High High High High HIGH RISK 1995-2004 Pahsimeroi River 2000-2009 1000 92 (10-582) 154 (80-316) 1.13 (0.74-1.73) 0.58 (0.33-1.04) High High Moderate High High HIGH RISK 1995-2004 Upper Salmon Lower Mainstem 2000-2009 2000 91 (11-298) 120 (37-378) 0.48 (0.25-0.96) 1.16 (0.83-1.61) High High Low Low Low HIGH RISK 1995-2004 East Fork Salmon River 2000-2009 1000 83 (9-378) 178 (68-784) 1.28 (0.93-1.76) 1.04 (0.66-1.65) High High Low High high HIGH RISK 1995-2004 Yankee Fork 2000-2009 500 104 (6-784) 21 (2-324) 1.16 (0.66-1.65) 0.80 (0.38-1.68) High High Moderate High High HIGH RISK 1995-2004 Valley Creek 2000-2009 500 16 (0-153) 78 (13-292) 1.01 (0.51-2.01) 1.21 (0.78-1.91) High High Low Moderate Moderate HIGH RISK 1995-2004 Upper Salmon Mainstem 2000-2009 1000 38 (0-292) 313 (98-743) 1.21 (0.78-1.89) 1.21 (0.87-1.71) High High Very Low Moderate Moderate HIGH RISK 1995-2004 181 (9-743) 1.42 (0.95-2.13) High 89

Harvest HarvestimpactsonthespringcomponentofthisESUareessentiallythesameasthoseon theuppercolumbiariver(figure17).allharvestoccursinthelowerportionofthe mainstemcolumbiariver.snakeriversummerchinooksharetheoceandistribution patternsoftheupperbasinspringrunsandareonlysubjecttosignificantharvestinthe mainstemcolumbiariver.harvestofsummerchinookhasbeenmoreconstrainedthan thatofspringchinookwithconsequentlylowerexploitationratesonthesummer componentofthisesu.harvestratesontheaggregaterunsofup riverspringandsummer ChinookSalmonweregenerallyreducedinthe1970sinresponsetoabruptdeclinesin returnsofnaturallyproducedfish.annualharvestratesvariedaround50%inthe1950s and1960s(wdfw,2000). Figure34 TotalexploitationratesforSnakeRiverspring/summerChinooksalmon.DatafromtheColumbia RiveTechnicalAdvisoryTeam(TAC2010). Hatcheryreleases Totalhatcheryreleasesofspring/summerChinookintheESUinrecentyearshave fluctuatedaroundthesamelevelasintheearly1990s.releaselevelsinthelate1990s weregenerallylower,largelydrivenbythetransitionfromrapidriveroriginstockinthe GrandeRondeRiversystemandshortfallsinbroodstockcollectionintheUpperSalmon Riverduetolowadultreturnrates(Figure35).Releasesofhatcherysteelheadhave declinedbyapproximatelyathirdfrompre1995levels. 90

Figure35 TrendsinhatcheryreleaseswithinthespawningandrearingareasoftheSnakeRiver spring/summerchinookesu.dottedlineindicatesthemean,andtheshadedareathestandarddeviation.data source:rmis. 91

SnakeRiverSpring/SummerChinookESU:UpdatedRiskSummary PopulationlevelstatusratingsremainathighriskacrossallMPGswithintheESU, althoughrecentnaturalspawningabundanceestimateshaveincreased,allpopulations remainbelowminimumnaturaloriginabundancethresholds.relativelylownatural productionratesandspawninglevelsbelowminimumabundancethresholdsremaina majorconcernacrosstheesu.theabilityofpopulationstobeself sustainingthrough normalperiodsofrelativelylowoceansurvivalremainsuncertain.factorscitedbythe 2005BRT(Goodetal.2005)remainasconcernsorkeyuncertaintiesforseveral populations.overall,thenewinformationconsidereddoesnotindicateachangeinthe biologicalriskcategorysincethetimeofthelastbrtstatusreview. References Good, T.P., R.S. Waples and P. Adams (editors). 2005. Updated status of federally listed ESUs of West Coast salmon and steelhead. U.S. Dept. of Commer., NOAA Tech. Memo. NMFS-NWFSC-66, 598 p. ICTRT, 2003. Independent populations of chinook, steelhead and sockeye for listed evolutionarily significant units within the interior Columbia River domain. Interior Columbia Basin Technical Recovery Team Technical Review Draft. July 2003. 171 p. ICTRT, 2007. Viability criteria for application to interior Columbia Basin salmonid ESUs. Interior Columbia Basin Technical Recovery Team. Technical Review Draft. March 2007. 91 p + appendices and attachments. ICTRT(2010)Currentstatusreviews:InteriorColumbiaBasinsalmonESUsandsteelhead DPSs.Vol.1.SnakeRiverESUs/DPS.786p.+attachments WashingtonDepartmentofFishandWildlife.2000.Statusreport:ColumbiaRiverfishruns andfisheries1938 2000.WashingtonDept.ofFishandWildlifeandOregonDept.of FishandWildlifejointfisheriesstaffreport.324p. 92

93 SnakeRiverFall runchinooksalmon 11 TheSnakeRiverfallChinooksalmonESUincludesfishspawninginthelower mainstemofthesnakeriverandthelowerreachesofseveraloftheassociatedmajor tributariesincludingthetucannon,thegranderonde,clearwater,salmonandimnaha Rivers.ThisESUwasoriginallylistedundertheESAin1992(reaffirmedin2005:FR 70FR37160).Historically,thisESUincludedtwolargeadditionalpopulationsspawningin themainstemofthesnakeriverupstreamofthehellscanyondamcomplex.the spawningandrearinghabitatassociatedwiththecurrentextantpopulationrepresents approximately20%ofthetotalhistoricalhabitatavailabletotheesu(double,2000). SummaryofpreviousBRTconclusions ThemostrecentBRTreview(Goodetal.,2005)includedanassessmentofSnake RiverFallChinooksalmonbasedondataforrunsthroughthe2001returnyear.Amajority oftheratingpointsassignedbyindividualbrtmembersfellintothe likelytobecome endangered category(60%).thebrtreviewnotedthat..thisoutcomerepresenteda somewhatmoreoptimisticassessmentofthestatusofthisesuthanwasthecaseatthe timeoftheoriginalstatusreview....reasonscitedforamoreoptimisticratingincluded; thenumberofnaturaloriginspawnersin2001waswellover1,000forfirsttimesince 1975,managementactionshadreducedthenumberofoutsideoriginstrayhatcheryfish passingtothespawninggrounds,theincreasingcontributionofnativelyonsferryfish fromsupplementationprogramsandthefactthatrecentnaturaloriginreturnshadbeen fluctuatingbetween500and1,000spawners somewhathigherthanpreviouslevels.the 2005BRTstatusratingsfortheSnakeRiverfallChinooksalmonESUwerealsoinfluenced byconcernsthatthegeometricmeanabundanceatthetimewasbelow1,000(...averylow numberforanentireesu ),andbecauseofthelargefractionofhatcheryfishonthe spawninggrounds.additionalconcernscitedbythebrtincludedthefactthatalarge portionofhistoricalmainstemhabitatisnowinaccessible.somebrtmemberswere concernedaboutthepossibilitythatanaturalhistoricalbufferbetweensnakeriverfall chinookandothercolumbiariveresusmayhaveexistedandthatithasbeen compromisedbyhatcherystraying. BriefReviewRecoveryPlanning NOAAFisheriesiscurrentlydraftingarecoveryplanforthelistedanadromous speciesinthesnakeriverbasin.therecoveryplanwillbuildonmanagementlevelplans developedforeachofthethreeprimaryregionsinthesnakeriverbasincorrespondingto thesectionofthedrainageinthestatesofwashington,oregonandidaho.the managementplancoveringthewashingtonsectionofthesnakebasinwillbebasedonan updatedversionofthelowersnakeriversalmonrecoveryplanprovidedtonoaa Fisheriesin2005bythestateofWashington. TRTandRecoveryPlanCriteria TheICTRTdevelopedviabilitycriteriaforapplicationtoSnakeRiverfallChinook salmonatthepopulationandesulevels(ictrt,2007).thecriteriawerebasedonthe sameprinciplesastheapplicationsforinteriorbasinspring,spring/summeresusand steelheaddpss.atthepopulationlevel,theictrtabundanceandproductivitycriteriaare expressedasviabilitycurves.thelowermainstempopulationwouldbeconsideredatlow 11 Sectionauthor:TomCooney

riskifthecombinationofabundance(recent10yeargeometricmeannaturalorigin spawners)andproductivity(geometricmeanspawnertospawnerratiosforparent escapementslessthan2000spawners 75%oftheminimumabundancethresholdof 3000)exceedsacurvegeneratedbysimulationmodelingthatincorporatesobservedyearto yearvariabilityinreturnrates.inanycase,theictrtcriteriaforlowviabilityrisk stipulatethatthe10yeargeometricmeannaturaloriginescapementshouldexceed3,000, withaminimumof2,500naturaloriginspawnersinthemainstemsnakerivermajor spawningareas.achievingaverylowriskratingforabundanceandproductivityrequires exceedingthesamenaturaloriginabundancethresholdcombinedwithaproductivity estimateof1.5orhigher. TheICTRTappliedthesamegenericframeworkindevelopingpopulationspatial structureanddiversitycriteriaforapplicationtosnakeriverfallchinooksalmon(ictrt, 2007).Severalofthosecriteriarequireadefinitionofwithinpopulationstructure.The ICTRTdescribedfivemajorspawningareaswithintheLowerMainstempopulation three mainstemreaches(salmonriverconfluencetohellscanyondamsite,lowergranitedam tothesalmonriverconfluenceandthemainstemoffofandincludingthelowertucannon River)andtwotributarymainstems(lowerGrandeRondeRiverandtheClearwaterRiver). Inaddition,smallerspawningreachesintheImnahaRiverandSalmonRiverweredefined asminorspawningareas. NewDataandUpdatedAnalyses AnnualestimatesofspawningescapementsfortheextantpopulationofSnakeRiver fallchinookarebasedoncountsandadultsamplingatpassageoverlowergranitedam (reftolfhreport).statisticalmethodsforparsingoutcomponents(e.g.,naturaland hatcheryoriginfish)havegenerallyimprovedsincethe2005brtreview.escapement estimatesarenowavailablethroughthe2008returnyear(figure36). Standardabundanceandtrends ThetotalspawningescapementintonaturalareasaboveLowerGraniteDamhas remainedrelativelyhighsincetherapidincreaseinthelate1990 s.thecurrentfiveyear geometricmeantotalescapementisabove10,000,substantiallygreaterthanthe1997 2001geometricmeanreportedinthepreviousBRTreview(Table23).Arelativelyhigh proportionoftheestimatedspawnersareofhatcheryorigin(78%forthemostrecentfive yearcycle).howevernaturaloriginreturnshavealsoincreasedsubstantiallyoverboththe geometricmeanestimatesforthe2005brtreviewandthecyclejustpriortothe1997 listingdecision. Table23SnakeRiverFallChinook.Recentabundanceandproportionnaturalorigincomparedtoestimatesat thetimeoflistingandthepreviousbrtreview. Population Snake River Fall Chinook Total Spawners ( 5 year geometric mean, range) Prior Current (1997-2001) (2003-2008) 2164 (962-9875) 11321 (7784-17266) Natural Spawning Areas Natural Origin ( 5 year geometric mean) Prior Current (1997-2001) (2003-2008) 1055 (306-5163) 2291 (1762-2983) % Natural Origin (5 year average) Prior Current (1997-2001) (2003-2008) 51% 22% 94

Figure36 SnakeRiverFallChinook.EstimatedescapementaboveLowerGraniteDam.AdultrunsizetoLower GraniteDamminusfishtrappedandtransferredtohatcheryprograms.Thedarklineindicatesnaturalorigin spawnernumbers,light(red)lineindicatestotalnaturalspawners(includingnaturallyspawninghatcheryfish). Thedottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthegreenshadedarea indicates+/ 1standarddeviationaroundthemean. Figure37 SnakeRiverFallChinook.Broodyearspawnertospawnerestimates.Filleddiamonds:parent spawnerestimatebelow75%ofminimumabundancethreshold.opensquares:parentescapementgreaterthan 75%ofminimumabundancethreshold. 95

Themostrecentshort termtrendinnaturaloriginspawnerswasstronglypositive, increasingatanaveragerateof16%peryear(table24).therateofincreaseisdownfrom the23%peryearestimatedfor1990 2001.Hatcheryoriginescapementsintonatural spawningareascontinuedtoincreasethroughthemostrecentreturnyear(figure36). Althoughnaturaloriginreturnshaveremainedwellabovethelevelsestimatedatthetime oflistingintheearly1990 s,themostrecentescapementshavedroppedfromthepeakin 2001 2003andhavefluctuatedbelowtheICTRTminimumabundancethresholdlevel.The apparentlevelingoffofnaturalreturnsinspiteoftheincreasesintotalbroodyear spawnersmayindicatethatdensitydependenthabitateffectsareinfluencingproductionor thathighhatcheryproportionsmaybeinfluencingnaturalproductionrates. Table24.Shortterm(since1995)trendsinnaturaloriginspawningabundance(slopeofnaturallnadult spawners)forthelowersnakeriverfallchinookpopulation.comparisonswithtimeperiodscorrespondingto priorbrtreviewsincluded. Population Snake River Fall Chinook Estimate (CI) Prob>1.0 1998 BRT (1987-97) 1.12 (0.996 1.26) 0.97 Short-term trend Previous (1990-2001) 1.23 (1.09 1.40) 0.998 Current (1995-2008) 1.16 (1.06 1.27) 0.998 Table25.Shortterm(since1995)trendsinspawningabundance(populationgrowthrate)fortheLowerSnake RiverFallChinookpopulation.ComparisonswithtimeperiodscorrespondingtopriorBRTreviewsincluded Population Snake River Fall Chinook Estimate (CI) Prob>1.0 Short-term Lambda Hatchery effectiveness= 0 Hatchery effectiveness= 1.0 2005 BRT Current 2005 BRT Current (1990-2001) (1995-2008) (1990-2001) (1995-2008) 1.21 1.15 1.08 0.90 (0.46 3.17) (0.18 7.37) (0.49 2.35) (0.08 10.23) 0.88 0.75 0.78 0.34 96

TheSnakeFallChinooksalmonabundanceseriesbeginswiththe1975returnyear. Theaveragelong termtrendinnaturaloriginreturnstothespawninggroundsispositive (averagerateofincreaseof6%peryear),againlargelydrivenbyrecentincreases.the estimatedaveragepopulationgrowthrateassumingthathatcheryoriginparentspawners havebeencontributingatthesamerateasnaturaloriginparentshasbeenlessthan1.0, indicatingthatnaturalproductionhasnotproportionallyincreasedinresponsetothe upwardtrendintotalspawners.thepopulationgrowthrateestimateunderthe assumptionthathatcheryoriginspawnershavenotcontributedtoproductionisan indicatoroftrendsintotalbroodyearproductionacrossreturnyears.thatmetricis positive,indicatingthatonaveragenaturalproductionhasincreasedoverthebroodyears 1975 2003. Table26.LongtermtrendestimatesforLowerSnakeRiverFallChinookpopulation. Trendintotal Spawners Lambda (HF=0) Lambda(HF=1) Population Years Estimate(CI) Estimate(CI) Prob>1 Estimate(CI) Prob>1 LowerSnake Fall 1975 2008 1.06(1.03 1.08) 1.04(0.89 1.22) 0.73 0.90(0.76 1.07) 0.09 97

TRTViabilityCriteriaRatings TheICTRTratedthecurrentstatusoftheSnakeRiverfallChinookpopulationand theesubasedondatathroughreturnyear2007.totalabundanceandhatchery contributionestimatesandspawnerdistributionsbasedonreddcountsarenowavailable fortwoadditionalyears. Table27.ViabilityassessmentforLowerSnakeRiverFallChinookpopulationusingICTRTcriteria.Updatedto reflectreturnsthrough2008. Population Snake River Fall Chinook Brood years 1990-2004 1985-2004 Abundance/Productivity Metrics ICTRT Minimum Threshold Natural Spawning Abundance 3000 2208 (905-5163) AbundanceandProductivity ICTRT Productivity 1.28 (0.82-1.63) 1.07 (0.93-1.75) Integrated A/P Risk Moderate (Moderate) Spatial Structure and Diversity Metrics Natural Processes Risk Diversity Risk Integrated SS/D Risk Overall Viability Rating Low Moderate Moderate Maintained Thecurrentestimate(1999 200810 yeargeometricmean)ofnaturalorigin spawningabundance(10yeargeometricmean)ofsnakeriverfallchinookisjustover 2,200.TheICTRTgenerallyrecommendscalculatingpopulationproductivity(expected spawnertospawnerreturnrateatlowtomoderateparentescapements)usingthemost recent20broodyears.previousictrtstatusreviewsforsnakeriverfallchinook includedestimatesbasedonamorerecenttimeseriestoaccountforpotentialmajor,but un quantifiedchangesindownstreampassageconditions(enhancedflowsandtransport regimes)initiatedin1990.theupdatedproductivitybasedonthe1990topresentseries was1.28,theestimateforthelongerseries1983 2003broodyears,was1.07(Table27). Combiningthecurrentnaturalspawningescapementestimateof2,200witheitherofthe productivityestimatesresultsinanabundanceandproductivityratingofmoderaterisk usingtheictrtviabilitycurvesforthispopulation. SpatialStructureandDiversity Theadditionoftwoyearsofspawnerdistributionandhatcherycompositiondata doesnotaltertheconclusionsreachedintheictrtstatusreportregardingspatial structureanddiversityratings. TheLowerSnakeRiverfallChinookpopulationwasratedat lowriskforgoala(allowingnaturalratesandlevelsofspatiallymediatedprocesses)and moderateriskforgoalb(maintainingnaturallevelsofvariation)resultinginanoverallspatial structureanddiversityratingofmoderaterisk.themoderateriskratingwasdrivenby changesinmajorlifehistorypatterns,shiftsinphenotypictraitsandhighlevelsofgenetic homogeneityinsamplesfromnatural originreturns.inaddition,thechronichighlevelsof hatcheryspawnersinnaturalspawningareasandsubstantialselectivepressureimposedby 98

currenthydropoweroperationsandcumulativeharvestimpactswouldalsoleadtoamoderate rating. ScalesamplesfromnaturaloriginfallChinooktakenatLowerGraniteDamcontinue toindicatethatapproximatelyhalfofthereturnsoverwinteredinfreshwater(milksetal., 2009appendixH). Giventhecombinationofcurrentratingsforabundance/productivityandspatial structure/diversitysummarizedabove,thelowersnakeriverfallchinooksalmon populationwouldberatedasmaintained(figure38).thereisahighlevelof uncertaintyassociatedwiththeoverallratingforthispopulation,primarilydrivenby uncertaintiesregardingcurrentaveragenatural originabundanceandproductivitylevels. Itisdifficulttoseparatevariationsinoceansurvivalfrompotentialchangesinhydropower impactswithoutcomparativemeasuresofjuvenilepassagesurvivalsundercurrent operationsorarepresentativemeasureofoceansurvivalrates. Spatial Structure/Diversity Risk Very Low Low Moderate High Very Low (<1%) HV HV V M Abundance/ Productivity Risk Low (1-5%) V V V M Moderate (6 25%) M M M Lower Main. Snake HR High (>25%) HR HR HR HR Figure38 SnakeRiverLowerMainstemfallChinooksalmonpopulationriskratingsintegratedacrossthefour viablesalmonidpopulation(vsp)metrics.viabilitykey:hv HighlyViable;V Viable;M Maintained;HR High Risk;Shadedcells doesnotmeetviabilitycriteria(darkestcellsareathighestrisk). Harvest SnakeRiverfallChinookhaveaverybroadoceandistributionandhavebeentakenin oceansalmonfisheriesfromcentralcaliforniathroughsoutheastalaska.theyarealso harvestedin riverintribalandnon tribalfisheries.historicallytheyweresubjecttototal exploitationratesontheorderof80%.sincetheywereoriginallylistedin1992,fishery impactshavebeenreducedinbothoceanandriverfisheries(figure39).totalexploitation ratehasbeenrelativelystableintherangeof40%to50%sincethemid 1990s 99

Figure39 TotalexploitationrateforSnakeRiverfallChinooksalmon.Dataformarineexploitationratesfrom thechinooktechnicalcommitteemodel(ctcinprep)andforin riverharvestratesfromthecolumbiariver TechnicalAdvisoryCommittee(TAC2009,andCindyLeFleur,WDFW,personalcommunication). Hatcheryreleases HatcheryreleasesofSnakeRiverfallChinooksalmonhavegenerallybeentrending upwardsincethemid 1990s,ashavereleasesofcohoandsockeye(Figure40). 100

Figure40 SnakeRiverhatcheryreleasessince1980.Datasource:FishPassageCenter (http://www.fpc.org/hatchery/misc_docs/snakehatcheryreleases.html). 101

SnakeRiverfallChinooksalmon:UpdatedRiskSummary AbundanceandproductivityestimatesforthesingleremainingpopulationofSnake RiverFallChinooksalmonhaveimprovedsubstantiallyrelativetothetimeoflisting. Howeverthecurrentcombinedestimatesofabundanceandproductivitypopulationstill resultinamoderateriskofextinctionofbetween5%and25%in100years.theextant populationofsnakeriverfallchinookistheonlyremainingfromanhistoricalesuthat alsoincludedlargemainstempopulationsupstreamofthecurrentlocationofthehells CanyonDamcomplex.Therecentincreasesinnaturaloriginabundanceareencouraging. However,hatcheryoriginspawnerproportionshaveincreaseddramaticallyinrecentyears onaverage,78%oftheestimatedadultspawnershavebeenhatcheryoriginoverthe mostrecentbroodcycle.overall,thenewinformationconsidereddoesnotindicatea changeinthebiologicalriskcategorysincethetimeofthelastbrtstatusreview. References Good, T.P., R.S. Waples and P. Adams (editors). 2005. Updated status of federally listed ESUs of West Coast salmon and steelhead. U.S. Dept. of Commer., NOAA Tech. Memo. NMFS-NWFSC-66, 598 p. ICTRT, 2003. Independent populations of chinook, steelhead and sockeye for listed evolutionarily significant units within the interior Columbia River domain. Interior Columbia Basin Technical Recovery Team Technical Review Draft. July 2003. 171 p. ICTRT, 2007. Viability criteria for application to interior Columbia Basin salmonid ESUs. Interior Columbia Basin Technical Recovery Team. Technical Review Draft. March 2007. 91 p + appendices and attachments. ICTRT(2010)Currentstatusreviews:InteriorColumbiaBasinsalmonESUsandsteelhead DPSs.Vol.1.SnakeRiverESUs/DPS.786p.+attachments Milks,D.,M.VarneyandM.Schuck.2009.LyonsFerryHatcheryEvalution:FallChinook salmonannualreport2006.washingtondepartmentoffishandwildifereportto; USFishandWildlifeServiceLowerSnakeRiverCompensationPlanOffice.WDFW 09 04.117p. http://www.fws.gov/lsnakecomplan/reports/wdfw/eval/lfh%20eval%20fall% 20Chinook%20Annual%202006.pdf 102

103 SnakeRiversockeyesalmon 12 TheESUincludesallanadromousandresidualsockeyesalmonfromtheSnakeRiver Basin,Idaho,aswellasartificiallypropagatedsockeyesalmonfromtheRedfishLake captivepropagationprogram.thisesuwasfirstlistedundertheesain1991,thelisting wasreaffirmedin2005(70fr37160&37204). SummaryofpreviousBRTconclusions The2005BRTassignedtheSnakeRiverSockeyeESUtothe dangerofextinction category.thishighriskratingwasreflectedinthescoringbyallmembersofthebrt.the BRTratedtheESUatextremelyhighriskacrossallfourbasicriskmeasures(abundance, productivity,spatialstructureanddiversity),notingthatonly16naturallyproducedadults havebeencountedsince1991.thebrtassessmentacknowledgedthattheemergency captivebroodprograminitiatedin1991has,..atleasttemporarily...rescuedthisesufrom thebrinkofextinction.. andthatongoingresearchhassubstantiallyincreasedbiological andenvironmentalinformationabouttheesu. BriefReviewRecoveryPlanning NOAAFisherieshasinitiatedrecoveryplanningfortheSnakeRiverdrainage, includingacomponentaddressingthesnakeriversockeyeesu.adraftrecoveryplanis expectedtobeavailableforreviewin2011.thesnakeriversockeyerecoveryplan componentwillbuildonongoingeffortsincludinghatcheryprogramsandhabitat assessmentactivitiescoordinatedthoughthestanleybasinsockeyetechnicaloversight Committee(SBSTOC).Inaddition,actionstomonitorandimprovejuveniledownstream andadultupstreampassagesurvivalsarebeingevaluatedandimplementedthroughthe FederalColumbiaRiverPowerSystem2008BiologicalOpinion. Theinitialprioritiesestablishedintheearly1990sbytheSBSTOCwereto... protecttheremnantesa listedsnakerivergenepoolexistinginredfishlakethroughthe useofcaptivebroodstocktechnologyandtodevelopanunderstandingofthecarrying capacityofsawtoothvalleylakes. Evaluatingthepotentialsuccessofalternative supplementationstrategieswasrecognizedasanimportant secondtier priority(flagget al.,2004). TRTandRecoveryPlanCriteria TheICTRTdevelopedabundanceandproductivitycriteriaforapplicationtoSnakeRiver sockeyepopulations(ictrt,2007).thecriteriareflectthegeneralframeworkusedbythe ICTRTindevelopingESU/DPSspecificcriteriaforallotherlistedinteriorruns.TheStanley BasinLakesarerelativelysmallcomparedtootherlakesystemsthathistoricallysupported sockeyeproductioninthecolumbiabasin.stanleylakeisassignedtothesmallestsize categoryalongwithpettitandyellowbellylakes.redfishlakeandalturaslakefallinto thenextsizecategory intermediate.theaverageabundancetargetsrecommendedbythe SnakeRiverRecoveryTeam(Bevan,etal.1994)wereincorporatedasminimum abundancethresholdsintoasockeyeviabilitycurvegeneratedusinghistoricalage 12 Sectionauthor:TomCooney

structureestimatesfromredfishlakesamplinginthe1950s 60sandyeartoyear variationsinbroodyearreplacementratesgeneratedfromabundanceseriesforlake Wenatcheesockeye.Theminimumspawningabundancethresholdissetat1,000forthe RedfishandAlturasLakepopulations(intermediatecategory),andat500forpopulations inthesmallesthistoricalsizecategory(e.g.,alturasandpetitlakes).theictrt recommendedthatlong termrecoveryobjectivesshouldincluderestoringatleastthreeof thelakepopulationsintheesutoviableorhighlyviablestatus. NewDataandUpdatedAnalyses ThepreviousBRTreviewincludedasummaryofadultreturnsthroughthe2002 runyear.estimatesofannualreturnsarenowavailablethrough2009(table28).adult returnsin2008and2009werethehighestsincethecurrentcaptivebroodbasedprogram beganwithatotalof650and809adultscountedbacktothestanleybasin.approximately twothirdsoftheadultscapturedineachyearweretakenattheredfishlakecreekweir, theremainingadultswerecapturedatthesawtoothhatcheryweironthemainstem SalmonRiverupstreamoftheRedfishLakeCreekconfluence.Returnsfor2003 2007were relativelylow,similartotherangeobservedbetween1987and1999. Table28 AdultSockeyereturnstoStanleyBasinweirsites.In2008,50adultfishwerecountedinRedfishLake Creekbelowtheweirsite,anadditional2fishpassedtheweirsiteoutsideofthecountingperiod(check). 104

Increasedreturnsinrecentyearshavesupportedsubstantialincreasesinthe numberofadultsreleasedabovetheredfishlakecreekweirinrecentyears(table29). Annualadultreleasessince2003haverangedfrom173to969comparedtotherangefor thefiveyearperiodendingin2002(0to190sockeye).thelargeincreasesinreturning adultsinrecentyearsreflectsimproveddownstreamandoceansurvivalsaswellas increasesinjuvenileproductionsincetheearly1990s(table29).presmoltoutplantsinto Redfish,AlturasandPetitLakeswereinitiatedinthemid 1990s,releaseshaveaveraged approximately80,000peryearsince1995.onaverage,approximately30,000peryearof thepresmoltreleasesaredetectedleavingthethreelakesthefollowingspringdirectsmolt plantsinthelowersectionofredfishlakecreekandinthesalmonriver(sawtoothweir) haveincreasedtoover100,000peryear.thenumberofcaptiverearedorreturning anadromousadultsallowedtopassovertheredfishlakeweiroroutplantedintothelake hasalsoincreasedsubstantiallyinrecentyears.unmarkedjuvenilemigrantsemigrating fromthethreelakesystemshavealsodramaticallyincreasedinrecentyears annual estimateshaverangedfrom16,000to61,000overthe2005through2009outmigrations. Estimatesofthetotalannualoutmigrationacrossallofthesecomponentshaveranged from143,500to210,300duringthemostrecentfiveyearperiod(2005 2008)comparedto arangeof19,600 146,300for(1998 2002),theperiodcorrespondingtothe2005BRT review. 105

Table29 EstimatedannualnumbersofsmoltoutmigrantsfromtheStanleyBasin.Includeshatcherysmolt releases,knownoutmigrantsoriginatingfromhatcherypre smoltoutplantsandestimatesofunmarkedjuveniles migratingfromredfish,alturasandstanleylakes. 106

Table30 SnakeRiverSockeyeSalmon.ReleasesofprogenyfromRedfishLakecaptivebroodprograminto RedfishLake,RedfishLakeCreekandtheSalmonRiveratorabovetheSawtoothHatcheryweir. Table31 SnakeRiverSockeyeSalmon.ReleasesofprogenyfromRedfishLakecaptivebroodprograminto AlturasandPetitLakes. OngoingstudiesofthelimnologicalcharacteristicsofthethreeStanleybasinlakes andthecurrentdensitiesofo.nerkajuvenileswithineachofthelakesarebeginningto provideinsightsintotherelativecarryingcapacitiesforsockeyeproduction(e.g.,flagg,et. al.2004). Juvenileemigrationrates 107

Theincreasedproductionfromthecaptivebroodprogramhasresultedinsufficient releaseandoutplantinglevelsforinitialevaluationsofalternativesupplementation strategies(hebdonetal,2004).hatcheryrearedpre smoltshavebeenoutplantedinto eachofthethreelakessincethemid 1990s(Table30).Estimatesoftheproportionof thoseoutplantsemigratingdownstreamfromeachofthethreerearinglakeshavebeen generatedsince2000(peterson,etal.2010).medianoutmigrationproportionsfor2000 2008forRedfish,AlturasandPetitlakeswere0.27,0.47and0.46respectively,with considerableannualvariationintheestimatesforeachlake(figure41). Figure41 Estimatedproportionoffallpresmoltplantsoutmigratinginthespringofthefollowingyear(2000 2008).Soliddiamonds=medianestimate,lines=rangeofannualestimates.Estimatesfromtable15inPeterson etal.2010 LakestoLowerGraniteDamjuvenilemigrantsurivivals Theincreasednumbersofjuvenilemigrants(primarilyfromhatcheryreleases), haveralsoresultedinimprovedestimatesofdownstreampassagemortality,includingthe generationofconfidencelimitsusingsurphsamplingdesignsbeginningwiththe2008 outmigrationyear(peterson,etal.2010).priorto2008,survivalestimatesforthe aggregatesmoltoutmigrationofsnakeriversockeyejuvenilesweremadebasedon estimatesofthenumberofo.nerkasmoltssampledatlowergranitedamrelativetothe estimatedoutmigrationfromthestanleybasin(table29).annualestimateshavevaried considerably,rangingfrom0.21to0.76(nwfsc,2008).averagedownstreampassage survivalsacrossmigrationgroupsandareasin2008rangedfrom0.22(petitlake unmarkedsmolts)to0.62(alturaslakeunmarkedsmolts).downstreampassagesurvival fromweirstolowergranitedamformarkedandunmarkedmigrantsweregenerally similarforeachofthelakes.survivalfromreleasetolowergranitedamforspring releasesofhatcheryoriginsmoltsintolowerredfishlakeandthesalmonrivernear SawtoothHatcheryweresimilarandfellinthemiddleofrangeforallrelease groups/locations(figure42). 108

Figure42 SnakeRiversockeyejuveniledownstreamsurvivalestimatesfor2008migrationyear.Estimated survivalfromtraporreleaselocationtolowergranitedam.closeddiamonds:naturaloriginsmolts,open diamonds:hatcheryoriginsmoltreleases.bars:95%confidencelimits(surphmodel).estimatesfromtable13 inpetersonetal2010. LowerGraniteDamSARestimates Annualestimatesofanindexofsmolttoadultreturnrates(SARs)havebeen generatedforsnakeriversockeyeastheestimatednumberofsmoltsatlowergranite Damingivenyeardividedintothenumberofreturningadultstwoyearslater(NWFSC, 2008).ThemedianSARindexforthe1998 2006seriesofannualestimateswas0.2%,with annualindicesrangingfromalowof0.07%toahighof1.04.sarestimatesforfiveofthe nineyearsintheserieswerebasedonlessthan50adultsreturningtolowergranitedam; thereforetheseresultsshouldbeinterpretedwithcaution.currentlyavailablesar estimatesdonotincludethefulleffectoftherelativelylargereturnsin2009and2010 observedforrunsreturningtotheuppercolumbia(lakewenatcheeandlakeokanogan) andtothesnakeriver. TheLowerGraniteSARsreflectaggregatereturnratesacrosstwomajor downstreammigrationroutes in riverpassageanddownstreamtransporttobelow BonnevilleDam.Estimatesoftheproportiontransportedoverthe1998to2006 outmigrationyearshaverangedfromapproximately50%toover90%.themedian estimatedsurvivalofjuvenilein rivermigrantsdownriverfromlowergranitedam throughthelowersnakerivertomcnarydamonthemainstemcolumbiariverwas67% fortheperiod1996 2010,individualyearestimatesrangedfrom28%to76%(Feguson, 2010).ThemedianestimateofjuvenilepassagesurvivalsfortheMcNaryDamto BonnevilleDamreach(1998 2003,2006 2010)was0.54,whichshouldbeinterpretedwith 109

cautionduetosmallsamplesizesandassociatedlowdetectionprobabilitiesformanyof theindividualyearestimates(ferguson,2010). AdultupstreampassagesurvivalsthroughthemainstemColumbiaRivertothe mouthofthesnakeriverareassumedtoberelativelyhighbasedoninferencesfrom estimatesofupstreampassageforuppercolumbiariversockeye(nwfsc,2008). ComparisonsofadultsockeyecountsatIceHarborDamandLowerGraniteDamindicate directlossesarealsolowforpassagethroughthelowersnakeriver.adultpassage survivalestimatesbasedonpittagdetectionsatmultipledamsalsoindicaterelativelylow directpassagemortalityupstreamtolowergranitedam(nmfs,2008). However,comparisonsoftheestimatednumberofadultsockeyeatLowerGranite Damvs.returningtotheSawtoothBasinindicaterelativelyhighlossratesthroughthis reachinsomeyears.keeferetal.(2007)conductedanadultradiotaggingstudyofpassage survivalsupstreamfromlowergranitedamin2000andconcludedthathighin river mortalitiesforsnakeriveradultscouldbeexplainedby acombinationofhigh migrationcorridorwatertemperaturesandpoorinitialfishconditionorparasiteloads. Keeferetal.(2007)examinedcurrentruntimingpatternsofSnakeRiversockeyevs. recordsfromtheearly1960s,concludingthattheapparentshifttoanearlierruntimingin morerecentyearsmayreflectincreasedmortalitiesforlatermigratingadults. Harvest OceanfisheriesdonotsignificantlyimpactSnakeRiversockeye.Withinthemainstem ColumbiaRiver,treatytribalnetfisheriesandnon tribalfisheriesdirectedatchinook salmondoincidentallytakesmallnumbersofsockeye.mostofthesockeyeharvestedare fromtheuppercolumbiariver(canadaandlakewenatchee),butverysmallnumbersof SnakeRiversockeyearetakenincidentaltosummerfisheriesdirectedatChinooksalmon. Inthe1980fisheryimpactratesincreasedbrieflyduetodirectedsockeyefisheriesonlarge runsofuppercolumbiariverstocks(figure43) 110

Figure43 ExploitationratesonSnakeRiversockeyesalmon.DatafromtheColumbiaRiverJointStaffReport (2010). Hatcheryreleases ReleasesofChinooksalmon,steelheadandsockeyesalmonwithinthespawningand rearingareasofthesnakeriversockeyesalmonesuhaveremainedfairlyflatsince2005 (Figure44). 111

Figure44 AnnualhatcheryreleaseswithinthespawningandrearingareasoftheSnakeRiversockeyesalmon ESU.Datasource:RMIS. 112

SnakeRiverSockeyesalmon:UpdatedRiskSummary SubstantialprogresshasbeenmadewiththeSnakeRiversockeyecaptivebrood stockbasedhatcheryprogram,butnaturalproductionlevelsofanadromousreturns remainextremelylowforthisesu.inrecentyears,sufficientnumbersofeggs,juveniles andreturninghatcheryadultshavebeenavailablefromthecaptivebroodbasedprogram toallowforinitiationofeffortstoevaluatealternativesupplementationstrategiesin supportofre establishingnaturalproductionofanadromoussockeye.limnological studiesanddirectexperimentalreleasesarebeingconductedtoelucidateproduction potentialinthreeofthestanleybasinlakesthatarecandidatesforsockeyerestoration. Theavailabilityofincreasednumbersofadultsandjuvenilesinrecentyearsissupporting directevaluationoflakehabitatrearingpotential,juveniledownstreampassagesurvivals andadultupstreamsurvivals.althoughthecaptivebroodprogramhasbeensuccessfulin providingsubstantialnumbersofhatcheryproducedo.nerkaforuseinsupplementation efforts,substantialincreasesinsurvivalratesacrosslifehistorystagesmustoccurinorder tore establishsustainablenaturalproduction(e.g.hebdonetal.2004,keeferetal.2008). TheincreasedabundanceofhatcheryrearedSnakeRiversockeyereducestheriskof immediateloss,butlevelsofnaturallyproducedsockeyereturnsremainextremelylow.as aresult,overall,althoughtheriskstatusofthesnakeriversockeyesalmonesuappearsto beonanimprovingtrend,thenewinformationconsidereddoesnotindicateachangein thebiologicalriskcategorysincethetimeofthelastbrtstatusreview. References ICTRT, 2003. Independent populations of chinook, steelhead and sockeye for listed evolutionarily significant units within the interior Columbia River domain. Interior Columbia Basin Technical Recovery Team Technical Review Draft. July 2003. 171 p. ICTRT, 2007. Viability criteria for application to Interior Columbia Basin Salmonid ESUs. Interior Columbia Basin Technical Recovery Team Technical Review Draft. March 2007. 91 p + appendices & attachments Ferguson, J.W. 2010. Preliminary survival estimates for passage during the spring migration of juvenile salmonids through the Snake and Columbia River reservoirs and dams, 2010. NWFSC Memo Sept. 13, 2010. 21 p. Flagg,T.A.,W.C.McAuley,P.A.Kline,M.S.Powell,D.TakiandJ.C.Gislason.(2004). ApplicationofcaptivebroodstockstopreservationofESA listedstocksofpacific Salmon:RedfishLakeSockeyeSalmoncaseexample.Am.Fish.Soc.Symp.44:387 400 Hebdon,J.L.,P.Kline,D.TakiandT.A.Flagg.2004.Evaluatingreintroductionstrategiesfor RedfishLakeSockeyeSalmoncaptivebroodprogeny.Amer.Fish.Soc.Symp. 44:401 413. Keefer,M.L.,C.A.PeeryandM.J.Henrich.2008.Temperaturemediatedenroutemigration mortalityandtravelratesofendangeredsnakeriversockeyesalmon.ecol.of FreshwaterFish17:136 145. Kohler,A.,B.Griswold,D.TakiandS.Letzing2008.SnakeRiverSockeyeSalmonhabitat andlimnologicalresearch:2008annualprogressreport.projectno.199107100. ReporttoBonnevillePoweradministration. 113

NationalMarineFisheriesService(NMFS).2008.Supplementalcomprehensiveanalysisof thefederalcolumbiariverpowersystemandmainstemeffectsoftheuppersnake andothertributaryactions Adultsurvivalestimatesappendix.May5,2008. NorthwestFisheriesScienceCenter(2009).Factorsaffectingsockeyesalmonreturnstothe ColumbiaRiverin2008.NOAAFisheriesRept.37p. Peterson,M.K.Plaster,L.RedfieldandJ.Heindel.SnakeRiverSockeyeSalmoncaptive broodstockprogram:researchelement.annualprogressreport:january12008 December312008.IDFGRept.#10 08.PreparedforBonnevillePower Administration. 114

115 SnakeRiverBasinsteelhead 13 TheSnakeRiverSteelheadDPS.includesallnaturallyspawnedanadromousO. mykiss(steelhead)populationsbelownaturalandmanmadeimpassablebarriersin streamsinthesnakeriverbasinofsoutheastwashington,northeastoregon,andidahoas wellassixartificialproductionprograms:thetucannonriver,dworshaknfh,lolocreek, NorthForkClearwaterRiver,EastForkSalmonRiver,andtheLittleSheepCreek/Imnaha RiverHatcherysteelheadhatcheryprograms (FederalRegisternotice71FR834).Snake Riversteelheadareclassifiedassummerrunbasedontheiradultruntimingpatterns. MuchofthefreshwaterhabitatusedbySnakeRiversteelheadforspawningandrearingis warmeranddrierthanthatassociatedwithothersteelheaddpss.snakeriversteelhead spawnandrearasjuvenilesacrossawiderangeoffreshwatertemperature/precipitation regimes.fisheriesmanagersclassifycolumbiariversummerrunsteelheadintotwo aggregategroups,a runandb run,basedonoceanageatreturn,adultsizeatreturnand migrationtiming.a runsteelheadarepredominatelyspendoneyearatseaandare assumedtobeassociatedwithlowtomid elevationstreamsthroughouttheinterior Columbiabasin.B runsteelheadarelargerwithmostindividualsreturningafter2yearsin theocean. NOAAFisherieshasdefinedDPSsofsteelheadtoincludeonlytheanadromous membersofthisspecies(70fr67130).ourapproachtoassessingthecurrentstatusofa steelheaddpsisbasedevaluatinginformationtheabundance,productivity,spatial structureanddiversityoftheanadromouscomponentofthisspecies.(goodetal.2005;70 FR67130).Manysteelhead(O.mykiss)populationsalongtheWestCoastoftheU.S.cooccurwithconspecificpopulationsofresidentrainbowtrout.Werecognizethattheremay besituationswherereproductivecontributionsfromresidentrainbowtroutmaymitigate short termextinctionriskforsomesteelheaddpss(goodetal.2005;70fr67130).we assumethatanybenefitstoananadromouspopulationresultingfromthepresenceofa conspecificresidentformwillbereflectedindirectmeasuresofthecurrentstatusofthe anadromousform. SummaryofpreviousBRTconclusions The2005BRTreporthighlightedmoderaterisksacrossallfourprimaryfactors (productivity,naturaloriginabundance,spatialstructureanddiversity)forthisdps.a majority(70%)oftheriskassessmentpointsassignedbythebrtwereallocatedtothe likelytobecomeendangered category.thecontinuedrelativelydepressedstatusofbrunpopulationswasspecificallycitedasaparticularconcern.thebrtidentifiedthatthe generallackofdirectdataonspawningescapementsintheindividualpopulation tributariesasakeyuncertainty,renderingquantitativeassessmentofviabilityforthedps difficult.thebrtalsoidentifiedthehighproportionhatcheryfishintheaggregaterun overlowergranitedamcombinedwiththelackoftributaryspecificinformationon relativespawninglevelsasasecondmajoruncertaintyandconcern.thebrtcitedthe upturninreturnlevelsin2000and2001asevidencethatthedps isstillcapableof respondingtofavorableenvironmentalconditions. Howeverthereportalso acknowledgedthatabundancelevelsremainwellbelowinterimtargetsforspawning aggregationsacrossthedps. 13 Sectionauthor:TomCooney

BriefReviewRecoveryPlanning TheInteriorColumbiaBasinTechnicalRecoveryTeam(ICTRT)identified24extant populationswithinthisdps,organizedinto5majorpopulationgroups(ictrt,2003).the ICTRTalsoidentifiedanumberofpotentialhistoricalpopulationsassociatedwithtributary habitatabovethehellscanyondamcomplexonthemainstemsnakeriver,abarrierto anadromousmigration.thefivemajorpopulationgroups(mpgs)withextantpopulations are:thelowersnakerivermpg(2populations);thegranderondempg(4populations); theimnahariverpopulation/mpg;theclearwaterrivermpg(5extantpopulations,1 extirpated);andthesalmonrivermpg(12populations).inaddition,theictrtconcluded thatsmalltributariesenteringthemainstemsnakeriverbelowhellscanyondammay havehistoricallybeenpartofalargerpopulationwithacoreareacurrentlycutofffrom anadromousaccess.thatpopulationwouldhavebeenpartofoneofthehistorical upstreammpgs. NOAAFisherieshasinitiatedrecoveryplanningfortheSnakeRiverdrainage organizedaroundasubsetofmanagementunitplanscorrespondingtostateboundaries.a tributaryrecoveryplanforoneofthemajormanagementunits,thelowersnakeriver tributarieswithinwashingtonstateboundaries,wasdevelopedundertheauspicesofthe LowerSnakeRiverRecoveryBoardandwasacceptedbyNOAAFisheriesin2005.The LSRBPlanprovidesrecoverycriteria,targetsandtributaryhabitatactionplansforthetwo populationsofspring/summerchinookinthelowersnakempgalongwiththetouchet River(Mid ColumbiaSteelheadDPS)andtheWashingtonsectionsoftheGrandeRonde River.PlanningeffortsareunderwayfortheOregonandIdahodrainages.Viabilitycriteria recommendedbytheictrtarebeingusedinformulatingrecoveryobjectiveswithineach ofthemanagementunitplanningefforts. TRTandRecoveryPlanCriteria TheNOAAFisherieshasinitiatedrecoveryplanningfortheSnakeRiverdrainage, organizedaroundasubsetofmanagementunitplanscorrespondingtostateboundaries.a tributaryrecoveryplandevelopedundertheauspicesofthelowersnakeriverrecovery Board(WashingtonState)wasacceptedbyNOAAFisheriesin2005).TheLSRBPlan providesrecoverycriteria,targetsandtributaryhabitatactionplansforthetwo populationsofsteelheadinthelowersnakempgalongwiththetouchetriver(mid ColumbiaSteelheadDPS)andtheWashingtonsectionsoftheGrandeRondeRiver. PlanningeffortsareunderwayfortheOregonandIdahodrainages.Viabilitycriteria recommendedbytheictrtarebeingusedinformulatingrecoveryobjectiveswithineach ofthemanagementunitplanningefforts.theictrtrecoverycriteriaarehierarchicalin nature,withesu/dpslevelcriteriabeingbasedonthestatusofnaturaloriginsteelhead assessedatthepopulationlevel.adetaileddescriptionoftheictrtviabilitycriteriaand theirderivation(ictrt,2007)canbefoundat www.nwfsc.noaa.gov/trt/col/trt_viability.cfm.undertheictrtapproach,populationlevel assessmentsarebasedonasetofmetricsdesignedtoevaluateriskacrossthefourviable salmonidpopulationelements abundance,productivity,spatialstructureanddiversity (McElanyetal.2000).TheICTRTapproachcallsforcomparingestimatesofcurrent naturaloriginabundance(measuredasa10yeargeometricmeanofnaturalorigin spawners)andproductivity(estimateofreturnperspawneratlowtomoderateparent spawningabundance)againstpredefinedviabilitycurves.inaddition,theictrt 116

developedasetofspecificcriteria(metricsandexampleriskthresholds)forassessingthe spatialstructureanddiversityrisksbasedoncurrentinformationrepresentingeach specificpopulation.theictrtviabilitycriteriaaregenerallyexpressedrelativeto particularriskthreshold lowriskisdefinedaslessthana5%riskofextinctionovera100 yearperiodandverylowriskaslessthana1%probabilityoverthesametimeperiod. SnakeRiverSteelheadDPS:ICTRTExampleRecoveryScenarios TheICTRTrecommendsthateachextantMPGshouldincludeviablepopulations totalingatleasthalfofthepopulationshistoricallypresent,withallmajorlifehistory groupsrepresented.inaddition,theviablepopulationswithinanmpgshouldinclude proportionalrepresentationofatlargeandverylargepopulationshistoricallypresent. WithinanyparticularMPG,theremaybeseveralspecificcombinationsofpopulationsthat couldsatisfytheictrtcriteria.theictrtidentifiedexamplescenariosthatwouldsatisfy thecriteriaforallextantmpgs(ictrt,2007).ineachcasetheremainingpopulationsinan MPGshouldbeatorabovemaintainedstatus. LowerSnakeRiverMPG:TheICTRTrecommendsthatbothpopulations(Tucannon RiverandAsotinCreek)inthisMPGshouldberestoredtoviablestatus,withatleastone meetingthecriteriaforhighlyviable. GrandeRondeMPG:Twoofthefourpopulationsshouldberestoredtoviablestatus tomeetictrtcriteriaforthismpg.theictrtexamplescenarioincludestheupper GrandeRondeRiver(largesize)andeitherJosephCreek(currentlowriskstatus)orthe LowerGrandeRondeRiver. ImnahaRiverMPG:TheImnahaRiverpopulationshouldmeethighlyviablestatus forthisonepopulationmpgtoberatedasviableunderthebasicictrtcriteria. ClearwaterRiverMPG:ThisMPGincludesfiveextantandoneextirpated(North ForkClearwaterRiver)populations.TheICTRTexamplerecoveryscenarioincludesthe LowerClearwaterRiver(largesize)andtwooutofthefollowingthreepopulations(Lochsa River,SelwayRiverandSouthForkClearwaterRiver). SalmonRiverMPG:ThisrelativelylargeMPGincludes11extantand1extirpated (PantherCreek)populations.TheICTRTexamplescenarioforthisMPGincludes considerationforhistoricalpopulationsize,inclusionofbothmajorlifehistorypatterns(a andbruntiming),andachievingadistributionofviablepopulationsacrosstheregion occupiedbyextantpopulations.thescenarioincludeschamberlaincreek,theupper MiddleForkandtheSouthForkpopulationsalongwiththreeadditionalpopulationsat leasttwoofwhichshouldbelargeorintermediateinsize. 117

NewDataandUpdatedAnalyses AdultabundancedataseriesfortheSnakeRiverSteelheadDPSarelimitedtoasetof aggregateestimates(total,a runandb runcountedatlowergranitedam),estimatesfor twogranderondepopulations(josephcreekanduppergranderonderiver),andindex areaorweircountsforsubsectionsofseveralotherpopulations.aseriesofjuvenilecounts basedonsnorkeltransectsrepresentativeofproductionwithinseveralpopulation aggregatesarealsoavailablegoingbacktothemid 1980s. TheICTRTidentifiedthemainprioritiesforaddressingkeyuncertaintiesregarding thestatusofthisdpsasgettingpopulationspecificestimatesofannualabundanceand obtaininginformationontherelativedistributionofhatcheryspawnersatthepopulation level(ictrt,2010).twoprojectshavebeeninitiatedtogainmorespecificdataonthe distributionofspawnersamongpopulationsorgeographicaggregationsofpopulations. Preliminaryresultsfromamixedstockanalysisgeneticssamplingapproacharepromising (PeteHassemer,IDFGBoiseoffice,personalcommunication).Inaddition,adultPITtag arraysarebeinginstalledinthelowersectionsofseveraldrainages,allowingformarkrecapturedbasedestimatesforsomepopulationsorpopulationaggregates. Standardabundanceandtrends Populationlevelabundancedataseriesareavailableforjust2populationswithin thisdps,botharewithinthegranderondempg(table32).threeothertypesof abundanceindicesrepresentativeoftheremainingpopulationsareavailableandcanbe usedtoinfertheoverallstatusofthedps. ThetwopopulationleveldatasetsavailablefortheDPSbothshowadropintotal abundancesincethepreviousreview(table32,figure45).naturaloriginabundancein JosephCreekisalsodownrelativetothepreviousreviewwhilenaturaloriginabundance fortheuppergranderondeisup.bothpopulationshaverelativelyhighproportionsof naturaloriginspawners. Longertermtrendestimatesforthepopulationsdifferslightly(Table36).Both seriesbeginwithestimatesfortheearly1970sandextendthrough2009.theaverage trendoverthefulltimeperiodwasanegative1to5%peryearfortheuppergranderonde andapositive1 4%peryearforJosephCreekacrosstherangeoflongtermtrendmetrics (Table36).EstimatesofannualspawningescapementsintotheUpperGrandeRondeRiver fluctuatedaroundlowerlevelsforaprolongedperiodexceptforapeakinthemid 1980s andanincreaseinthemostrecenttwoyears.estimatedescapementsinjosephcreekwere generallylowerinthe1970s,andfluctuatedaroundhigherlevelsafteralsopeakinginthe mid 1980s.TheaggregateLGRabundanceestimatesareavailableforyearsbackto1986 87cycle.Thegeneraltrendinreturnshasbeenslightlypositiveacrossallgroups. WiththeexceptionoftheTucannonRiver,allofthepopulationswithinthisDPSare associatedwithtributariesabovelowergranitedam.annualcountsofsteelheadpassing LowerGraniteDamalongwithestimatesoftherelativeproportionsofthehatcheryand naturaloriginareavailableandcanbeusedasanindexoftrendsinaggregateproduction. FisheriesmanagersbreaktherunoverLowerGraniteintoArunandBruntypesbasedon fishlengthdatarecordedalongwiththecounts.arunreturnsarebelievedtoprimarily representreturnstolowerelevationtributariesincludingthegranderonderiver,the ImnahaRiverandsomepopulationtributariesintheClearwaterandSalmonRivers.The 118

largerbrunreturnsarebelievedtobeproducedprimarilyinhigherelevationtributariesin theclearwaterandsalmonriverbasins. Themostrecentfive yeargeometricmeantotalrun(wildplushatcheryorigin)to LowerGraniteDamwasupsubstantiallyfromthecorrespondingestimatesfortheprior BRTreviewandthetimeperiodleadinguptolisting(Table33,Figure47).Naturalorigin andhatcheryoriginreturnseachshowedincreases,althoughhatcheryfishincreasedata higherrate.boththeaggregateaandbrunestimateshaveincreasedrelativetothelevels associatedwithpriorassessments.alargeproportionofthehatcheryrunoverlower GraniteDamreturnstohatcheryracksorisremovedbyhatcheryselectiveharvestpriorto reachingspawningareas.asaresult,thehatcheryproportionsintheaggregaterunover LowerGraniteDamarenotindicativeoftheproportionsinspawningescapementsinto mostpopulationtributaries.monitoringtherelativecontributionofhatcheryreturnsto spawninginnaturalareas,particularlythoseareasnearmajorhatcheryreleasesites,isa highpriorityforimprovingfutureassessmentsinthedps. Table32.Recentabundanceandproportionnaturalorigincomparedtoestimatesatthetimeoflistingandinthe previousbrtreview.abundanceestimates(fiveyeargeometricmeanwithrangeinparentheses)corresponding tothetimeoflistingandthe2005brtbasedonbestcurrentlyavailabledata.organizedbympg. Population Joseph Creek Upper Grande Ronde River Total Spawners ( 5 year geometric mean, range) Listing Prior Current (1991-1996) (1997-2001) (2003-2008) 2135 1925 1337 1594 (1251-3171) (1212-3598) 1772 1442 (1084-2756) (949-1943) Natural Spawning Areas Natural Origin ( 5 year geometric mean) Prior (1997-2001) 2134 Listing (1991-1996) 1337 1249 Current (2003-2008) 1925 (1251-3170) (1212-3597) 1332 1425 (767-2277) (941-1943) Listing (1991-1996) % Natural Origin (5 year average) Prior (1997-2001) Current (2003-2008) 100% 100% 100% 79% 76% 99% Table33.RecentabundanceandproportionnaturaloriginforaggregatereturnstoLowerGraniteDamwith comparisonstoestimatesatthetimeoflistingandinthepreviousbrtreview.estimatesrepresentrunpriorto upstreamharvestandprespawningmortalitiesandincludefishreturningtohatcheryracksaswellasfishthat willspawninnaturalareas. Population Total Spawners ( 5 year geometric mean, range) Prior Current (1997-2001) (2003-2008) Listing (1991-1996) Natural Spawning Areas Natural Origin ( 5 year geometric mean) Prior (1997-2001) Listing (1991-1996) Current (2003-2008) Listing (1991-1996) % Natural Origin (5 year average) Prior (1997-2001) Current (2003-2008) LGR Run 77,761 85,343 162,323 11,462 10,693 18,847 15% 13% 10% A Run 61,727 70,130 144,230 8,869 8,888 15,395 14% 13% 11% B Run 15,104 14,491 33,056 2,505 1,718 3,291 17% 11% 10% Indexareadataseriesrepresentingportionsofthreeadditionalpopulationsinthe GrandeRondeandLowerSnakeMPGsareavailable(Figure46).Allfourseriesarehighly variableandshowsimilartemporalpatternstothepopulationanddpsaggregatelevel datasets. TheIdahoDepartmentofFishandGame(IDFG)hasroutinelycollectedjuvenileO. mykissdensityestimatesacrossaseriesoffixedtransectsdistributedacrosstributary habitatsinidahosincethemid 1980s.Thesamplingdesignandintensitywasnotsetupto generatetotalproductionestimatesatthepopulationorregionallevel,buttheresultsare 119

consideredtobegenerallyindicativeoftrendsintotalnaturalproduction.idfgconsiders thesetoftransectsinbchanneltypehabitatasindicativeofsteelheadproductionand aggregatesannualresultsacrosstransectsinfoursubcategories(figure48).average densitiesinareasassignedasarunhabitatstrendeddownwardsfrom1985throughthe mid 1990s,returningtolevelssimilartotheearliestyearsintheseriesafter2000.Similar patternswereobservedintransectsinnatural(areasnearhatcheryproductionrelease sites)vs.areasclassifiedaswild.areasclassifiedasbrunwildappeartofollowasimilar pattern.theaveragejuveniledensitiesinareasclassifiedbyidfgasnaturalfluctuated aroundarelativelyconstantlevelfrom1985throughthemostrecentyearintheseries (2007).).Ingeneral,themediandensitiesacrossindividualtransectserieswerethe highestforlowerelevationpopulationsortributaries(figure48).thehighestmedian densitieswereobservedinthesmalltributariesbelowhellscanyondam,thelower ClearwaterandLochsaRivers(ClearwaterMPG)andtheSecesh,LittleSalmonRiver,North ForkSalmonRiver,PantherCreekandLemhiRiver(SalmonMPG). Table34.Trendintotal(naturalareas)spawners.SnakeRiversteelhead.Comparisonofcurrenttrendstoprior reviews. Estimate (CI) Prob>1.0 Estimate (CI) Prob>1.0 Population 0.84 (0.73 0.96) 0.01 0.98 (0.85 1.13) 0.39 1.04 (0.93 1.16) 0.75 0.981 (0.85 1.13) 0.79 1998 BRT (1987-97) 1.11 (1.01 1.22) 0.98 0.98 (0.85 1.13) 0.20 Short-term trend Previous (1990-2001) Current (1995-2008) Table35.ShortTerm(since1995)populationgrowthrate(lambda)estimates.Currentestimatesvs.2005BRT shorttermtimeseries. Population Joseph Creek Upper Grande Ronde River Short-term Lambda Hatchery effectiveness= 0 Hatchery effectiveness= 1.0 2005 BRT Current 2005 BRT Current (1990-2001) (1995-2008) (1990-2001) (1995-2008) 1.02 1.08 1.02 1.08 (0.33 3.16) (0.64 1.83) (0.33 3.16) (0.64 1.83) 0.57 0.84 0.57 0.84 1.03 (0.91 1.167) 0.89 0.96 (0.79 1.15) 0.10 0.97 (0.82 1.15) 0.14 0.92 (0.65 1.29) 0.09 120

Table36.LongtermtrendsinspawningabundanceforSnakeRiverSteelheadpopulations. Trendintotal Spawners Lambda(HF=0) Lambda(HF=1) Population Years Estimate(CI) Estimate(CI) Prob>1 Estimate(CI) Prob>1 Joseph 1970 2010 1.04(1.01 1.07) 1.01(0.83 1.24) 0.56 1.01(0.83 1.24) 0.56 UGR 1967 2010 0.99(0.97 1.01) 0.97(0.87 1.09) 0.296 0.95(0.85 1.07) 0.18 121

Figure45.SnakeRiverSteelheadpopulationestimates.Thedarklineindicatesnaturaloriginspawnernumbers, light(red)lineindicatestotalnaturalspawners(includingnaturallyspawninghatcheryfish).thedottedlineis thelong term(wholetimeseries)meanofthetotalspawers,andthegreenshadedareaindicates+/ 1standard deviationaroundthemean. 122

Figure46.SnakeRiverSteelheadindexareas.Annualspawnerabundanceforindexareaonly(naturalorigin andtotal). 123

Figure47.LowerGraniteDamCountsforSnakeRiverSteelhead. 124

Figure48.JuvenileSnakeRiverSteelheadparrdensitiesobservedinIDFGsnorkeltransects. 125

CurrentStatus:ICTRTViabilityCriteria Onlytwoofthetwenty threeextantpopulationsofsnakeriversteelheadhave estimatesofpopulationspecificspawningabundance.theictrtusedaggregateestimates ofabundanceatlowergranitedamalongwithjuvenileindicesofabundanceavailablefor someareastoinferabundanceandproductivityratingsforpopulationswithoutspecific adultabundancetimeseries(ictrt,2010).bothpopulationswithspecificspawning abundancedataseriesareinthegranderondempg.theratingforthejosephcreek populationoverallviabilityratingremainedashighlyviableafterupdatingtheanalysisto includereturnsthroughthe2009spawningyear.theincreaseinnaturaloriginabundance fortheotherpopulationwithadataseries,theuppergranderonderiver,wasnot sufficienttochangetheabundance/productivitycriteriaratingfrommoderaterisk. Changesinstatusasaresultofupdatingtheaggregateorisolatedindexabundanceseries usedtoassigngenericratingstotheremainingpopulationswererelativelysmall(see discussionundershorttermabundanceandtrendsabove).thereforetheratingsassigned tothosepopulationsinthepreviousictrtstatusreview(ictrt,2010)wereretainedin Table37. TheICTRTidentifiedobtainingannualestimatesofpopulationlevelspawning abundanceandhatchery/wildproportionsasamongthehighestpriorityopportunitiesfor improvedassessmentsofinteriorbasinesus/dpss(ictrt,2010).directsurveymethods forassessingannualspawningescapementintoidahotributarieshavebeentriedinthe pastandhaveprovedextremelydifficulttocarryoutinawaythatproducesconsistent estimatesacrossareasandyears,largelybecauseofvisibilityandaccessconditionsduring thelatespringsteelheadspawningwindow.twodifferentapproacheswithpotentialfor routinelygeneratingrepresentativeannualestimatesofspawningescapementsinto specificorsubgroupingsofpopulationshaverecentlybeeninitiated.firstyearresults frombotheffortsarepromising.initialresultsfromoneoftheapproaches,usingagenetic baselinewithrepresentationofseveralpopulationsorpopulationsubgroupingsto partitionthenaturaloriginreturnestimatesatlowergraniteamongareas,indicatethat somepopulationsassumedtobeeitheraorbrunmaysupportamixtureofthetworun types(p.hassemer,idfgpers.comm.).resultsfromthisongoingeffortandthe companionstudybasedonadultpittagdetectionsshouldallowforimprovedpopulation specificassessmentsforthenextfiveyearstatusreview. Harvest Summer runsteelheadfromtheupperbasinaredividedinto2runsbymanagers: TheA run,andtheb run.theserunsarebelievedhavedifferencesintiming,but managersseparatethemonthebasisofsizealoneinestimatingthesizeoftheruns.thearunisbelievedtooccurthroughoutthemiddlecolumbia,uppercolumbia,andsnakeriver Basins,whiletheB runisbelievedtooccurnaturallyonlyinthesnakeriveresu,inthe ClearwaterRiver,MiddleForkSalmonRiver,andSouthForkSalmonRiver. Steelheadwerehistoricallytakenintribalandnon tribalgillnetfisheries,andin recreationalfisheriesinthemainstemcolumbiariverandintributaries.inthe1970s, retentionofsteelheadinnon tribalcommercialfisherieswasprohibited,andinthemid 1980s,tributaryrecreationalfisheriesinWashingtonadoptedmark selectiveregulations. Steelheadarestillharvestedintribalfisheries,inmainstemrecreationalfisheries,and 126

thereisincidentalmortalityassociatedwithmark selectiverecreationrecreational fisheries.themajorityofimpactsonthesummerrunoccurintribalgillnetanddipnet fisheriestargetingchinooksalmon.becauseoftheirlargersize,theb rumfisharemore vulnerabletothegillnetgear.consequently,thiscomponentofthesummerrun experienceshigherfishingmortalitythanthea runcomponent(figure49).inrecent years,totalexploitationratesonthea runhavebeenstableataround5%,while exploitationratesontheb runhavegenerallybeenintherangeof15%to20%. Figure49 TotalharvestimpactsonnaturalsummersteelheadaboveBonnevilleDam.Datafor1985 1998from NMFSbiologicalopinion(PeterDygert,NMFS,personalcommunication),andfor1999 2008fromTACrun reconstruction(cindylefleur,wdfwpersonalcommunication). 127

Hatcheryreleases SteelheadhatcheryreleaseswithintheESUhavegenerallytrendeddownwardssince1990. Themostrecentfiveyearaveragereleaseisapproximately20%belowthe1997 2001 average(figure50). Figure50 HatcheryreleaseswithintheSnakeRiversteelheadDPS.Dottedlineindicatesthemeanandthe sharedareaindicatesthestandarddeviation.datasource:rmis. 128

Table37.CurrentstatusratingsusingICTRTviabilitycriteriaforSnakeRiverSteelheadpopulationsgroupedby MPG. Population Tucannon River Abundance/Productivity Metrics ICTRT Minimum Threshold 1,000 Asotin Creek 500 Natural Spawning Abundance Insufficient data Insufficient data ICTRT Productivity Insufficient data Insufficient data Integrated A/P Risk Natural Processes Risk Spatial Structure and Diversity Metrics Diversity Risk Integrated SS/D Risk Overall Viability Rating High?? Low Moderate Moderate HIGH RISK?? Maintained Low Moderate Moderate MAINTAINED? (HIGH RISK??) Lower Grande Ronde River Joseph Creek 2000-2009 1995-2004 Upper Grande Ronde River 2000-2009 1995-2004 1,000 500 1500 Wallowa River 1,000 Insufficient data 2186 (1212-4751) 1878 (573-4751) 1340 (673-1943) 1240 (673-2277) Insufficient data Insufficient data 1.94 (1.52-2.46) 2.91 (2.21-3.82) 2.13 (1.20-3.77) 2.70 (1.65-4.41) Low Moderate Moderate MAINTAINED? Very Low Very Low Low Low Viable (Moderate) HIGHLY VIABLE Very Low Moderate Moderate MAINTAINED High?? Very Low Low Low HIGH RISK?? Lower Main. Clearwater R. South Fork Clearwater R. 1,500 1,000 Lolo Creek 500 Selway R. 1,000 Lochsa R. 1,000 Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Moderate? Very Low Low Low MAINTAINED? High Low Moderate Moderate HIGH RISK? High Low Moderate Moderate High Very Low Low Low High Very Low Low Low HIGH RISK? HIGH RISK? HIGH RISK? Little Salmon R. 500 South Fork Salmon R. 1,000 Secesh R. 500 Chamberlain Creek 500 Lower Middle Fork Salmon R. Upper Middle Fork Salmon R. 1,000 1,000 Panther Creek 500 North Fork Salmon R. 500 Lemhi R. 1,000 Pahsimeroi R. 1,000 East Fork Salmon R. 1,000 Up Main. Salmon R. 1,000 Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Moderate Low Moderate Moderate MAINTAINED? High Very Low Low Low High Low Low Low High Low Low Low High Very Low Low Low High Very Low Low Low Moderate High Moderate High Moderate Low Moderate Moderate Moderate Low Moderate Moderate Moderate Moderate Moderate Moderate Moderate Very Low Moderate Moderate Moderate Very Low Moderate Moderate HIGH RISK? HIGH RISK? HIGH RISK? HIGH RISK? HIGH RISK? HIGH RISK? MAINTAINED? MAINTAINED? MAINTAINED? MAINTAINED? MAINTAINED? 129

SnakeRiverSteelhead:UpdatedRiskSummary ThelevelofnaturalproductioninthetwopopulationswithfulldataseriesandtheAsotin Creekindexreachesisencouraging,butthestatusofmostpopulationsinthisDPSremains highlyuncertain.population levelnaturaloriginabundanceandproductivityinferred fromaggregatedataandjuvenileindicesindicatethatmanypopulationsarelikelybelow theminimumcombinationsdefinedbytheictrtviabilitycriteria.agreatdealof uncertaintyremainsregardingtherelativeproportionofhatcheryfishinnaturalspawning areasnearmajorhatcheryreleasesites.thereislittleevidenceforsubstantialchangein ESUviabilityrelativetothepreviousBRTandICTRTreviews.Overall,therefore,thenew informationconsidereddoesnotindicateachangeinthebiologicalriskcategorysincethe timeofthelastbrtstatusreview. References Good, T.P., R.S. Waples and P. Adams (editors). 2005. Updated status of federally listed ESUs of West Coast salmon and steelhead. U.S. Dept. of Commer, NOAA Tech. Memo. NMFS-NWFSC-66, 598 p. ICTRT, 2003. Independent populations of chinook, steelhead and sockeye for listed evolutionarily significant units within the interior Columbia River domain. Interior Columbia Basin Technical Recovery Team Technical Review Draft. July 2003. 171 p. ICTRT, 2007. Viability criteria for application to interior Columbia Basin salmonid ESUs. Interior Columbia Basin Technical Recovery Team. Technical Review Draft. March 2007. 91 p + appendices and attachments. ICTRT(2010)Currentstatusreviews:InteriorColumbiaBasinsalmonESUsandsteelhead DPSs.Vol.1.SnakeRiverESUs/DPS.786p.+attachments 130

PugetSoundChinooksalmon 14 TheESUwasidentifiedandassessedaspartoftheChinooksalmoncoastwidestatus reviewin1998(myersetal.1998)andreassessedin2005(goodetal.2005).theesuwas listedasathreatenedspeciesonmarch24,1999;threatenedstatusreaffirmedonjune28, 2005.TheESUincludesallnaturallyspawnedpopulationsofChinooksalmonfromrivers andstreamsflowingintopugetsoundincludingthestraitofjuandefucafromtheelwha River,eastward,includingriversandstreamsflowingintoHoodCanal,SouthSound,North SoundandtheStraitofGeorgiainWashington,aswellastwenty sixartificialpropagation programs:thekendalcreekhatchery,marblemounthatchery(fall,springyearlings,spring subyearlings,andsummerrun),harveycreekhatchery,whitehorsespringspond,wallace RiverHatchery(yearlingsandsubyearlings),TulalipBay,IssaquahHatchery,SoosCreek Hatchery,IcyCreekHatchery,KetaCreekHatchery,WhiteRiverHatchery,White AcclimationPond,HuppSpringsHatchery,VoightsCreekHatchery,DiruCreek,ClearCreek, KalamaCreek,GeorgeAdamsHatchery,Rick spondhatchery,hammahammahatchery, Dungeness/HurdCreekHatchery,ElwhaChannelHatcheryChinookhatcheryprograms. PreviousStatusReviewsandRecoveryDocuments Inthe2005review(Goodetal.2005),itwasdeterminedthatoverall,thenatural spawningescapementforpugetsoundchinooksalmonpopulationswereimproved relativetothoseatthetimeofthepreviousstatusreviewofpugetsoundchinooksalmon conductedwithdatathrough1997(myersetal.1998).also,theoveralltrendsinnatural spawningescapementsforpugetsoundchinooksalmonpopulationsestimatedin2005 remainedsimilartothatpresentedinthepreviousstatusreview(datathrough1997),with somepopulationsdoingmarginallybetterandothersworse. ArecoveryplanwassubmittedbySharedStrategyandadoptedbyNMFSinJanuary 2007.ThePugetSoundTechnicalRecoveryTeam(TRT)finalizedtheirpopulation identificationforthisesuin2006(ruckelshausetal.2006)anddevelopedtheirviability planningrangesin2002(pstrt2002). ESUStatusataGlance Listing status: Threatened Historical peak run size 690,000 (1908) Historical populations 31 Peak run size since 1990 152,000 (1990) Maximum spawners since 1990 45,000 (2004) Extant populations 22 Geographic recovery regions 5 Viablespawnerabundanceatequilibrium Forpopulations SeeTable38 ForESU 307,500 Numberofpopulationsperregionwithlow extinctionriskforesutobeviable 2 4 14 Sectionauthor:NormaSands 131

ESU Structure The Puget Sound Chinook salmon ESU is composed of 31 historically quasi-independent populations, 22 of which are extant (Ruckelshaus et al. 2006). The populations are distributed in 5 geographic regions identified by the TRT (PSTRT 2002) based on similarities in hydrographic, biogeographic, and geologic characteristics of the Puget Sound basin. Maintaining populations in each region is important to the ESU viability. The TRT presented viable spawning abundances for 16 of the 22 populations in their viability report. For this status review, values for the missing populations are extrapolated based on a recovered productivity equal to that of the average for the 16 populations (recruits per spawner (R/S) = 3.2), and maximum sustainable yield (MSY) spawner estimates based on the linear relationship between maximum observed spawners and MSY spawners for the 16 populations, and a linear relationship between MSY spawners and replacement spawners. These are tentative estimates until population specific estimates are available. In Table38, the spawning abundances at replacement (growth rate = 1) are the minimum target viability abundance. It is important to note that these are viability abundances assuming low (replacement only) productivity higher productivity would result in lower viable spawning abundances. For example, spawners at MSY represent the spawning level at MSY under properly functioning habitat conditions. As populations begin to recover, additional viability analysis should be undertaken to determine the variability and viability of each population. Table38 Extant populations of Chinook salmon in the Puget Sound Chinook ESU, grouped by geographic region, and their minimum viability spawning abundance and abundance at equilibrium or replacement, and spawning abundance and productivity (R/S) at maximum sustainable yield (MSY) for a recovered state as determined by EDT analyses of properly functioning conditions and expressed as a Beverton-Holt function (values in regular font are from PSTRT 2002 and those in italics are derived as explained in text). The TRT minimum viability abundance was the equilibrium abundance or 17,000, which ever was less. TRT viability Under Properly Functioning Conditions (PFC) Region & Population min viability abundance equilibrium abundance spawners at MSY prod at MSY Strait of Georgia NF Nooksack 16,000 16,400 3,680 3.4 SF Nooksack 9,100 9,100 2,000 3.6 Whidbey Basin Lower Skagit 16,000 15,800 3,900 3.0 Upper Skagit 17,000 26,000 5,368 3.8 Cascade 1,200 1,200 290 3.0 Lower Sauk 5,600 5,600 1,400 3.0 Upper Sauk 3,000 3,000 750 3.0 Suiattle 600 600 160 2.8 NF Stillaguamish 17,000 18,000 4,000 3.4 SF Stillaguamish 15,000 15,000 3,600 3.3 Skykomish 17,000 39,000 8,700 3.4 Snoqualmie 17,000 25,000 5,500 3.6 Central/South Puget Sound 132

Sammamish (1) 10,500 10,500 2,400 3.2 Cedar 11,500 11,500 2,600 3.2 Green 17,000 22,000 4,900 3.2 White 14,200 14,200 3,200 3.2 Puyallup 17,000 18,000 5,300 2.3 Nisqually 13,000 13,000 3,400 3.0 Hood Canal Skokomish 12,800 12,800 2,900 3.2 Mid Hood Canal (2) 11,000 11,000 2,500 3.2 Strait of Juan de Fuca Dungeness 4,700 4,700 1,000 3.0 Elwha 15,100 15,100 3,400 3.2 ESU 261,300 307,500 70,948 3.2 1. The Sammamish population was referred to as North Lake Washington population in the TRT viability report. 2. The Mid Hood Canal population consists of spawning aggregations from Dosewallips, Duckabush, and Hamma Hamma. Only the Dosewallips was listed in the TRT viability report. NewDataandUpdatedAnalyses Thisstatusreportreflectsupdatesinpopulationdatathrough2009thatwere receivedasdatafilesfromthecomanagersasresultoftherequestfordatainthefederal register.availabilityofupdatesforageandhatcherycontributiondatavariedfrom populationtopopulationandestimateswereobtainedfromtheannualpost seasonharvest reportsprovidedbycomanagers.agedataarenotavailableforallyearswithescapement data.missingagedistributiondataareestimatedbyweightingtheaveragecohortage distributionbytheescapementabundanceforyearscontributingtothecohortreturn (Sands2007).Itisimportanttonotethatdatacollectionmethodologieshavechanged somewhatoverthecourseofthetimeseriesanalyzed,whichcreatessomeuncertaintyand potentialbiasinthecalculationsoftrends. Thisstatusanalysisstartswithdatafrom1985whenwehaveescapementdata fromallpopulationsintheesu.inadditiontoincludingadditionalrecentyearsof spawningdatacomparedtothe2005statusreview,thereportalsoincorporates updates/correctionsmadeinpastescapement,age,andhatcherycontributiondatafor severalofthepopulations. Harvestrateestimates,agespecificformixedmaturitycatchandmature(terminal) catcharefromthepacificsalmoncommissionchinooktechnicalcommittee sexploitation rateanalysisofcoded wiretaggedhatcheryindicatorstocks.estimateswereavailable throughthe2006broodyearage2catch(catchin2008).tocompleteestimatesforbrood years2004to2006,theaverageage specificrateforthepreviousthreeyearsofavailable datawasused.thusforbroodyear2006,therateismostlyfromthepreviousyears.catch isestimatedasaproductofharvestrateandescapement,sointhemostrecent5yearsas harvestrateshavenotvariedgreatlyfromyeartoyear;variationsincatchareinfluenced morebyvariationsinescapementestimates. ProductivityestimationisfromcohortrunreconstructionusingthePSTRT Abundance&ProductivityExcelFiles(Sands2009). 133

Abundance of Natural Spawners and Natural-Origin Pre-Harvest Recruits During the period 1985-2009, for which we have escapement data for all populations in the ESU, ESU natural spawning abundance was at a mid range from 1985-1990, declined during the period from 1991-1999, increased from 2000-2004, and then decreased again from 2004-2009, with 2009 being back down at the 1990 s low levels (Figure51). The highest abundances were in 2002, 2004, and 2006, with 2004 having the highest abundance with 45,000 NOR spawners and 60,000 total (NOR + hatchery) natural spawners. Hatchery fish contributed from 15% to 40% of the natural spawners for the ESU as a whole during these years. Figure51 Totalnaturalspawners(naturalandandhatcheryorigincombined)forthePugetSoundChinookESU (solidline)andthenatural originspawners(dashedline). Averageescapements(geometricmean)forfive yearintervalsaregivenintable39 alongwithestimatesoftrends 15 overtheintervalsfornaturalescapement(hatcheryplus natural origin)andfornatural originonlyescapement.annualescapementdata,bothtotal naturalspawnersandnaturaloriginspawnersaregivenintable44. The most recent 5-year (2005-2009) geometric mean of natural spawners in populations of Puget Sound Chinook salmon ranges from 81 (in the Mid-Hood Canal population) to almost 10,345 fish (in the upper Skagit population) (Table39, Figure52 to Figure57). Most populations contain natural spawners numbering in the high hundreds (median recent natural escapement = 909).NotrendisnotableforthetotalESUescapements;whiletrendsvary fromdecreasingtoincreasingamongpopulations. 15 Trendiscalculatedoverthenaturallogofescapement,takingtheexponentialto transformtheresultbacktonormalnumbers. 134

Table39 Abundance Five-year geometric means for adult (age 3+) natural (natural and hatchery origin) and natural origin only spawners for the ESU with ranges and medians given for the populations. The trend is calculated over 5 periods of 5 year averages. Natural Escapement Natural Origin Escapement Year Range ESU pop range pop median ESU pop range pop median 85-89 36,750 46-8,276 770 28,601 30-7,965 725 90-94 26,094 101-5,511 395 19,511 20-5,304 381 95-99 28,981 104-6,792 479 19,011 18-5,982 380 00-04 45,214 202-12,109 999 32,794 71-11,678 430 05-09 37,409 81-10,345 909 25,848 44-9,724 482 Trend 1.06 0.77-2.42 1.07 1.03 0.67-2.35 1.00 135

Figure52 SpawningabundancefortheCentral/SouthMajorPopulationGroupinthePugetSoundChinook salmonesu.thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnatural spawners(includingnaturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries) meanofthetotalspawners,andthegreenshadedareaindicates+/ 1standarddeviationaroundthemean. 136

Figure53 SpawningabundancefortheNorthWestorStraitofJuandeFucaMajorPopulationGroupinthe PugetSoundChinooksalmonESU.Thedarklineindicatesnaturaloriginspawnernumbers,light(red)line indicatestotalnaturalspawners(includingnaturallyspawninghatcheryfish).thedottedlineisthelong term (wholetimeseries)meanofthetotalspawners,andthegreenshadedareaindicates+/ 1standarddeviation aroundthemean. Figure54 SpawningabundancefortheCentralWestorHoodCanalMajorPopulationGroupinthePugetSound ChinooksalmonESU.Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotal naturalspawners(includingnaturallyspawninghatcheryfish).thedottedlineisthelong term(wholetime 137

series)meanofthetotalspawners,andthegreenshadedareaindicates+/ 1standarddeviationaroundthe mean. Figure55 SpawningabundancefortheNorthEastorStraitofGeorgiaMajorPopulationGroupinthePuget SoundChinooksalmonESU.Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicates totalnaturalspawners(includingnaturallyspawninghatcheryfish).thedottedlineisthelong term(whole timeseries)meanofthetotalspawners,andthegreenshadedareaindicates+/ 1standarddeviationaroundthe mean. 138

Figure56 SpawningabundancefortheCentralEastorWhidbyBasinMajorPopulationGroupinthePuget SoundChinooksalmonESU.Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicates totalnaturalspawners(includingnaturallyspawninghatcheryfish).thedottedlineisthelong term(whole 139

timeseries)meanofthetotalspawners,andthegreenshadedareaindicates+/ 1standarddeviationaroundthe mean. Figure57 SpawningabundancefortheCentralEastorWhidbyBasin(continued)MajorPopulationGroupin thepugetsoundchinooksalmonesu.thedarklineindicatesnaturaloriginspawnernumbers,light(red)line indicatestotalnaturalspawners(includingnaturallyspawninghatcheryfish).thedottedlineisthelong term (wholetimeseries)meanofthetotalspawners,andthegreenshadedareaindicates+/ 1standarddeviation aroundthemean. During this period (1985-2000), returns (pre-harvest run size) from the natural spawners was highest in 1985 and showed a decline through 1994, remained low through 1999, increased in 2000 and again in 2001 and has shown a decline through 2009, with 2009 having the lowest returns since 1997. Pre-harvest returns reflect productivity of the populations due to environmental conditions, while spawning abundance returns reflects both environmental variation and the pressures from harvest and broodstock take. Short and long term trends and growth rates (lambda) are provided in Table40. Estimates of lambda are provided for two alternative assumptions: that hatchery fish have zero success on the spawning grounds and that their spawning success is equivalent to natural origin fish. For the 140

Puget Sound Chinook populations, it makes a big difference as to the estimate of NOR growth and productivity whether the hatchery fish are supporting natural spawning production. It would be good to be able to get estimates of hatchery fish success on the spawning grounds for most all of the populations, except for populations where hatchery fish are only a small component of the natural spawners, such as the Skagit populations. Table40 ShortandlongtermpopulationtrendandgrowthrateestimatesforthePugetSoundChinookESU populations. HatcheryFish Success=0 HatcheryFish Success=1 TrendNatSp RegionsandPopulations Years w/ci Lambdaw/CI p>1 Lambdaw/CI p>1 StraitofGeorgiaRegion Lower NorthFork MiddleForkNooksack earlyrun 1995 2009 1.092 (1.023 1.165) 1.082 (0.622 1.884) 0.84 0.607 (0.232 1.589) 0.05 1984 2009 1.049 (0.995 1.106) 1.032 (0.909 1.172) 0.74 0.729 (0.571 0.93) 0.01 SouthForkNooksack Riverearlyrun 1995 2009 1.05 (0.995 1.107) 1.068 (0.507 2.251) 0.77 0.938 (0.388 2.269) 0.26 1984 2009 1.006 (0.976 1.038) 1.009 (0.883 1.154) 0.57 0.927 (0.825 1.041) 0.07 WidbyBasinRegion LowerSkagitRiverlate run 1995 2009 1.064 (0.976 1.158) 1.051 (0.404 2.733) 0.69 1.041 (0.394 2.748) 0.65 1952 2009 0.987 (0.978 0.996) 1.003 (0.926 1.086) 0.53 0.993 (0.916 1.076) 0.42 UpperSkagitRiverlate run 1995 2009 1.033 (0.968 1.103) 1.022 (0.59 1.77) 0.65 1.013 (0.574 1.787) 0.59 1952 2009 1.004 (0.997 1.01) 1.004 (0.953 1.059) 0.57 0.996 (0.945 1.051) 0.44 LowerSaukRiverlate run 1995 2009 1.054 (0.981 1.133) 1.044 (0.443 2.458) 0.68 1.033 (0.437 2.441) 0.64 1952 2009 0.994 (0.984 1.004) 1.007 (0.929 1.09) 0.57 0.999 (0.922 1.083) 0.49 UpperSaukRiverearly run 1995 2009 1.061 (0.995 1.131) 1.076 ()? 1.066 ()? 1952 2009 0.977 (0.966 0.99) 0.991 (0.909 1.081) 0.41 0.984 (0.903 1.073) 0.35 CascadeRiverearlyrun 1995 2009 1.035 (0.977 1.095) 1.02 (0.63 1.653) 0.66 1.015 (0.622 1.658) 0.62 1981 2009 1.029 (1.01 1.049) 1.023 (0.968 1.082) 0.84 1.018 (0.962 1.077) 0.79 SuiattleRiverearlyrun 1995 2009 0.955 (0.903 1.01) 0.946 (0.584 1.533) 0.19 0.939 (0.572 1.54) 0.18 1952 2009 0.981 (0.974 0.989) 0.988 (0.926 1.055) 0.35 0.982 (0.919 1.048) 0.27 141

NorthForkStillaguamish Riverlaterun 1995 2009 0.987 (0.928 1.05) 0.996 (0.59 1.681) 0.47 0.886 (0.596 1.317) 0.08 1974 2009 0.985 (0.971 1.0) 0.976 (0.898 1.062) 0.26 0.922 (0.852 0.998) 0.02 SouthForkStillaguamish Riverlaterun 1995 2009 0.915 (0.85 0.986) 0.958 (0.542 1.692) 0.26 0.958 (0.542 1.692) 0.26 1974 2009 0.991 (0.972 1.009) 0.983 (0.889 1.086) 0.34 0.983 (0.889 1.086) 0.34 SkykomishRiverlaterun 1995 2009 1.036 (0.97 1.105) 1.065 (0.688 1.65) 0.84 0.952 (0.752 1.205) 0.11 1965 2009 0.99 (0.98 1.0) 0.997 (0.934 1.064) 0.46 0.921 (0.874 0.972) 0.00 SnoqualmieRiver 1995 2009 1.075 (0.972 1.188) 1.043 (0.427 2.546) 0.67 1.0 (0.428 2.334) 0.50 1965 2009 1.021 (1.007 1.036) 1.021 (0.957 1.09) 0.76 0.993 (0.933 1.057) 0.40 Central/SouthPuget SoundRegion SammamishRiverlate run 1995 2009 1.005 (0.862 1.172) 1.01 (0.153 6.667) 0.52 0.808 (0.085 7.709) 0.22 1983 2009 0.938 (0.889 0.989) 0.948 (0.779 1.155) 0.25 0.823 (0.638 1.061) 0.05 CedarRiverlaterun 1995 2009 1.105 (1.016 1.202) 1.104 (0.645 1.887) 0.87 1.008 (0.538 1.89) 0.55 1965 2009 0.98 (0.966 0.995) 0.995 (0.903 1.097) 0.46 0.944 (0.865 1.031) 0.09 GreenRiverlaterun 1995 2009 0.952 (0.851 1.065) 1.003 (0.274 3.67) 0.51 0.835 (0.3 2.324) 0.13 1968 2009 1.01 (0.981 1.039) 0.994 (0.892 1.108) 0.45 0.799 (0.716 0.89) 0.00 WhiteRiverearlyrun 1995 2009 1.102 (1.034 1.175) 1.128 (0.583 2.185) 0.87 1.07 (0.499 2.295) 0.77 1965 2009 1.035 (1.003 1.068) 1.02 (0.859 1.21) 0.60 0.989 (0.841 1.161) 0.44 PuyallupRiverlaterun 1995 2009 0.94 (0.898 0.983) 0.936 (0.795 1.103) 0.06 0.83 (0.65 1.06) 0.03 1968 2009 1.005 (0.984 1.027) 0.977 (0.895 1.068) 0.28 0.91 (0.827 1.002) 0.03 NisquallyRiverlaterun 1995 2009 0.998 (0.931 1.069) 1.01 (0.549 1.86) 0.57 0.882 (0.294 2.644) 0.19 1968 2009 1.008 (0.988 1.027) 0.997 (0.887 1.122) 0.48 0.94 (0.828 1.068) 0.15 HoodCanalRegion Mid HoodCanallaterun 1995 2009 0.911 (0.818 1.016) 0.921 (0.224 3.787) 0.30 0.859 (0.209 3.532) 0.20 1968 2009 0.952 (0.93 0.974) 0.934 (0.781 1.118) 0.20 0.871 (0.724 1.047) 0.06 SkokomishRiverlaterun 1995 2009 1.019 0.995 0.48 0.76 0.07 142

(0.936 1.108) (0.408 2.424) (0.345 1.674) 1968 2009 0.994 (0.976 1.013) 0.982 (0.861 1.12) 0.37 0.784 (0.692 0.888) 0.00 StraitofJuandeFuca Region DungenessRiver summerrun 1995 2009 1.209 (1.093 1.336) 1.191 (0.279 5.074) 0.82 0.805 (0.269 2.408) 0.12 1986 2009 1.096 (1.039 1.156) 1.079 (0.764 1.523) 0.73 0.728 (0.53 1.001) 0.03 ElwhaRiverearlylate run 1995 2009 0.973 (0.9 1.052) 0.944 (0.394 2.261) 0.28 0.781 (0.36 1.693) 0.08 1986 2009 0.934 (0.896 0.974) 0.902 (0.717 1.135) 0.12 0.763 (0.624 0.931) 0.01 Figure58 TotalnaturaloriginreturnsofchinooktoPugetSoundinreturnyearsrepresentingtotalreturn(pre anyharvestandbroodstocktake),terminalreturn(preterminalharvestandbroodstocktake),andnatural originspawnerstothespawninggrounds. Productivity ProductivityisestimatedbasedoncohortrunreconstructionusingthePugetSoundTRT Abundance&ProductivityExcelFiles(Sands2009). Median recruits per spawner and 143

spawners per spawner for each population over the five 5-yr intervals are summarized in Table 41 provided in detail in Table45. Recruits are estimated for broodyears through 2006 (Figure 58). Since coded-wire-tag data are only available through 2009, estimates of 2005 age 5 returns and 2006 age 4 and 5 returns are made using forecast methods. The estimates for these two years are not as precise as for earlier years and will be updated as data become available. While NOR escapements have remained fairly constant during this time period (1985-2009), returns and productivity has continued to decline (Figure58, Table41). Median recruits per spawner for the last five-year period (from BY 2002-2006) is the lowest over any of the five year intervals. Table41 Productivity rangeandmedianforthepopulationsforthe5 yearranges. Recruits per Spawner Spawners per Spawner BY pop range pop median pop range pop median 1982-1986 0.6-42.8 5.51 0.2-17.2 1.23 1987-1991 0.3-44.1 2.61 0.1-3.8 0.77 1992-1996 0.3-15 2.20 0.2-3.4 1.04 1997-2001 0.5-5.2 2.65 0.3-3 0.93 2002-2006 0.3-3.6 1.52 0.1-1.6 0.65 Trend -12.3 - +0.3-1.08-3.1 - +0.2-0.08 Spatial Structure and Diversity Indices of spatial distribution and diversity have not been developed at the population level. At the ESU level, a diversity index may be used to determine changes in distributions of abundance among the 22 populations and among the 5 geographic regions. The Shannon H diversity index was used to measure diversity of spatial distribution and the results are summarized over 5-year intervals in Table42. For both distribution among populations and among regions, the diversity is declining, due primarily to the increased abundance of returns to the Whidbey Region, Table42 Diversity/SpatialStructureofESU ShannonDiversityIndex 5-year ranges Diversity Indices Populations Regions 1985-1989 2.356 0.989 1990-1994 2.416 0.962 1995-1999 2.328 0.890 2000-2004 2.253 0.798 2004-2009 2.232 0.768 Trend -0.041-0.061 Population Viability 144

The Puget Sound TRT provided a minimum viability spawning target for each population in their viability report (Table 1, Ruckelshaus et al 2002 and Table38 of this report). The TRT report and a Shared Strategy document (Table 1: Chinook Planning Targets and Ranges 5/8/02 on shared Strategy web site) gave parameters for Beverton-Holt spawner recruits developed by the state and tribal comanagers (WDFW&Tribes) using EDT and NMFS properly functioning conditions (Table38). The estimated spawner recruit functions were based on survival patterns experienced in the early 1990 s. Those survival patterns appear to be relevant to current conditions because marine survival (as measured by returns of hatchery releases) has been relatively low since the mid- 1980 s. Recovery spawner recruit curves have been constructed for each population with observed recruit per spawner points superimposed on the graph (Figure62 -- Figure67). Harvest expressed as Adult Equivalent Exploitation Rate (AEQ ER) PugetSoundChinookareharvestedinPacificOceanfisheries,inPugetSoundfisheries,and interminalfisherieswithinrivers.theymigratetothenorthasjuveniles,sonearlyall oceanfisheryimpactsoccurinoffthecoastsofcanadaandalaskawheretheyaresubject tothepacificsalmontreaty.fisherieswithinpugetsoundaremanagedbythestateand tribalco managersunderaresourcemanagementplan.fisheryimpactratesvarywidely amongregionswithinpugetsoundprimarilybecauseofdifferentterminalarea management.hoodcanalandsouthsoundstockssupportrelativelyintenseterminalarea fisheriesdirectedathatcheryfishproducedlargelytosupporttribalandrecreational fisheries. Cohort exploitation rates, expressed as Adult Equivalent Exploitation Rate (AEQ ER), are estimated separately for each population based on harvest of hatchery indicator stocks and using population specific age estimates applied to the age structure of the population. ESU-level AEQ ER summary data are provided in Table43 and population specific data are found in Table46. Estimated trends in exploitation rates from broodyears 1982 to 2006 exhibited a decreasing trend when measured over the five 5-year intervals. However, further examination of the data shows that exploitation was least over the 1992-1996 broodyears and has been increasing over the past 10 years for both ocean and terminal fisheries. Estimates are based on cohort analysis using harvest rate estimates of hatchery indicator stocks from the CTC and applied, using the appropriate indicator stock(s) to each natural population. However, exploitation rates may also be expressed as calendar year rates (proportion of escapement plus catch in a calendar year that is catch). These estimates were made over all populations within each geographical region and are summarized in Figure59 and Figure60 for total and terminal only exploitation rates, respectively. Terminal fisheries are defined as those fishing on the mature portion of the population returning to spawn that year (includes net fisheries in Puget Sound). 145

PopulationsfromallregionswithinPugetSoundshowasimilarpatternofdeclining exploitationratesinthe1990sandincreasingexploitationratessincethen.thisis primarilyaresultofcanadianinterceptionsofpugetsoundchinookoffthewestcoastof VancouverIsland(WCVI).Duringthe1990sCanadasharplyreducedfisheriesoffWCVIin responsetodepressedstocks.sincethen,wcvistockstatushasimprovedsomewhatand CanadianmanagershavechangedthetemporalpatternoffishingtoavoidWCVIstocks. ThishasresultedinincreasedimpactsonPugetSoundstocks. Terminal fisheries represented a substantial proportion of the total exploitation rate in the late 1980 s and early 1990 s. The proportion was lowest during the 1995-1999 period and has been increasing in all areas again since then. The exception is the North Region (Nooksack) where the proportion of terminal fisheries has always been low; however, the most recent five years has the highest proportion (0.10). Hatchery releases Hatchery releases of all salmon species except sockeye and steelhead have been trending down in Puget Sound since 1990 (Figure61). Puget Sound has a mixture of production (for harvest) and conservation (to supplement natural spawning of the natural populations) hatchery releases. 146

Table43 Brood year adult-equivalent exploitation rate ranges and medians for the five 5-year intervals for ocean (mixed-maturity) and terminal (mature) fisheries and total exploitation rate estimated for each of the 22 populations. Trends over the 5-year intervals are also provided. Mix Mat Fishery Mature Fishery Total AEQ ER BY pop range pop median pop range pop median pop range pop median 1982-1986 0.36-0.72 0.58 0.02-0.39 0.15 0.44-0.9 0.77 1987-1991 0.29-0.65 0.55 0.01-0.29 0.10 0.39-0.84 0.67 1992-1996 0.22-0.56 0.38 0-0.32 0.04 0.23-0.8 0.43 1997-2001 0.29-0.53 0.45 0.01-0.35 0.09 0.31-0.73 0.51 2002-2006 0.09-0.63 0.42 0.02-0.33 0.16 0.12-0.72 0.56 Trend -0.12 - +0.02-0.04-0.03 - +0.01-0.01-0.15 - +0.02-0.05 147

Figure59 TrendsinPugetSoundsalmontotalexploitationrates(proportionoftotalreturntakenbyall fisheriesinreturnyear)bycalendaryearforeachmajorpopulationgroup. 148

Figure60 TrendsinPugetSoundChinooksalmonterminalharvestrates(proportionofterminalruntakenby fisheries)bycalendaryearforeachmajorpopulationgroup. 149

Figure61 PugetSoundhatcheryreleases.Datasource:RMIS. 150

PugetSoundChinooksalmon:UpdatedRiskSummary AllPugetSoundChinookpopulationsarewellbelowtheTRTplanningrangefor recoveryescapementlevels.mostpopulationsarealsoconsistentlybelowthespawnerrecruitlevelsidentifiedbythetrtasconsistentwithrecovery.acrosstheesu,most populationshavedeclinedinabundancesomewhatsincethelaststatusreviewin2005, andtrendssince1995aremostlyflat.severaloftheriskfactorsidentifiedbygoodetal. (2005)arealsostillpresent,includinghighfractionsofhatcheryfishinmanypopulations andwidespreadlossanddegradationofhabitat.manyofthehabitatandhatcheryactions identifiedinthepugetsoundchinookrecoveryplanareexpectedtotakeyearsordecades tobeimplementedandtoproducesignificantimprovementsinnaturalpopulation attributes,andthesetrendsareconsistentwiththeseexpectations.overall,thenew informationonabundance,productivity,spatialstructureanddiversitysincethe2005 reviewdoesnotindicateachangeinthebiologicalriskcategorysincethetimeofthelast BRTstatusreview. References GoodTP,WaplesRS,AdamsP(2005)UpdatedstatusoffederallylistedESUsofWestCoast salmonandsteelhead.u.s.dept.commer.,noaatech.memo.nmfs NWFSC 66.,p. 598. Myers,J.M.,R.G.Kope,G.J.Bryant,D.J.Teel,L.J.Lierheimer,T.C.Wainwright,W.S.Grant, F.W.Waknitz,K.Neely,S.Lindley,R.S.Waples.1998.StatusreviewofChinooksalmon fromwashington,idaho,oregon,andcalifornia.u.s.dept.ofcommerce,noaatech. Memo.,NMFS NWFSC 35,443p. PugetSoundTechnicalRecoveryTeam(PSTRT).April30,2002.Planningrangesand preliminaryguidelinesforthedelistingandrecoveryofthepugetsoundchinook SalmonEvolutionarilySignificantUnit. http://www.nwfsc.noaa.gov/trt/puget_docs/trtpopesu.pdf20pp. Ruckelshaus,M.H.,K.P.Currens,W.H.Graeber,R.R.Fuerstenberg,K.Rawson,N.J.Sands,and J.B.Scott.2006.IndependentpopulationsofChinooksalmoninPugetSound.NOAA TechnicalMemorandumNMFS NWFSC 78.145pp. Sands, N. J. 2009. A user s guide to the abundance and productivity (A & P) tablesas developedforpugetsoundsalmon. From the Puget Sound Technical Recovery Team (PS TRT) Abundance and Productivity (A & P) Workgroup. Fourthdraft, 20April, 2009. (Available from N. J. Sands, Northwest FisheriesScience Center, 2725 Montlake Blvd. E., Seattle, WA 98112.) Sands,N.J.2007.Estimating missing age data for Pacific salmon cohort run reconstruction using the age engine. Draft,28September,2007.(AvailablefromN.J.Sands,Northwest FisheriesScienceCenter,2725MontlakeBlvd.E.,Seattle,WA98112.) SharedStrategy2007.PugetSoundRecoveryPlan.AdoptedbyNMFSJanuary19,2007. http://www.nwr.noaa.gov/salmon Recovery Planning/Recovery Domains/Puget Sound/PS Recovery Plan.cfm 151

152

Table44 PugetSoundChinookaveragenatural(naturaloriginandhatchery)andnatural originonlyspawnersandpercenthatcherycontributionsforfiveyearintervals.spawningabundanceaveragesaregeometricmeansandhatcherycontributionaveragesarearithmetic. 8/27/2010 Return Years 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 Populations Nat % NOR Nat % NOR Nat % NOR Nat % NOR Nat % NOR North + Middle Fork 268 24% 204 101 47% 52 471 71% 96 3,464 93% 229 1,666 82% 276 Nooksack South Fork Nooksack 305 11% 309 171 24% 126 217 37% 133 398 38% 235 388 37% 244 Lower Skagit 2,334 4% 2442 1,440 4% 1,385 1,006 4% 968 2,715 3% 2,626 2,163 4% 2,067 Upper Skagit 8,276 4% 8627 5,511 4% 5,304 6,087 2% 5,982 12,109 4% 11,678 10,345 6% 9,724 Upper Cascade 186 2% 202 185 2% 181 208 2% 204 366 2% 359 336 2% 329 Lower Sauk 739 4% 756 391 4% 377 415 4% 397 825 5% 785 777 5% 742 Upper Sauk 913 4% 945 399 4% 384 262 4% 252 420 4% 405 504 4% 486 Suiattle 693 3% 677 298 3% 288 381 3% 368 409 3% 397 259 3% 250 North Fork Stillaguamish 802 2% 836 679 26% 500 904 37% 564 1,173 30% 809 943 46% 478 South Fork Stillaguamish 256 0% 258 298 0% 298 240 0% 240 210 0% 210 99 1% 98 Skykomish 3,334 14% 2967 2,280 27% 1,626 3,228 47% 1,637 4,760 36% 3,030 3,309 28% 2,358 Snoqualmie 888 11% 821 995 15% 839 1,141 33% 710 2,446 13% 2,131 1,592 16% 1,333 Sammamish 348 18% 320 219 33% 131 151 50% 62 244 48% 120 249 77% 56 Cedar 809 8% 810 388 21% 302 345 28% 241 408 34% 268 876 18% 716 Green/ Duwamish 6,676 58% 3569 5,239 56% 2,214 6,792 68% 2,007 6,335 37% 3,921 3,077 56% 1,288 White 46 8% 70 322 25% 230 487 17% 392 1,353 12% 1,184 1,869 30% 1,306 Puyallup 1,206 20% 1094 2,468 16% 2,080 2,287 30% 1,575 1,637 30% 1,137 1,960 60% 775 Nisqually 390 17% 682 779 22% 609 722 20% 576 1,295 32% 875 1,892 69% 566 153

Skokomish 2,215 48% 1226 895 48% 456 1,046 60% 406 1,479 54% 455 1,109 55% 456 Mid Hood Canal 154 22% 287 110 21% 86 176 16% 148 202 21% 158 81 39% 44 Dungeness 174 83% 34 117 83% 20 104 83% 18 520 84% 71 417 59% 161 Elwha Nat Spawners 2,248 42% 1543 653 35% 417 722 59% 269 424 46% 211 575 66% 185 ESU 33,260 86% 28,680 23,938 75% 17,905 27,392 63% 17,245 43,192 72% 31,294 34,486 69% 23,938 Table45 PugetSoundChinookpopulationaverageproductivityforfive yearintervalsmeasuredasrecruitsperspawner(r/s)andspawnersperspawner (S/S).Trendoverthefiveintervalsisalsogiven. Brood Years 1982-1986 1987-1991 1992-1996 1997-2001 2002-2006 Trend Populations R/S S/S R/S S/S R/S S/S R/S S/S R/S S/S R/S S/S North + Middle Fork Nooksack 5.56 2.52 2.83 1.28 0.61 0.39 0.55 0.31 0.32 0.11-1.28-0.58 South Fork Nooksack 2.01 0.93 1.30 0.62 1.60 0.99 1.66 0.94 2.99 0.92 0.23 0.03 Lower Skagit 5.34 1.08 1.55 0.39 3.33 1.58 4.80 3.03 0.90 0.66-0.56 0.18 Upper Skagit 4.93 0.96 2.80 0.79 3.88 1.48 2.81 1.85 1.08 0.68-0.77 0.05 Upper Cascade 8.02 1.49 2.88 1.08 2.41 1.31 3.21 1.73 1.76 0.86-1.22-0.06 Lower Sauk 5.45 1.28 1.54 0.40 4.04 1.82 3.69 2.35 1.43 1.12-0.59 0.16 Upper Sauk 14.80 1.98 1.52 0.51 1.98 1.07 3.13 1.47 2.56 1.10-2.29-0.08 Suiattle 8.12 1.34 1.57 0.62 2.70 1.45 2.49 1.18 1.44 0.63-1.24-0.09 North Fork Stillaguamish 14.68 1.67 2.98 0.78 1.88 1.01 1.51 0.67 0.90 0.51-2.90-0.24 South Fork Stillaguamish 20.44 2.48 4.16 1.26 1.70 0.96 1.46 0.81 1.20 0.70-4.12-0.40 Skykomish 6.54 0.97 2.53 0.43 2.44 0.80 3.47 0.94 2.25 0.56-0.76-0.03 Snoqualmie 4.70 0.76 8.09 1.04 3.72 1.52 3.81 1.28 1.78 0.61-1.01 0.00 Sammamish 2.80 1.00 2.32 0.97 4.35 2.83 1.33 0.69 1.81 0.82-0.30-0.06 Cedar 2.92 0.94 2.43 0.75 0.68 0.41 4.01 1.64 3.61 1.56 0.30 0.21 154

Green/Duwamish 4.69 1.18 1.34 0.23 3.10 0.53 3.58 0.73 3.12 0.29-0.09-0.13 White 30.62 17.18 4.12 1.94 1.52 1.08 5.15 2.50 1.50 1.28-5.72-3.12 Puyallup 7.85 1.71 5.32 1.15 1.07 0.62 1.82 0.68 1.54 0.53-1.61-0.28 Nisqually 42.83 5.66 44.13 3.78 15.05 2.55 3.23 0.81 1.75 0.38-12.31-1.35 Skokomish 12.84 1.84 2.70 0.45 0.84 0.51 1.86 0.57 0.93 0.33-2.47-0.29 Mid Hood Canal 1.90 0.18 13.57 2.40 7.02 3.39 1.88 0.62 2.00 0.68-1.15-0.08 Dungeness 0.58 0.21 0.31 0.11 0.25 0.20 1.67 0.93 0.44 0.18 0.11 0.08 Elwha Nat Spawners 2.92 0.90 1.14 0.17 1.99 0.79 2.37 0.50 1.46 0.27-0.17-0.09 155

Table46 Puget Sound Chinook Population average AEQ exploitation rates for five-year intervals for both mixed-maturity catch fisheries (mix) and mature catch fisheries (mat). Trends calculated over the five-year intervals are also given. 8/27/2010 Brood Years 1982-1986 1987-1991 1992-1996 1997-2001 2002-2006 Trend Populations Mix Mat Mix Mat Mix Mat Mix Mat Mix Mat Mix Mat Total North + Middle Fork Nooksack 0.50 0.03 0.52 0.01 0.37 0.01 0.46 0.01 0.62 0.03 0.02 0.00 0.02 South Fork Nooksack 0.54 0.02 0.51 0.01 0.38 0.00 0.47 0.01 0.63 0.03 0.02 0.00 0.02 Lower Skagit 0.60 0.17 0.62 0.09 0.49 0.03 0.29 0.02 0.19 0.07-0.12-0.03-0.14 Upper Skagit 0.62 0.16 0.64 0.08 0.54 0.03 0.31 0.01 0.19 0.16-0.12-0.01-0.12 Upper Cascade 0.60 0.18 0.56 0.07 0.43 0.02 0.44 0.03 0.28 0.19-0.08 0.00-0.08 Lower Sauk 0.63 0.13 0.65 0.08 0.56 0.03 0.31 0.01 0.21 0.02-0.12-0.03-0.15 Upper Sauk 0.60 0.18 0.56 0.07 0.45 0.02 0.48 0.06 0.29 0.17-0.07-0.002-0.07 Suiattle 0.62 0.16 0.58 0.06 0.45 0.02 0.50 0.05 0.33 0.21-0.07 0.01-0.06 North Fork Stillaguamish 0.71 0.15 0.54 0.13 0.37 0.05 0.40 0.12 0.41 0.03-0.07-0.02-0.10 South Fork Stillaguamish 0.72 0.14 0.56 0.11 0.38 0.05 0.38 0.12 0.41 0.03-0.08-0.02-0.10 Skykomish 0.68 0.17 0.64 0.15 0.45 0.13 0.53 0.16 0.50 0.18-0.05 0.005-0.04 Snoqualmie 0.65 0.18 0.59 0.16 0.46 0.12 0.49 0.18 0.47 0.19-0.05 0.004-0.04 Sammamish 0.47 0.18 0.44 0.20 0.27 0.08 0.38 0.12 0.40 0.16-0.02-0.01-0.03 Cedar 0.54 0.14 0.51 0.17 0.31 0.09 0.46 0.11 0.43 0.12-0.03-0.01-0.04 Green/Duwamish 0.58 0.15 0.54 0.17 0.32 0.09 0.48 0.12 0.46 0.16-0.03 0.00-0.03 White 0.36 0.08 0.29 0.09 0.27 0.02 0.36 0.04 0.09 0.02-0.05-0.02-0.06 Puyallup 0.58 0.14 0.53 0.17 0.33 0.10 0.49 0.13 0.49 0.16-0.02 0.00-0.02 Nisqually 0.51 0.39 0.55 0.29 0.47 0.32 0.38 0.35 0.39 0.33-0.04-0.01-0.05 Skokomish 0.54 0.32 0.62 0.13 0.30 0.04 0.48 0.20 0.45 0.18-0.03-0.02-0.05 Mid Hood Canal 0.55 0.32 0.64 0.16 0.40 0.05 0.46 0.17 0.47 0.17-0.03-0.03-0.06 Dungeness 0.57 0.07 0.55 0.01 0.22 0.01 0.42 0.04 0.57 0.03-0.01-0.004-0.02 Elwha Nat Spawners 0.47 0.06 0.47 0.01 0.24 0.01 0.31 0.03 0.52 0.03-0.01 0.00-0.01 156

Figure62 ObservedreturnsrelativetotheestimatedrecoveryspawnerrecruitrelationshipforthetwopopulationsintheStraitofGeorgiaregion.Themost recentfiveyearsareindicatedbytrianglesandtheprevious5yearsbycircles. 157

Figure63 ObservedreturnsrelativetotheestimatedrecoveryspawnerrecruitrelationshipforthesixofthetenpopulationsintheWhidbyBasinregion. Thetoprowarethethreelate runpopulationsandthebottomrowarethethreeearly runpopulationsintheskagitriver.themostrecentfiveyearsare indicatedbytrianglesandtheprevious5yearsbycircles.onedatapointoffgraphforuppersauk(1956by1884spproduced32,337r);ninepointsoffthe graphforsuiattle,alloccurringpriorto1970. 158

Figure64 ObservedreturnsrelativetotheestimatedrecoveryspawnerrecruitrelationshipforthefourofthetenpopulationsintheWhidbyBasinregion. Themostrecentfiveyearsareindicatedbytrianglesandtheprevious5yearsbycircles. 159

Figure65 ObservedreturnsrelativetotheestimatedrecoveryspawnerrecruitrelationshipforthesixpopulationsintheCentral/SouthSoundregion.The mostrecentfiveyearsareindicatedbytrianglesandtheprevious5yearsbycircles. 160

Figure66 ObservedreturnsrelativetotheestimatedrecoveryspawnerrecruitrelationshipforthetwopopulationsintheHoodCanalregion.Themost recentfiveyearsareindicatedbytrianglesandtheprevious5yearsbycircles Figure67 ObservedreturnsrelativetotheestimatedrecoveryspawnerrecruitrelationshipforthetwopopulationsintheStraitofJuandeFucaregion.The mostrecentfiveyearsareindicatedbytrianglesandtheprevious5yearsbycircles. 161

162

HoodCanalsummer runchumsalmon 16 ListedasthreatenedonMarch25,1999;threatenedstatusreaffirmedonJune28,2005. TheESUincludesallnaturallyspawnedpopulationsofsummer runchumsalmoninhood CanalanditstributariesaswellaspopulationsinOlympicPeninsulariversbetweenHood CanalandDungenessBay,Washington,aswellaseightartificialpropagationprograms:the QuilceneNFH,HammaHammaFishHatchery,LilliwaupCreekFishHatchery,Union River/Tahuya,BigBeefCreekFishHatchery,SalmonCreekFishHatchery,ChimacumCreek FishHatchery,andtheJimmycomelatelyCreekFishHatcherysummer runchumhatchery programs. PreviousStatusReviewsandRecoveryDocuments Atthetimeofthelaststatusreviewin2005(Goodetal.2005),thePugetSoundTRThad notyetfinalizedtheirpopulationdesignationsorviabilitycriteriaforthisesu.moststocks atthattimewereshowingpositivegrowthratesandincreasedspawningabundance comparedtothetimeoflisting.therecoveryplan,submittedbythehoodcanal CoordinatingCouncil,wasadoptedbyNMFSMay24 th 2007(HCCC2007).ThePugetSound TRTpopulationidentificationandviabilitydocumentwasfinalizedin2009(Sandsetal. 2009). ESU Status at a Glance Listingstatus:Threatened. Historicalpeakabundance N/A Historicalspawningaggregations 18 Recentpeakrunsizeabundance 259,000(2000) Recentpeakspawningabundance 66,000(2004) Extantpopulations 2(onewith4extantspawningaggregationsandone with10extantspawningaggregations;someof thesearerecentlyreintroduced) ViableabundanceandproductivityDefinedbyspawnerrecruitfunctions seefigure 71andFigure72. ViablepopulationsneededforESU2withhighdiversityamongspawningaggregations withineachpopulation ESU Structure The Puget Sound Technical Recovery Team designated two independent populations for the Hood Canal summer chum, one which includes the spawning aggregations from rivers and creeks draining into the Strait of Juan de Fuca and one which includes spawning aggregations within Hood Canal proper (see Table47). Since each population consists of several spawning 16 Sectionauthor:NormaSands 163

aggregations, spatial structure and diversity can be measured using a diversity index to measure population distribution among spawning areas. Table47 Currentpopulationsofsummer runchumsalmoninthehoodcanalchumsalmonesuandtheir associatedhistoricalspawningaggregations.updatedfromsandsetal.(2009).notethatwdfwconsiders salmon/snowonestockandbigandlittlequilceneasonestock(t.johnson,wdfwpers.comm.10/29/10). Notethatreintroductionprogramsstarted3 5yearsbeforenaturalspawningreturnsarenoted. Stock Strait of Juan de Fuca Summer Chum Population Dungeness River Jimmycomelately Creek Salmon Creeks Snow Creek Chimacum Creek Hood Canal Summer Chum Population Big Quilcene Rivers Little Quilcene Rivers Dosewallips River Duckabush River Hamma Hamma River Lilliwaup Creek Big Beef Creek Anderson Creek Dewatto Creek Tahuya River Union River Skokomish River Finch Creek Status Unknown <5 annually recently Extant Extant Extant Extinct but reintroduced with natural spawning reported starting in 1999 Extant Extant Extant Extant Extant Extant Extinct but reintroduced with returns reported starting in 2001 Extinct Extinct, no returns mid 1990 s, some natural recolonization apparent but numbers remain low (<70 annually) Extinct but reintroduced with increased returns reported starting 2006 Extant Extinct, no spawning reported prior to 2001, very low numbers (<40 annually) reported in recent years Extinct NewDataandUpdatedAnalyses Escapementdata,totalnaturalspawnersandhatcherycontribution,agedistribution ofthenaturaloriginescapement,andbroodstocktakearerecordedperspawning aggregation(alsoreferredtoassubpopulation)andcatchisavailableperfisheryarea; mostdataareavailablefrom1971to2009(sandsetal.2009andt.johnson,wdfw, per.comm.).agedatafromscalesamplesareavailablefrom1992to2009;estimatesare madeforearlieryears.eachspawningaggregationorsubpopulationappearstohaveits ownagedistributionsothatagedistributionforeachpopulationisweightedbythe relativeabundanceofthecomponentsubpopulations.hatcherycontributionstothe spawninggroundsareestimatedtohavebegunin1995fromthehatchery supplementationprogramandestimateswereprovidedbywdfw(johnson,percomm) through2009.hatcherycontributionvariesgreatlyfromsubpopulationtosubpopulation. Catchdataareproportionedouttospawningaggregatesbasedonareaofthefishcatchin relationtothespawningtributariesasdeterminedbythecomanagers(wdfw&pnptt 2003).Cohortrunreconstructionisthendoneforeachpopulationtodeterminerecruits 164

perspawner,themeasureofproductivityusingthepstrtabundance&productivity ExcelFiles(Sands2009). Relativeabundancesofsubpopulationswithineachpopulationisusedtoestimate theshannondiversityindex,usedasanindicatorofspatialstructureanddiversity,twoof theviablesalmonpopulationfactors. Abundance Spawning abundance is available from 1968 for the Hood Canal population and from 1971 for the Strait of Juan de Fuca population (Figure68). Escapement estimates prior to 1974 are less precise than those afterwards (WDFW & PNPTC 2000) due to sampling procedures. Figure68 SpawningabundanceofHoodCanalsummerchum.Thedarklineindicatesnaturaloriginspawner numbers,light(red)lineindicatestotalnaturalspawners(includingnaturallyspawninghatcheryfish).the dottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthegreenshadedareaindicates +/ 1standarddeviationaroundthemean. Averageescapements(geometricmeans)forfive yearintervalsaregivenintable 48aswellasestimatesoftrends[exp[trend(ln(esc))]]overtheintervalsforallnatural spawnersandfornatural originonlyspawners.abundancewaslowestforthemidperiod (1985 1999)andgreatestforthemostrecent10years.Theoveralltrendispositivefor bothallnaturalspawnersandnatural originonlyspawners. 165

Table48 Five geometricmeansofallspawnersandnatural originspawnersonlyforthetwohoodcanalesu summerchumpopulations.trendoverthe5 yearintervalsisalsogiven. Natural Origin AllSpawners Spawners StraitofJuan defuca Population 71-74 1502 1502 75-79 1528 1528 80-84 1861 1861 85-99 936 936 90-94 386 386 95-99 822 629 00-04 4279 2254 05-09 5433 4057 Trend 2.72 2.30 HoodCanal Population 71-74 18473 18473 75-79 14757 14757 80-84 1973 1973 85-99 1306 1306 90-94 979 979 95-99 7224 5170 00-04 19407 13425 05-09 13903 11513 Trend 2.68 2.48 Short and long term trends (exp[trend(ln(esc))]) and growth rates (lambda) as estimated by the SPAZ program are given in Table49. The SPAZ programs gives estimates of lambda for both assumptions of hatchery fish having zero success on the spawning grounds and 100% success. The only abundance trend that appears to be positive is that for the Juan de Fuca population for the short time spawn (1995-2009). None of the average growth rate (lambda) estimates indicate positive average growth rates. 166

Table49 ShortandlongtermpopulationtrendandgrowthrateestimatesfortheHoodCanalESUsummer chumpopulations. HatcheryFish Success=0 HatcheryFish Success=1 Population Years TrendNatSpw/CI Lambdaw/CI p>1 Lambdaw/CI p>1 Hood 1.075 1.041 0.958 1995 2009 0.57 Canal (0.964 1.198) (0.108 10.016) (0.114 8.026) 0.42 0.989 0.989 0.962 1968 2009 0.46 (0.956 1.022) (0.786 1.244) (0.775 1.195) 0.34 Juande 1.184 1.139 1.009 1995 2009 0.76 Fuca (1.06 1.324) (0.242 5.365) (0.255 3.989) 0.53 1.013 1.028 0.99 1971 2009 0.65 0.984 1.043) (0.872 1.211) (0.867 1.129) 0.43 Productivity Five year averages of recruits per spawner are given in Table50 and annual estimates are given in Table51 and Table52. Productivity in the last 5-year period has been very low, especially compared to the relatively high productivity in the 5-10 previous years. Table50 5 yeararithmeticmeanofrecruitsperspawnerforthepopulationsandesu BYs Strait Canal ESU 71-76 1.19 3.64 3.45 77-81 2.44 2.66 2.33 82-86 3.98 9.18 6.20 87-91 1.27 7.05 4.70 92-96 2.63 14.37 9.54 97-01 4.23 10.06 9.41 02-06 0.55 2.02 1.49 Trend 0.01 0.54 0.41 167

Table51 Escapement, catch, and broodstock take data for the Stait of Juan de Fuca Summer Chum population and the estimates of diversity, progeny recruits, and recruits per spawner (R/S). ). Recruits and R/S for brood-year 2006 are estimated by forecasting the returns of age 4 fish. BY Nat Esc % NOR NOR Esc Harvest Broodstock Take(NOR) Diversity Progeny Recruits BYR/S 1971 1,281 100% 1,281 180 0 1.03 1371 1.07 1972 1,362 100% 1,362 159 0 1.09 2000 1.47 1973 1,648 100% 1,648 164 0 1.07 1490 0.90 1974 1,768 100% 1,768 218 0 1.06 2260 1.28 1975 1,448 100% 1,448 299 0 1.02 2995 2.07 1976 1,494 100% 1,494 179 0 1.08 532 0.36 1977 1,644 100% 1,644 166 0 1.07 6335 3.85 1978 3,080 100% 3,080 161 0 1.01 124 0.04 1979 761 100% 761 140 0 0.95 4542 5.97 1980 5,109 100% 5,109 465 0 0.93 191 0.04 1981 884 100% 884 256 0 1.04 2055 2.32 1982 2,751 100% 2,751 789 0 1.03 27 0.01 1983 1,139 100% 1,139 78 0 0.89 2066 1.81 1984 1,579 100% 1,579 128 0 1.02 2349 1.49 1985 232 100% 232 179 0 0.84 3827 16.50 1986 1,087 100% 1,087 129 0 1.01 101 0.09 1987 1,991 100% 1,991 190 0 1.01 737 0.37 1988 3,690 100% 3,690 439 0 1.02 268 0.07 1989 388 100% 388 407 0 0.86 1739 4.48 1990 341 100% 341 187 0 0.78 330 0.97 1991 309 100% 309 115 0 0.82 139 0.45 1992 1,008 100% 1,008 324 62 0.75 1346 1.34 1993 521 100% 521 71 52 0.61 855 1.64 1994 154 100% 154 36 24 0.39 1395 9.06 1995 786 100% 786 43 53 0.73 701 0.89 1996 975 100% 975 22 109 0.58 226 0.23 1997 852 100% 852 23 110 0.53 1087 1.28 1998 1,148 100% 1,148 47 121 0.40 1900 1.65 1999 502 26% 131 1 23 0.50 4628 9.22 2000 801 49% 391 2 116 0.46 6293 7.86 2001 3,955 37% 1,473 11 134 0.91 4594 1.16 2002 6,970 60% 4,215 16 88 0.68 7703 1.11 2003 6,959 62% 4,283 36 99 0.68 3234 0.46 2004 9,341 60% 5,597 12 22 1.04 4475 0.48 2005 9,682 62% 6,012 32 24 1.05 2790 0.29 2006 8,245 81% 6,709 29 31 1.06 3256 0.39 2007 3,290 92% 3,031 23 54 1.32 168

2008 3,521 85% 3,010 35 39 1.19 2009 5,118 58% 2,987 30 17 1.15 Table52 Escapement, catch, and broodstock take data for the Hood Canal summer chum population and the estimates of diversity, progeny recruits, and recruits per spawner (R/S). Recruits and R/S for brood-year 2006 are estimated by forecasting the returns of age 4 fish. NatEsc %NOR NOR Esc Harvest Broodstock Take(NOR) Diversity Progeny Recruits BYR/S 1971 17,412 100% 17,412 10857 0 1.90 38312 2.20 1972 30,079 100% 30,079 10859 0 1.66 184126 6.12 1973 18,107 100% 18,107 19771 0 1.81 89813 4.96 1974 12,281 100% 12,281 1941 0 1.70 57375 4.67 1975 18,248 100% 18,248 10866 0 1.91 53168 2.91 1976 27,715 100% 27,715 46506 0 2.00 26750 0.97 1977 10,711 100% 10,711 5977 0 1.92 20208 1.89 1978 19,709 100% 19,709 5635 0 1.80 25321 1.28 1979 6,554 100% 6,554 2960 0 1.57 13061 1.99 1980 3,777 100% 3,777 9249 0 1.98 7438 1.97 1981 2,374 100% 2,374 3501 0 1.78 14645 6.17 1982 2,623 100% 2,623 5708 0 1.77 18480 7.05 1983 899 100% 899 2646 0 1.98 9103 10.13 1984 1,414 100% 1,414 1959 0 2.12 20181 14.27 1985 1,109 100% 1,109 3314 0 1.77 13539 12.21 1986 2,552 100% 2,552 5281 0 1.03 5700 2.23 1987 757 100% 757 3214 0 1.24 819 1.08 1988 2,967 100% 2,967 2713 0 1.95 12743 4.29 1989 598 100% 598 3877 0 0.93 3396 5.68 1990 429 100% 429 1135 0 1.06 5485 12.79 1991 747 100% 747 1452 0 1.70 8528 11.42 1992 1,945 100% 1,945 1000 432 1.55 53943 27.73 1993 707 100% 707 115 49 1.74 26950 38.12 1994 2,044 100% 2,044 530 385 1.63 8483 4.15 1995 8,971 83% 7,448 429 326 1.37 6194 0.69 1996 19,707 87% 17,202 494 638 1.30 23165 1.18 1997 8,419 70% 5,859 278 381 0.54 18963 2.25 1998 3,404 63% 2,158 171 307 1.19 10855 3.19 1999 3,884 59% 2,279 243 133 0.89 38507 9.91 2000 7,987 67% 5,384 573 390 1.16 252752 31.65 2001 12,044 60% 7,173 789 288 1.55 39620 3.29 2002 11,454 60% 6,852 1022 350 1.82 72809 6.36 2003 35,696 77% 27,319 249 221 1.53 28349 0.79 2004 69,995 86% 60,328 21570 236 1.54 47426 0.68 169

2005 15,840 72% 11,373 293 271 1.85 28363 1.79 2006 26,754 80% 21,385 2107 209 1.94 12578 0.47 2007 10,781 87% 9,407 1745 205 2.15 2008 15,332 88% 13,522 1907 221 2.04 2009 7,416 88% 6,537 1122 92 1.92 Spatial structure and diversity Spatial distribution is measured using the Shannon diversity index (Table53). Table53 Table5.FiveYearArithmeticAveragesofDiversityIndexforthetwopopulationsandtrend measuredoverthe5 yearaverages.notethefirstaverageisforfouryearsonly.trendismeasuredastheslope ofthelineartrendline. Years Strait HoodCanal 71-74 1.06 1.77 75-79 1.03 1.84 80-84 0.98 1.92 85-99 0.95 1.38 90-94 0.67 1.54 95-99 0.55 1.06 00-04 0.75 1.52 05-09 1.15 1.98 Trend 0.03 0.03 Higher diversity values indicate a more uniform distribution of the population among spawning sites, which provides greater robustness to the population. Values were generally lower in the 1990s for both populations, indicating that most of the abundance occurred at a few of the spawning sites, The overall linear trend appears to be negative, which is not desirable, however, the last five years has shown the highest average value for both populations. This is partly the result of the addition of one reintroduced spawning aggregation in the Strait of Juan de Fuca population and two reintroduced spawning aggregations in the Hood Canal population. The distribution of spawning aggregations, number and relative abundance, within the populations is shown in Figure69 and Figure70. 170

'%%#$'%%%&!""#$!""%&!"#$%#%&&' ()**+,-*%./0%.+' 1/.*-#' 1#-2' 34)*/,"*' Figure69 Relative abundance for the spawning aggregations of the Strait of Juan de Fuca summer chum population for the most recent five years of data and the five years prior to listing in 1999.!""#$!"""%!"#"#$%&'( )*'+,*(( -.%#.( /0(1+%234.4( 50(1+%234.4( 5%6(5447(( 8.94:&#.( ;#&4<*22%=&( ;+3"*>+&'(?*$$*(?*$$*( /%22%<*+=( &''#$&''"% Figure70 Relative abundance for the spawning aggregations of the Hood Canal summer chum population for the most recent five years of data and the five years prior to listing in 1999. Viability The TRT defined the abundance & productivity viability criteria for the Hood Canal summer chum populations using both 1) the assumption of density independence and replacement growth factor of 1:1 and 2) the assumption of density dependence which provides a series of viable spawner recruit functions (Sands et al. 2009). Brood year data used in these analyses were 1974-2001. The minimum viability levels assuming density independence were 12,500 for the Strait of Juan de Fuca population (this has not been attained in the years 1971 to present) and 24,700 for the Hood Canal population (this has been attained four times since 1971, twice since 2003). 171

Viable abundance and productivity were also expressed as intrinsic productivity and capacity from Beverton-Holt spawner recruit functions representing a recovered state; different functions were given for different levels of desired harvest exploitation after attaining recovery. These two figures from the 2009 report (Sands et al. 2009) are reproduced below (Figure71 and Figure 72) with currentestimatesofcapacityabundance,intrinsicproductivity,andaverage exploitationrateforthreeoverlappingtimeperiods.thesethreepointsallfallwithinthe non viablesectionofthegraphforbothpopulations.thetimeperiodswerechosento examinedifferenceinestimatesusingsortertimespanofdataaswellasthefullrange (1971 2006). Viability for spatial distribution and diversity was expressed as a need to maintain a diverse aggregation of subpopulations within each population (Sands et al. 2009). If current relatively high diversity index values were to be maintained over time, this would go a long ways to satisfying that criteria. Figure71 Viability curves for the Hood Canal summer chum population for no harvest and three levels of harvest (lines) using the 5%probabilityofextinctionover100years.Capacityabundanceand intrinsicproductivity(betaandalphaparametersofthebeverton Holtspawnerrecruitfunction)are plotted.tobeviable,functionparametersfromcurrentdatashouldlieabovethelineforthe associatedexploitationrate.pointestimatesfromthreetimeperiods(broodyears1971 2006,1985 2006,and1990 2006)areplottedandallfallbelowthecurveforzeroharvest,indicatingthe populationisnotcurrentlyviable.alsoplottedarecorrespondingpointsforeachpointineachcurve ofaveragevaluesofspawningescapement(from1000simulatedruns).(adaptedfromsandsetal. 2009). 172

Figure72 Viability curves for the Strait of Juan de Fuca summer chum population for no harvest and three levels of harvest (lines) using the 5%probabilityofextinctionover100years.Capacityabundanceand intrinsicproductivity(betaandalphaparametersofthebeverton Holtspawnerrecruitfunction)are plotted.tobeviable,functionparametersfromcurrentdatashouldlieabovethelineforthe associatedexploitationrate.pointestimatesfromthreetimeperiods(broodyears1971 2006,1985 2006,and1990 2006)areplottedandallfallbelowthecurveforzeroharvest,indicatingthe populationisnotcurrentlyviable.alsoplottedarecorrespondingpointsforeachpointineachcurve ofaveragevaluesofspawningescapement(from1000simulatedruns).(adaptedfromsandsetal. 2009). Harvest TherearenodirectedfisheriesonHoodCanalsummerchum.However,theyaretakenin fisheriesdirectedatotherspeciesinthestraitofjuandefucaandinhoodcanal.because thepopulationsfromtheeasternstraitofjuandefuca(elwhariverthroughdiscovery Bay)arenotsubjecttofisheriesinHoodCanaldirectedatChinookandcohosalmon,they experienceloweroverallharvestratesingeneral.historically,thepopulationsinthe EasternStraitofJuandeFucaexperiencedharvestratesontheorderof20%withratesas highas50%inindividualyears.populationsinhoodcanalproperweresubjecttoharvest ratesthatweretypicallyontheorderof50%to70%withratesinindividualyears approaching90%. 173

Inresponsetoseverelydepressedrunsofsummer runchumsalmon,intheearly1990s, thestateofwashingtonandthewesternwashingtontreatytribestookmeasurestocurb theincidentalharvestofsummerchumandharvestratesfelldramatically(figure73).the co managershavecontinuedtoconstrainharvestimpactsasrunshavereturnedtohistoric levels,leadingtoescapementsthatexceedhistoriclevels Figure73 TotalexploitationrateonthecombinedHoodCanal/StraitofJuandeFucasummerchumsalmon ESU.DatafromWDFWrunreconstruction(1974 2007datafromhttp://wdfw.wa.gov/fish/chum/chum 5e.htm; 2008and2009datafromValerieTribble,WDFW,personalcommunication). Hatcheryreleases Hatcheryreleasesofchum,Chinook,andcohowithintheHoodCanalsummerchumESU spawningandrearingareashavegenerallydeclinedsince2005,whilesteelheadreleases haveremainedfairlyflatandrelativelylow;allhatcheryreleaseshavegenerallydeclined sincethemid 1990s(Figure74).Chumhatcheryreleasesareprimarilyfallrunstocks(not partofthesummerchumesu). 174

Figure74 SummaryoftotalhatcheryreleasesperspecieswithinthespawningandrearingareasofHoodCanal summerchumsalmon(notethatmostchumreleasesinarefallrunchum).dottedlineindicatesthelong term meanandshadedareasthelong termstandarddeviation.datasource:rmis. 175

Hood Canal summer chum salmon: Updated Risk Summary ThespawningabundanceofthisESUhasclearlyincreasedsincethetimeoflisting, althoughtherecentabundanceisdownfromtheprevious5 years.whilespawning abundanceshaveremainedrelativelyhighcomparedtothelowlevelsintheearly1990 s, productivityhasdecreasedsignificantlyforthelast5broodyears,beinglowerforbrood years2002 2006thananyprevious5 yearaveragesince1971.thisisaconcernforfuture production.sinceabundanceisincreasingandproductivityisdecreasing,thissuggests thatimprovementsinhabitatandecosystemfunctionisneeded.diversityisincreasing fromthelowvaluesseeninthe1990sduebothtothereintroductionofspawning aggregatesandthethemoreuniformrelativeabundancebetweenpopulations;thisisa goodsignforviabilityintermsofspatialstructureanddiversity.spawningsurveydata showsthatthespawningdistributionwithinmoststreamshasbeenextendedfurther upstreamasabundancehasincreased(wdfwandpnptt2007.overall,thenew informationconsidereddoesnotindicateachangeinthebiologicalriskcategorysincethe timeofthelastbrtstatusreview. References GoodTP,WaplesRS,AdamsP(2005)UpdatedstatusoffederallylistedESUsofWestCoast salmonandsteelhead.u.s.dept.commer.,noaatech.memo.nmfs NWFSC 66.,p. 598. HoodCanalCoordinatingCouncil.2007.HoodCanal&EasternStraitofJuandeFuca SummerChumSalmonRecoveryPlan.AdoptedbyNMFSMay24,2007. http://www.nwr.noaa.gov/salmon Recovery Planning/Recovery Domains/Puget Sound/HC Recovery Plan.cfm Johnson, O. W., W. S. Grant, R. G. Kope, K. Neely, F. W. Waknitz, and R. S. Waples. 1997. Status review of chum salmon from Washington, Oregon, and California. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-32. Sands,N.J.2009.Auser sguidetotheabundanceandproductivity(a&p)tablesas developedforpugetsoundsalmon.fromthepugetsoundtechnicalrecoveryteam (PSTRT)AbundanceandProductivity(A&P)Workgroup.Fourthdraft,20April, 2009.(AvailablefromN.J.Sands,NorthwestFisheriesScienceCenter,2725 MontlakeBlvd.E.,Seattle,WA98112.) Sands,N.J.K.Rawson,K.P.Currens,W.H.Graeber,M.H.Ruckelshaus,R.R.Fuerstenberg,4 andj.b.scott.2009.determinationofindependentpopulationsandviability CriteriafortheHoodCanalsummerChumsalmonEvolutionarilySignificantUnit. NOAATechnicalMemorandumNMFS NWFSC 101.71pp. WashingtonDepartmentofFishandWildlifeandPointNoPointTreatyTribes(WDFWand PNPTT).2000.SummerChumSalmonConservationInitiative.Washington DepartmentofFishandWildlifeandPointNoPointTreatyTribes,Olympia,WA.423 pages+appendices.availableathttp://wdfw.wa.gov/fish/chum/library/ WashingtonDepartmentofFishandWildlife(WDFW)andPointNoPointTreatyTribes (PNPTT).2003.Reportonsummerchumsalmonstockassessmentand 176

managementactivitiesfor2001and2002.supplementalreportno.4summer ChumSalmonConservationInitiative:Animplementationplantorecoverysummer chuminthehoodcanalandstraitofjuandefucaregion.219pp. WashingtonDepartmentofFishandWildlife(WDFW)andPointNoPointTreatyTribes (PNPTT).2007.Reportonsummerchumsalmonstockassessmentand managementactivitiesfor2006.supplementalreportno.7summerchumsalmon ConservationInitiative:Animplementationplantorecoverysummerchuminthe HoodCanalandStraitofJuandeFucaRegion. 177

178 PugetSoundcohosalmon 17 DescriptionofPugetSound/StraitofGeorgiaESU ThePugetSound/StraitofGeorgiawasoriginallydesignatedin1994duringthe WestCoastcohosalmonstatusreview(Weitkampetal.1995);otherthanintheearlier sectionofthisreport,itsboundarieshavenotbeenreconsideredsincethattime.theesu includescohosalmonfromdrainagesofthesalishsea,whichincludepugetsoundand HoodCanal,theeasternOlympicPeninsula(eastofSaltCreek,StraitofSanJuandeFuca), andthefromtheeasternsideofvancouverisland(northtoandincludingcampbellriver) andthebritishcolumbiamainland(northtoandincludingpowellriver)(straitof Georgia),excludingtheupperFraserRiveraboveHope(Figure1). SummaryofPreviousBRTConclusionsPugetSound/StraitofGeorgiaCohoSalmon ESU The1994StatusReview InadditiontodelineatingESUboundaries,the1994BRTexaminedthestatusofall cohosalmonesusalongthewestcoast(weitkampetal.1995).forthepuget Sound/StraitofGeorgia,theBRTnotedthatalthoughpopulationabundancein1994was nearhistoricallevelsandrecenttrendsinoverallpopulationabundancewerenot downward,therewassubstantialuncertaintyrelatingtoseveraloftheriskfactors considered.theseriskfactorsincluded1)widespreadandintensiveartificialpropagation, 2)highharvestrates,3)extensivehabitatdegradation,4)arecentdramaticdeclineinadult size,and5)unfavorableoceanconditions.concernsassociatedwithdecliningadultsize includedreducedfecundity,greaterlikelihoodthatreddswouldbedestroyedbywinter stormsduetotheirshallowerdepth,theinabilityofsalmontosuccessfullyascend challengingriverreaches,andgeneticchangessuchthatpopulationswouldpermanently losetheabilitytoproducelargeindividuals;takentogether,thesewouldresultinlower populationproductivity. TheBRT soverallconclusionfortheesuwasthatifpresenttrendscontinued,the ESUwaslikelytobecomeendangeredintheforeseeablefuture,althoughitalso recommendedthatfurtherinformationwouldlikelyclarifysomeoftheseuncertainties (Weitkampetal.1995). The1995StatusReview WhenitrevisitedthePugetSound/StraitofGeorgiain1995,manyofthequestions the1994brtraisedaboutthestatusofnaturalpopulationswereansweredtovarying degrees.forexample,itwasdeterminedthatthemajorityofnaturalproductionand spawningescapementinpugetsoundoccurredinbasinsmanagedfornaturalescapement andproduction(skagit,stillaguamish,snohomishrivers,andsouthandcentralhood 17 Sectionauthor:LaurieWeitkamp.PugetSoundcohoarenotlistedundertheESA. However,theyareaspeciesofconcern(69FR19975)sowehaveincludedabriefreviewof thisesuinourreport.

Canal),andthesenaturalpopulationsappearedtobestable.Hatcheryinfluencewas considerablylessintheseareasthaninthosemanagedforhatcheryproduction,where hatcheryproductionwasextensive(10sofmillionsoffryandsmoltsreleasedannually). Harvestratesonthesenaturalstocksweregenerallylowerthanonstocksinareas managedforhatcheryproduction. SizeofadultsinthisESUincreasedslightlyinthe1994and1995returnyears, althoughtheywerestillgenerallysmallerthantheywerein1990.limiteddataonthesize ofnaturalspawnersindicateddownwardstrends,althoughtheydidnotappeartobe decliningassteeplyassomehatcherystocks. Asof1995,overallabundanceofcohosalmon,includingbothnaturalandartificial production,wasmuchhigherinthisesuthaninanyoftheothercohosalmonesus.inthe U.S.portionalone,estimatedrunsizewasapproximatelyahalfmillionfish.Three drainagesthatweredominatedbynaturalproductionhadspawningescapementsinexcess of10,000fish,ledbythesnohomishriverwithageometricmeanofover75,000. Ontheotherhand,the1995statusreviewfoundthattherecontinuedtobeseveral reasonsforconcernaboutthehealthofnaturalpopulationsofcohosalmoninthisesu. First,the1995BRTlackeddetailedinformationforcohosalmonintheCanadianportionof thisesu,butavailabledataindicatedthatnaturalpopulationsinbritishcolumbiadeclined substantiallyduringtheearly1990 s.second,artificialpropagationofcohosalmonwas conductedonanimmensescaleinboththecanadianandu.s.portionsofthisesu.large geographicareasofpugetsound(e.g.,thenooksackriverandallthesoutherndrainages) weremanagedforhatcheryproduction,andlittlenaturalproductionwasexpected(or encouraged)fromstreamsintheseareas.finally,thedeclineinadultsizeofcohosalmon wasdramaticallysharperinpugetsoundthaninotherareasofthepacificnorthwest. Afterweighingthesevariousfactors,themajorityofthe1995BRTconcludedthat thisesuwasneitheratriskofextinctionnorlikelytobecomesointheforeseeablefuture. AminorityfeltthattheESUwaslikelytobecomeendangered.Akeyfactorwasthe presenceofseveralrelativelylargepopulationsinnaturalproductionareasinnorthpuget Sound,whichsuggestedthattheESUasawholewasnotatsignificantextinctionrisk. However,theBRTwasveryconcernedthatthesenaturalpopulationswerefewinnumber andconcentratedinarelativelysmallportionoftheesu. The1995statusreview(Weitkampetal.,1996)wasneverfinalizedduetoarequest byco managersforfurtherreviewandcomment.atpresent,pugetsoundcohosalmonare notlistedontheendangeredspecieslist,butremainaspeciesofconcern(speciesof Concern4/15/04(69FR19975). New Data and Updated Analyses Because the Puget Sound/Strait of Georgia ESU has not been formally evaluated since 1995, there is a wide variety of new or updated information available for coho salmon within the ESU. For purposes of this review, we have focused on updating key data series used in the previous reviews to provide insight into the overall status of the Puget Sound portion of the ESU, in order to address whether the ESUs overall status has likely changed since the 1995 status review. Accordingly, we examined updated data series of harvest rates, abundance (spawner abundance and run size), adult size, marine survival rates, and smolt production. If examination of this information leads to the conclusion that ESU status has greatly deteriorated, then a wider range of information will be considered as part of a formal status review. 179

Abundance and trends The abundance of coho salmon in Puget Sound remains quite high. For Puget Sound as a whole, there returned a geometric mean of 483,000 spawners and a total run size of 851,000 during the period of 2000-2008 (PFMC 2010). The single largest natural population (Snohomish River) has a geometric mean of 122,000 spawners during 2000-2008, reaching 252,000 fish in 2004 (PSC 2010). Trends in spawning abundance in the major natural production areas are fairly flat since 2005, but are down from the peaks seen in 2002-2004 (Figure 75). Current spawning escapement is similar to levels in the 1990 s. Figure75 SpawningescapementtrendsinthemajorwildpopulationareasofforPugetSoundcohosalmon. DatacompiledfromWDFW. 180

Table54 Shortandlong termtrendsforthemajornaturalproductionstocksofpugetsoundcohosalmon. Stock Geometric mean spawners 1 Short-term trend Long-term trend (95% CI) 2 (95% CI) 3 Hood Canal 23490 0.946 (0.849-1.052) 1.036 (0.999-1.074) Skagit 27074 0.984 (0.897-1.08) 0.983 (0.962-1.006) Snohomish 71800 0.99 (0.911-1.076) 1.007 (0.978-1.037) Stillaguamish 18864 1.028 (0.936-1.13) 1.029 (0.995-1.066) E Strait of Juan de Fuca 2859 1.077 (0.999-1.161) 1.044 (1.007-1.082) 1 2005 2009 for all except ESJF, which is 2004-2008. 2 Trend from 1995. 3 Trend from 1981 (Hood Canal), 1977 (Skagit), 1984 (Snohomish, Stillaguamish), and 1986 (ESJF). Based on data compiled from WDFW. Harvest PugetSoundcohosalmonaretakenprimarilyinPugetSoundfisheries.Historically, CanadiancohofisheriesoffofWCVIandintheStraitofGeorgiahadveryhighimpactson PugetSoundcohoaswellandmemberoftheESUaretakeinnorthernBC,southeast Alaska,andinoceanfisheriesoffthecoastofWashington.WithinPugetSound,fisheriesin thesouthsound,andhoodcanalaremanagedforhatcheryproduction,andfisheriesinthe StraitofJuandeFucaandnorthernandcentralPugetSoundaremanagedfornatural production.differencesinexploitationpatternsreflectthesedifferencesinmanagement strategy(figure76).exploitationratesinthevicinityof80%inthelate1980sfell dramaticallyonstocksmanagedfornaturalproductionwithinpugetsoundasaresultof severerestrictionsoncanadianfisheriestoprotectuppercriticallydepressedfraserriver cohosalmon.usfisheriesinwashingtonwatershavealsobeenconstrainedbylimitson upperfrasercohosalmonnegotiatedthroughthepacificsalmontreaty.recreational fisheriesandoceancommercialfisheriesinwashingtonandoregonwatersalsoswitched overtomark selectivefishingbeginningin1999.asaresult,totalexploitationratesonthe PugetSoundcohostocksmanagedfornaturalproductionhavebeenrelativelystablesince 2000intherangeof40%orless. 181

Figure76 TotalexploitationratesonPugetSoundcohostocks.Data1989 1997basedoncoded wire tag analysis,and1998 2008fromFisheryRegulationAssessmentModelvalidationruns(LarrieLaVoy,NMFS, personalcommunication) Artificial Propagation (Hatcheries) In both the 1994 and 1995 status review, the BRT had concerns about the level of hatchery influence in the ESU as a whole. Many of the concerns about hatchery influence in basins managed for natural production were addressed in the 1995 review, with the general 182

feeling that natural production areas had limited hatchery influence. Current information indicates that hatchery influence is still substantial in the Puget Sound portion of the ESU as a whole, although it has declined substantially since 1995 (Figure 78) as the number of coho salmon released annually has declined. For example, Puget Sound terminal run size was composed of 62% hatchery fish during years 1981-1996, but decreased to 43% during the period from 1997-2008 (Figure 77; PFMC 2010). Similarly, the percent of spawners that were of hatchery origin decreased from 47% during the earlier period (1981-1996) to 35% after 1996. Hatchery influence in basins managed for natural production (Skagit and Stillaguamish- Snohomish) remains low (19 and 21% for run size and 19% and 8% for spawners, respectively, for years 2000-2008). Overall coho hatchery production in Puget Sound has declined from an average of 35 million fish released annually in the 1980 s to ~12 million annually during the period 2005-2009. Figure77 PercentofPugetSoundcohosalmonofhatcheryoriginestimatedforbothterminalrunsize(before terminalharvest)andforspawners.datafrompfmc2010. 183

Figure78 SummaryofhatcheryreleaseswithinthePugetSoundcohoESUspawningandrearingareas.Source: RMIS. 184

Other Factors Marine survival Marine survival rates are estimated annually for four wild Puget Sound coho salmon populations based on coded wire tags: Big Beef Creek, Deschutes River, South Fork Skykomish, and Baker (Table 55, Figure 79; Zimmerman 2009). Big Beef Creek has consistently had the highest marine survival rate (16.0% during 1978-2008), Deschutes and SF Skykomish have been intermediate (11.8% and 13.5%, respectively) and Baker River the lowest (8.1%). Baker marine survival rates were not estimated prior to 1992, at a time when rates were generally high (mean 18.4%) compared to the period since 1992 (9.8%). For all populations, trends in marine survival rates have been declining, at rates of -0.25%/year (SF Skykomish) to -0.94%/year (Deschutes River). Part of this downward trends comes from consistently low survival rates for coho salmon returning in 2006 (mean = 3.0%) and 2008 (mean = 3.7%). However, as recently as 2004 marine survival rates were still quite high (mean = 13.7%), with Big Beef Creek reaching an impressive 24.4% marine survival rate (Zimmerman 2009). Table55 MarinesurvivalrateinformationforwildPugetSoundcohosalmonpopulations.Regressionslopes thatarestatisticallysignificantatp<0.05areinbold.datafromzimmerman2009. Attribute Population Years for Average marine Slope Regression r 2 estimate survival (%) Big Beef Creek 1978-2008 15.96-0.36 0.191 Deschutes River 1980-2008 11.81-0.94 0.677 SF Skykomish 1979-2008 13.5-0.25 0.155 Baker River 1992-2008 8.10-0.34 0.298 185

Figure79 MarinesurvivalratesforwildcohosalmonpopulationsinPugetSound.DatafromWDFW2010. Smolt production The number of smolts produced in numerous major and minor rivers in Puget Sound is estimated each year (Zimmerman 2009). Rivers for which there are recent smolt production estimates include Dungeness, Skagit, Cedar, Green, and Deschutes Rivers and Big Beef Creek, with a single (2009) estimate for the Nisqually River (135, 512) (Zimmerman 2010). Of these systems, the Skagit produces the most smolts (averaging 1,037,119 annually since 1990), followed by the Green River (79,701), Cedar (50,759), Deschutes (48,144), Dungeness (25,038) and Big Beef Creek (27,015) (Fig. SP). Analysis of the trends of smolt production over time indicate that only the Deschutes River had a significant trend (p < 0.05) with a declining slope of -2842 smolts/year (Table 56). The slopes of smolt production over time for other basins were a mix of positive (Skagit, Big Beef Creek) and negative (Dungeness, Cedar, Green River), but none were statistically meaningful (p > 0.10). For many populations, smolt production was low in 2007 and 2008, but rebounded in 2009 such that three basins (Skagit, Cedar, Big Beef Creek) had above average production that year, including the highest smolt production from the Skagit (1,475,065 smolts) since the 2000 outmigration (Figure 80). Table56 SmoltproductionestimatesforPugetSoundpopulations.DatafromM.Zimmerman,WDFW. Population Years Averagesmolt production Slopeofsmolts overtime* Regressionr 2 Dungeness 2005 2009 35,038 7522 0.60 186

Skagit 1990 2009 1,037,119 +7826 0.01 CedarRiver 1999 2009 50,759 1994 0.08 BigBeefCreek 1978 2009 27,015 231 0.05 GreenRiver 2000 2009 79,701** 5651 0.08 Nisqually 2009 135,512 Deschutes 1979 2009 48,144 2943 0.43 *Slopesthatarestatisticallysignificantlyatp<0.05areindicatedinbold. **Smolt production estimates were not available for smolt outmigration years 2004, 2005 and 2008. 187

Figure80 EstimatedsmoltabundancesforvariousPugetSoundcohosalmonpopulations. Adultsize OneoftheconcernsofpreviousreviewsofPugetSoundcohosalmonwastherapid declineinadultsize,discussedabove.updateddataonthesizeofcohosalmoncollectedin fisheries,uponreturntohatcheries(fromthecodedwiretagdatabase),ormeasuredat weirsallindicatethatadultsizereachedminimumlevelsinthemid1990sandhassince increased(figure81,figure82,figure83).formostdataseriesexamined,thesizeofcoho salmoninthelastfewyearsiscomparabletothatinthe1970sand1980s,beforetherapid decline.accordingly,while1994statusreviewprovidedevidencethattrendsinpuget Soundadultsizeweredecliningandmostwerestatisticallysignificant(p<0.05;Weitkamp etal.1995),updatedtrendsindicatebothfewernegativeslopes(only10of26timeseries examined),ofwhichfewonly4werestatisticallysignificant,whilemosttrendswere positive(16of26)includingthreestatisticallysignificantpositivetrends(table57). Althoughwedidnotexaminetrendsinfecundity,wehavenoreasontoassumethat increasingtrendsinadultsizearenotaccompaniedbyaconcurrentincreaseinfecundity. Perhapsmostimportantly,recentincreasesinsizeclearlyindicatethatPugetSoundcoho salmonhavenotlosttheabilitytoproducelargeadultswhentheconditionsareright. 188

Figure81 LongtermtrendsinestimatedweightofcohosalmoncaughtinWashingtoncommercialfisheries ( Washingtoncatch )orwashingtoncommercialtrollfisheries( Washingtontroll ).DatafromWright1970, WDF1985,WDF1996,andPFMC2009. Figure82 TrendsofadultcohosalmonsizefrommonitoredwildpopulationsinPugetSound.DatafromM. Zimmerman,WDFW,2010. 189

Figure83 Trendsofadultsizeforsalmoncaughtininriverfisheriesinnorth(top)andcentral(middle)Puget SoundandHoodCanalandtheStraitofJuandeFuca(bottom).DatafromWDFW2010. 190

Table57 Regressionstatisticsforchangesinadultsizeovertime.Includedareyearsconsideredandslopes reportedinourearlieranalysis(weitkampetal.1995).slopesthatarestatisticallysignificantatp<0.05arein boldfont. Population/Fishery Measurement source Measurement type Current Previous Current Slope Previous slope Source years years Washington all weight 35 07 35 91 0.02 0.03 1 commercialcatch Washington troll weight 54 09 54 92 0.02 0.04 2 commercialtroll BigBeefCreek spawners length 78 98,03 09 78 91 0.14 0.43 3 DeschutesRiver spawners length 78 09 78 92 0.08 0.96 3 Nooksack inriver weight 70 09 77 93 0.00 0.03 4 Nooksack hatchery length 76 08 0.15 4 returns Skagit inriver weight 74 09 78 93 0.00 0.06 4 Skagit hatchery length 74 08 0.16 4 returns Skagit testfishery length 84 08 0.18 5 Snohomish hatchery length 74 08 0.14 4 (WallaceR) returns Snohomish hatchery length 74 05 0.06 4 (IssaquahCr) returns Duwamish/Green inriver weight 70 09 72 93 0.03 0.09 4 Duwamish/Green hatchery length 74 08 0.02 4 returns Puyallup inriver weight 70 09 72 93 0.03 0.09 4 Puyallup hatchery length 75 08 0.02 4 returns Nisqually inriver weight 70 09 72 93 0.02 0.08 4 Nisqually hatchery length 80 08 0.31 4 returns MinterCreek hatchery length 73 08 0.04 4 returns PurdyCreek hatchery length 74 08 0.10 4 returns BigQuilcene hatchery length 80 08 0.08 4 returns Skokomish inriver weight 70 09 79 90 0.01 0.04 4 SnowCreek spawners length 78 09 0.12 3 (femalesonly) (incomplete) Dungeness inriver weight 75 09 75 83 0.01 0.06 4 Dungeness hatchery length 75 08 0.11 4 returns Elwha inriver weight 75 09 77 93 0.02 0.08 4 Elwha hatchery length 80 08 0.09 4 returns Sourcesare:1 WDF1985,PFMC2010;2 Wright1970,WDF1985,PFMC2010;3 M.Zimmerman (WDFW),unpublisheddata;4 WDFW2010;5 B.Hayman(SkagitCooperative),unpublisheddata. 191

Puget Sound coho salmon: Updated Risk Summary The available information suggests that the status of the Puget Sound coho salmon ESU is similar, or perhaps improved, from its status at the time of the last formal status review in 1995. Some of the risk factors identified in the earlier status review, in particular the declining trend in adult size, have reversed. Abundance in the northern populations managed for natural escapement remains as high or higher than it was at the time of the last status review. Harvest rates on natural origin Puget Sound coho salmon have generally declined since 1995. Total hatchery releases of coho salmon in the ESU have declined, although the southern portion of the ESU continues to have large number of hatchery returns. This review did not specifically evaluate trends in habitat quality, but many of actions taken as a result of the Chinook and steelhead listings likely provide some benefit to coho salmon as well. Overall, the new information considered does not indicate a change in the biological risk category since the time of the last BRT status review. References NMFS(NationalMarineFisheriesService)1996.Factorsfordecline:Asupplementtothe noticeofdeterminationforwestcoaststeelhead.nmfsprotectedspeciesbranch, Portland,OR.Onlineathttp://www.nwr.noaa.gov/ESA Salmon Listings/Salmon Populations/Reports and Publications/upload/stlhd ffd.pdf. NMFS(NationalMarineFisheriesService)1998.FactordcontributingtothedeclineofWest CoastChinooksalmon:Anaddendumtothe1996WestCoastSteelheadFactorsfor DeclineReport.NMFSProtectedSpeciesBranch,Portland,OR.Onlineat: http://www.nwr.noaa.gov/esa Salmon Listings/Salmon Populations/Reports and Publications/upload/chnk ffd.pdf PacificFisheriesManagementCouncil(PFMC).2010.Reviewofthe2009oceanfisheries. AvailablefromPFMC,pcouncil.org. PacificSalmonCommission(PSC).2010.1986 2008PeriodReport.ReportTCCoho (xx) x.draftversionprovidedbywdfw. PugetSoundSalmonRecoveryPlan WashingtonDepartmentofFisheries(WDF).1985.AnnualFisheriesStatistics. WDF,Olympia,Washington. WashingtonDepartmentofFishandWildlife(WDFW).2010.InformationonPuget SoundcohosalmonprovidedtoLaurieWeitkamp. Weitkamp,L.A.,T.C.Wainright,G.J.Bryant,G.B.Milner,D.J.Teel,R.G.Kope,andR.S.Waples. 1995.StatusreviewofcohosalmonfromWashington,Oregon,andCalifornia.U.S. Dep.Commer.NOAATech.Memo.NMFS NWFSC 24,258p. Weitkamp,L.A.,P.Adams,G.Bryant,P.Busby,R.Emmett,J.Hard,O.Johnson,R.Iwamoto,R. Kope,C.Mahnken,G.Matthews,M.Schiewe,D.Teel,T.Wainwright,W.Waknitz,R. Waples,J.Williams,GWinans,1996.DraftStatusreviewofcohosalmonfrom Washington,Oregon,andCalifornia.AvailablefromDr.LaurieWeitkamp,NMFS 2032SEOSUDrive,Newport,OR97365 Wright,S.1970.Size,age,andmaturityofcohosalmoninWashington soceantroll fisheries.wash.dep.fisheries,fisheriesresearchpapers3(2):63. 192

Zimmerman, M. 2009. 2009 Wild Coho Forecasts for Puget Sound, Washington Coast, and Lower Columbia. Wash. Dep. Fish. Wildlife Rep. 2009-01-28. Zimmerman,M.2010.SmoltproductionandadultsizeandabundancedataprovidedtoL. Weitkamp.WDFW. 193

LakeOzetteSockeyesalmon 18 ListedasathreatenedspeciesonMarch25,1999;threatenedstatusreaffirmedon June28,2005.TheESUincludesallnaturallyspawnedpopulationsofsockeyesalmonin LakeOzetteandstreamsandtributariesflowingintoLakeOzette,Washington,aswellas twoartificialpropagationprograms:theumbrellacreekandbigriversockeyehatchery programs. Since then, the ESA salmon recovery plan was finalized for Lake Ozette sockeye May 29, 2009 and the Puget Sound Technical Recovery Team (TRT) finalized analyses on population identification (Currens et al. 2009) and population/esu viability (Rawson et al. 2009) for this ESU. The Lake Ozette sockeye salmon ESU was determined to consist of only one population which consists of both beach and tributary spawners. Lake Ozette sockeye were an important contributor to fisheries of the Makah and Quileute Tribes in the first half of the 1900s. Estimates of Makah Tribes annual harvest of Lake Ozette sockeye reach 17,000 in 1949; harvest declined sharply in the 1960 s due to declining returns; commercial harvest ended in 1974 and all harvest ended by 1982. Harvest records are our best indicators of population abundance in past years. Estimation of returns to the lake are attempted using a weir at the mouth of the Ozette River; however, functioning of the weir and interpretation of the weir counts has been difficult. However, they do indicate that returns to this system have not recovered. PreviousStatusReviewsandRecoveryDocuments The three most recent status reviews of Lake Ozette sockeye (Gustafson et a. 1997; NMFS 1998; Good et al. 2005) all agreed that overall abundance is low; but collection/monitoring methods need to be improved to get a better idea of abundance trends. Five-year geometric means from the three reviews are: 1992-1996, 700 adult sockeye and declining by 10% per year (Gustafson et al. 1997). 1994-1998, 580 adult sockeye and declining by 2% per year (NMFS 1998). 1997-2001, 2,267 adult sockeye and increasing by 28% per year (Good et al. 2005). The increased numbers in the 2005 review could be in part due to changes in methods of counting data through the weir. The hatchery supplementation program was developed in 1982 to plant fry in Umbrella Creek and Big Creek with the intent of starting spawning in the tributaries to augment the traditional beach spawning by the population. Beach spawning seems to be declining, due in part to loss of quantity and quality of adequate beach spawning habitat. Spawning in Umbrella Creek has become self-sustaining as indicated by estimates of natural origin spawners to the tributary. The current hatchery program is limited to releases through 2012, at which time it will be re-evaluated. TherecoveryplanforLakeOzettesockeyewasadoptedbyNMFSin2009(NMFS 2009)andpopulationidentificationandviabilityweredeterminedbythePugetSoundTRT alsoin2009(currensetal.2009andrawsonetal.2009,respectively). 18 Sectionauthor:NormaSands 194

NewDataandUpdatedAnalyses ESUStatusataGlance Historicalpeakcatchlevels 15,000 18,000(1949 1951) Historicalpopulations 1 Extantpopulations 1 Current5 yraverageescapement 2,679(NOR) Viablepopulationstructure 1populationwithmultiplebeachandtributary spawners Viablemin.spawningabundance 35,500 ESU Structure The Puget Sound TRT considers the Lake Ozette sockeye salmon ESU to be composed of one historical population (Currens et al. 2009), with substantial substructuring of individuals into multiple spawning aggregations. The primary existing spawning aggregations occur in two beach locations Allen s and Olsen s beaches, and in two tributaries, Umbrella Creek and Big River (both tributary-spawning groups were initiated through a hatchery introduction program). NewDataandUpdatedAnalyses NewdataforLakeOzettesockeyearefromtheannualresourcemanagement reportsfromthemakahtribe(peterschmidt&hinton2005,2006,2008andpeterschmidt etal.2007).escapementdataareavailablefrom1077 2007,althoughtheescapementweir datafrom2004wasnotexpandedinthereports.estimatesofsockeyereturningtolake Ozettearegenerallymadebasedonweircountsandrepresentthereturnstothelake beforepre spawningmortalitysuchasin lakepredation.estimationofreturnsandof spawnershasbeendifficult;weiroperationhasbeenproblematicandthemethodfor expandingweircountshaschangedperiodically.thelackofreliablespawningestimates makesitdifficulttoassessthestatusoranychangesthatmightbeoccurringovertimefor thispopulation. ThereisnoharvestonLakeOzettesockeyesince1982;therewereonlyminor terminalcatchesfrom1977to1982. Ageofbeachspawnersareassumedtobeallage4whiletheagedistributionof tributaryspawnersisestimatedataweiratthemouthofumbrellacreekandareprovided intheresourcemanagementreports CohortrunreconstructionisdoneusingthePSTRTAbundance&ProductivityExcel Table(Sands2009). Abundance and Productivity Estimates Estimatingspawningabundanceandhatcherycontributionsremainsdifficultfor thepopulation.variousreportsgiveslightlydifferentestimatesandweircountshavenot beenexpandedbythecomanagerssince2003.forthisreportweexpandtheweircounts basedonaverageexpansionfactorsusedinthepast;thesedataareconsideredhighly impreciseandareincludedheretoutilizetheinformationthatisavailablefortheserecent years.estimatesusedherediffersomewhatfromthoseusedbythetrtintheirviability 195

report(rawsonetal2009)basedondataprovidedintheannualresourcemanagement PlanReportsfromMakahFisheriesManagementfor2004 2007. The abundance data used are provided in Table58 and Figure84. Escapement numbers that are italic in the table are estimated missing values, or in the case of 2004 to 2007, expanded weir counts based on average expansions, not year specific expansions. These number have high uncertainty but we expect these estimates to be updated by tribal biologists in the future. 196

Table58 Naturalspawningescapement(includesnaturaloriginandhatcheryoriginfish),naturalorigin(NOR) fish,thepercentofnaturalescapementthatishatcheryorigin,thepercentofnaturalspawnersthatoccurinthe tributaries Year Total % origin % Spawners Harvest Take 1 Natural Hatchery Tributary Broodstock 1977 2,752 2752 0% 0% 84 0 1978 2,398 2398 0% 0% 30 0 1979 1,335 1335 0% 0% 30 0 1980 1,054 1054 0% 0% 30 0 1981 858 858 0% 0% 0 0 1982 4,131 4131 0% 0% 29 0 1983 814 814 0% 0% 0 14 1984 2,447 2447 0% 0% 0 0 1985 2,014 2014 0% 0% 0 40 1986 1,592 1592 0% 0% 0 43 1987 5,579 5579 0% 0% 0 123 1988 9,577 9098 5% 5% 0 193 1989 1,671 1587 5% 5% 0 6 1990 699 664 5% 5% 0 33 1991 1,780 1691 5% 5% 0 175 1992 4,058 3873 5% 5% 0 109 1993 357 328 8% 10% 0 32 1994 964 894 7% 10% 0 54 1995 363 230 37% 57% 0 94 1996 3,931 4063 5% 9% 0 200 1997 1,346 1052 22% 47% 0 263 1998 1,882 1714 9% 24% 0 88 1999 2,620 2248 16% 55% 0 29 2000 4,851 4208 13% 71% 0 213 2001 4,151 3846 7% 85% 0 164 2002 3,822 3344 12% 45% 0 168 2003 4,876 4830 1% 36% 0 199 2004 4,917 4368 11% 90% 0 218 2005 2,260 1753 22% 98% 0 192 2006 2,288 1934 15% 43% 0 86 2007 510 509 0% 10% 0 45 1 TotalnaturalspawningestimatesaretakenfromtheLimitingFactorsAnalysisreportaccompanyingthe LakeOzetteRecoveryPlan,exceptforitalicnumberswhichareestimatedbyvariousmethodsoffillingin missingdata.for1983,1986,1993,1995,valuesweregiveninanearlierversionofthelfareport;all estimatesgiveninthelaterreportwereexpandednumbers;thesefouryearsareexpandedbytheaverage expansionvalue.for1985and1987theaverageoftheprecedingandfollowingyearwasused.for2004to 2007onlyrawweircountsweresuppliedinTribalannualreports;theseweircountswereexpandedbythe averageexpansionusedfrom1997to2003. Averageescapementoverfive yearintervalsisgivenintable59aswellas estimatesoftrends[exp[trend(ln(esc))]]overtheintervals.notrendisnotable,withthe years1993 1997havingrelativelylowabundancesand1998 2002havingrelativelyhigh abundances. 197

Figure84 TrendinspawningabundanceofLakeOzettesockeyesalmon.Thedarklineindicatesnaturalorigin spawnernumbers,light(red)lineindicatestotalnaturalspawners(includingnaturallyspawninghatcheryfish). Thedottedlineisthelong term(wholetimeseries)meanofthetotalspawers,andthegreenshadedarea indicates+/ 1standarddeviationaroundthemean. Table59 Five yeargeometricmeanescaapmentsfornaturaloriginspawnersandnaturalspawners(natural andhatcheryorigin)forlakeozettesockeyeandtrendoverthe5 yearintervals.notethefirstyearrange includes6yearstoincludethestartofavailabledata. Years Natural origin Total 77 82 1,790 1,790 83 87 2.044 2.044 88 92 2,289 2,407 93 97 766 921 98 02 2,899 3,280 03 07 2,052 2,291 Trend 1.05 1.02 Shortandlongtermtrends[exp[trend(ln(esc))]]andgrowthrates(lambda)asestimated bythespazprogramaregivenintable60.althoughthespazprogramsgivesestimatesof lambdaforbothassumptionsofhatcheryfishhavingzerosuccessonthespawninggrounds and100%success,thehatcheryfishinlakeozettearehavingadegreeofsuccess.these fisharefromtheconservationhatcheryprogramthatisintroducingspawnersinthe tributaries;thehatcheryfishhavebeensuccessfullyspawningandestablishingspawning aggregatesinthetributaries.neitherthetrendnorgrowthrateshowsanyindicationof increasingpopulationgrowth. Table60 ShortandlongtermpopulationtrendandgrowthrateestimatesfortheLakeOzettesockeye population. Hatchery Fish Success =0 Hatchery Fish Success =1 198

Years 1995-2007 1977-2007 Trend Nat Sp w/ci Lambda w/ci p>1 Lambda w/ci p>1 1.041 1.022 0.995 0.5769 (0.893-1.213) (0.328-3.19) (0.329-3.006) 0.4816 1.004 1.005 0.991 0.5306 (0.969-1.041) (0.861-1.173) (0.85-1.156) 0.4421 Productivity is measured in terms of recruits from natural spawners. Most Lake Ozette sockeye are age 4, but there are estimates of a few age 5 spawners on the beaches and both age 3-5 spawners returning to the tributaries. Using the age data, cohort run reconstruction is done to provide recruit per spawner (R/S) estimates for brood years 1977-2003. As is normal for salmon, productivity various greatly from year to year. However, the most recent brood years (1999-2003) have the lowest average R/S (Table61). 199

Table61 RecruitsperspawnerforLakeOzettesockeyebroodyears1977 2003. Brood Year R/S 1977 0.32 1978 1.74 1979 0.61 1980 2.34 1981 2.39 1982 0.40 1983 7.11 1984 3.76 1985 0.78 1986 0.43 1987 0.34 1988 0.41 1989 0.20 1990 1.38 1991 0.17 1992 0.98 1993 3.60 1994 1.88 1995 6.22 1996 1.12 1997 2.96 1998 1.85 1999 1.92 2000 0.93 2001 0.45 2002 0.52 2003 0.11 5-year arithmetic averages BY 79-83 2.57 BY 84-88 1.15 BY 89-93 6 BY 94-98 2.81 BY 99-03 0.79 Trend -0.19 Spatialstructureanddiversity Spatialstructureanddiversityareimportantfactorsindeterminingviabilityof salmonpopulations.theseviabilityfactorsforlakeozettesockeyearemeasuredusing spawninglocationastheindicator.itis,therefore,importanttobemonitoringthe spawningdistributionofthispopulation,notonlybetweenbeachandtributaryspawners, butamonglocationsiteswithineachofthesespawningtypes.thereiscurrentlyaweirat themouthofumbrellacreekwherethereisahatcheryintroductionprogramthat monitorsescapementtothattributary.however,thereiscurrentlynosuccessfully quantitativeprogramtomonitorbeachspawningorspawningatothertributaries. 200

Hatchery releases Hatchery releases started in 1983 into Umbrella Creek with the purpose of introducing tributary spawners into this sockeye ESU (Table62). The hatchery program will be re-evaluated in 2012 to see if it has accomplished its purpose and will be stopped, or whether it should be continued. The program does seem to have produced natural spawners returning to these two creeks and to a lesser extent in other tributaries. Because of the reduced quality and quantity of beach spawning habitat, these tributary spawners will be an important contribution to overall ESU viability. Table62 HatcheryreleasesintoUmbrellaCreekandBigCreek. Year Hatchery releases 1995 45,220 1996 266,295 1997 187,756 1998 69,328 1999 36,660 2000 194,076 2001 246,210 2002 228,549 2003 117,071 2004 231,508 2005 170,698 2006 95,830 2007 50,748 Harvest OceanfisheriesdonotsignificantlyimpactLakeOzettesockeyesalmon.BothLakeOzette andtheozetteriver,connectingthelakewiththeocean,areclosedtosalmonfishing. Lake Ozette sockeye salmon: Updated Risk Summary EstimatesofpopulationdataforLakeOzettesockeyeremainhighlyvariableand uncertain.thismakesitimpossibletodetectchangesinabundancetrendsorin productivityinrecentyears.itisobvious,though,thatpopulationlevelsremainverylow comparedtohistoricallevelswhenharvestonthesestockswasplentiful.assessment methodsmustimproveinordertoevaluatethestatusofthispopulation/esuandits responsestorecoveryactions.overall,thenewinformationconsidereddoesnotindicatea changeinthebiologicalriskcategorysincethetimeofthelastbrtstatusreview. References Currens,K.P.,R.R.Fuerstenberg,W.H.Graeber,K.Rawson,M.H.Ruckelshaus,N.J.Sands,andJ.B. Scott.2009.IdentificationofanindependentpopulationofsockeyesalmoninLakeOzette, Washington.U.S.Dept.Commer.,NOAATech.Memo.NMFS NWFSC 96,18p.NTISnumber PB2009 108060. 201

GoodTP,WaplesRS,AdamsP(2005)UpdatedstatusoffederallylistedESUsofWestCoast salmonandsteelhead.u.s.dept.commer.,noaatech.memo.nmfs NWFSC 66.,p. 598. Gustafson,R.G.,T.C.Wainwright,G.A.Winans,F.W.Waknitz,L.T.Parker,R.S.Waples. 1997.StatusreviewofsockeyesalmonfromWashingtonandOregon.U.S.Dept.of Commerce,NOAATech.Memo.,NMFS NWFSC 33,282p. NMFS(NationalMarineFisheriesService).1998.Proposedrule:Endangeredand threatenedspecies:proposedthreatenedstatusanddesignatedcriticalhabitatfor OzetteLake,Washingtonsockeyesalmon.FederalRegister[Docket980219043 8043 01,10March1998]63(46):11750 11771. NMFS.2009.LakeOzetteSockeyeRecoveryPlan.AdoptedbyNMFSMay29,2009. http://www.nwr.noaa.gov/salmon Recovery Planning/Recovery Domains/Puget Sound/Lake Ozette Plan.cfm Peterschmidt,C.andJ.Hinton.2005.ResourcemanagementplanreportforLakeOzette sockeye2004.makahfisheriesmanagementreportjune2005.10pp. Peterschmidt,C.andJ.Hinton.2006.ResourcemanagementplanreportforLakeOzette sockeye2005.makahfisheriesmanagementreport2006.11pp. Peterschmidt,C.,J.HintonandC.Eggleston.2007.Resourcemanagementplanreportfor LakeOzettesockeye2006.MakahFisheriesManagementReport2007.10pp. Peterschmidt,C.andJ.Hinton.2008.ResourcemanagementplanreportforLakeOzette sockeye2007.makahfisheriesmanagementreportjune2008.10pp. Rawson,K.etal.2009.ViabilitycriteriafortheLakeOzettesockeyesalmonevolutionarily significantunit.noaatech.memo.nmfs NWFSC 99.53pp. Sands,N.J.2009.Auser sguidetotheabundanceandproductivity(a&p)tablesas developedforpugetsoundsalmon.fromthepugetsoundtechnicalrecoveryteam (PSTRT)AbundanceandProductivity(A&P)Workgroup.Fourthdraft,20April, 2009.(AvailablefromN.J.Sands,NorthwestFisheriesScienceCenter,2725 MontlakeBlvd.E.,Seattle,WA98112.) 202

PugetSoundsteelhead 19 ListedESU/DPS ThisreportcoverstheDistinctPopulationSegment(DPS)ofPugetSoundsteelhead (Oncorhynchusmykiss).ThesefisharetheanadromousformofO.mykissthatoccurin rivers,belownaturalbarrierstomigration,innorthwesternwashingtonstatethatdrainto PugetSound,HoodCanal,andtheStraitofJuandeFucabetweentheU.S./Canadaborder andtheelwhariver,inclusive. ESU/DPSBoundaryDelineationTheDPSboundarydelineationforPugetSound steelheadhasnotbeenreviewedsincethebiologicalreviewteam s(brt)2007status reviewofthisdps(hardetal.2007).thepugetsoundtechnicalrecoveryteam(trt) consideredgeneticandlifehistoryinformationfromsteelheadontheolympicpeninsula andwashingtoncoastbutconcludedthatthereisnocompellingevidencetoalterthedps boundariesdescribedabove. SummaryofPreviousBRTConclusions TheinitialreviewofthisDPS thencalledthepugetsoundevolutionarilysignificantunit (ESU) byabrtwascompletedin1996inresponsetotwolistingpetitionsreceivedby NOAAin1993and1994(Busbyetal.1996).SubsequenttothatBRTreview,NOAAissueda determinationthatlistingofpugetsoundsteelheadwasnotwarranted(61 FR 41451).In responsetoapetitiontolistpugetsoundsteelheadreceivedinseptember2004,anewly convenedbrtcompleteditsreportsummarizingthestatusofthepugetsoundsteelhead DPSinJune2007(Hardetal.2007).SubsequenttotheBRTreview,NOAAissueditsfinal determinationtolistthepugetsoundsteelheaddpsasathreatenedspeciesundertheesa on11may2007(72fr26722);theeffectivedateofthelistingwas11june2007. BriefReviewofTechnicalRecoveryTeamDocumentsandFindings ThePugetSoundSteelheadTechnicalRecoveryTeam(TRT)wasformedinMarch2008.It hasnotyetfinalizeditsviabilitycriteriaforthepugetsoundsteelheaddps;thetrtisstill conductinganalysesofthesedatatoidentifydemographicallyindependentpopulations (DIPs)andMajorPopulationGroups(MPGs)withintheDPS.TheTRTexpectstocomplete itsreportsummarizingthesecriteriainearly2011.consequently,thisreportfocuseson assessingviabilityofpopulationsinthedpsforwhichdemographicdataareavailable,and whichmightreflectadraftsetofputativedipsandmpgsthoughttorepresenthistorical populationstructurewithinthedps.theviabilityassessmentincorporates1)basic analysesofabundanceandtrend,followedby2)asetofsimplepopulationviability Analyses(PVAs)forthesedraftDIPsandMPGswithintheDPS. NewDataandUpdatedAnalyses Abundanceandtrends 19 Sectionauthor:JeffHard 203

Thedataconsideredinthisreportincludeestimatesofsteelheadnaturalescapement and/ortotalrunsize,ascalculatedfromreddcountandcatchstatisticsobtainedfromthe WashingtonDepartmentofFishandWildlife.Thesedataareforwinter runsteelhead primarily(thesolesummer runexceptionisfromthetoltriver),anddatefrom1985.at thispoint,thesepopulationsareconsideredbythetechnicalrecoveryteamtobe potentialdips;however,theydonotincludeallpotentialdipsunderconsiderationbythe TRT,sothepopulationsevaluatedhereinshouldbeconsidereddraftDIPs.Wepresent basicanalysesofnaturalescapementdataintable63 Table65below;theseanalyses focusona)datafromtheentiretimeseries,b)datasince1995,andc)fromthemostrecent fiveyears. a) Datafromtheentireseries Since1985,PugetSoundwinter runsteelheadabundancehasshownawidespread decliningtrendovermuchofthedps(table1).onlyfourofthe16populations evaluatedexhibitestimatesoflong termpopulationgrowthrate(λ=r 0 =e r,whereisr 0 isthenetbirthrateandristheintrinsicgeometricgrowthrate)thatarepositive(east HoodCanal,PortAngeles,SamishRiver,andWestHoodCanal),andonlyoneoftheseis significantly(p<0.05)greaterthanone(indicatingpositivepopulationgrowth):west HoodCanal.Thesefourpopulationsareallsmall.Thehighestgrowthratesoverthe entireseriesoccurineasthoodcanal,thegreenriver,portangeles,thesamishand Skagitrivers,andWestHoodCanal;thelowestratesoccurintheElwhaRiver,Lake Washington,andtheStillaguamish,Nisqually,andPuyalluprivers.Trendscouldnotbe calculatedforsouthpugetsoundtributaries. Table63 Estimatesofexponentialtrendinthenaturallogarithm(ln)ofnaturalspawners(λ)forseveral winter runpopulationsofsteelheadinthepugetsounddpsovertheentiredataseries(1985 2009).NC,not calculated. Population Exp.Trendln(nat.spawners)(95%CI) SouthSoundtributarieswinter run NC DungenessRiverwinter run 0.926(0.909 0.943) EastHoodCanalwinter run 1.022(0.997 1.048) ElwhaRiverwinter run 0.840(0.749 0.943) GreenRiverwinter run 0.992(0.969 1.016) LakeWashingtonwinter run 0.807(0.770 0.845) NisquallyRiverwinter run 0.914(0.890 0.940) PortAngeleswinter run 1.016(0.983 1.050) PuyallupRiverwinter run 0.919(0.899 0.938) SamishRiverwinter run 1.008(0.972 1.045) SkagitRiverwinter run 0.969(0.954 0.985) SkokomishRiverwinter run 0.956(0.932 0.979) SnohomishRiverwinter run 0.963(0.941 0.985) 204

StillaguamishRiverwinter run 0.910(0.887 0.934) WestHoodCanalwinter run 1.101(1.046 1.160) WhiteRiverwinter run 0.938 (0.923 0.952) b) Datasince1995 Since1995,PugetSoundwinter runsteelheadabundancehasalsoshownawidespread decliningtrendovermuchofthedps(table2).onlythreeofthe16populations evaluatedexhibitpointestimatesofgrowthratethatarepositive(easthoodcanal, SkokomishRiver,andWestHoodCanal),andonlyoneoftheseissignificantlygreater(P <0.05)thanone(positivepopulationgrowth):WestHoodCanal.Thesefour populationsareallsmall.thehighestgrowthratesovertheentireseriesoccurineast HoodCanal,theSkokomishRiver,andtheSamishandSkagitrivers;thelowestrates occurintheelwhaanddungenessrivers,lakewashington,andthestillaguamish, Nisqually,andPuyalluprivers.TrendscouldnotbecalculatedforsouthPugetSound tributaries. Table64 Estimatesofexponentialtrendinthenaturallogarithm(ln)ofnaturalspawners(λ)forseveral winter runpopulationsofsteelheadinthepugetsounddpssince1995(1995 2009).NC,notcalculated. Population Exp.Trendln(nat.spawners)(95%CI) SouthSoundtributarieswinter run NC DungenessRiverwinter run 0.919(0.786 1.075) EastHoodCanalwinter run 1.033(0.976 1.092) ElwhaRiverwinter run 0.750(0.020 28.503) GreenRiverwinter run 0.953(0.892 1.019) LakeWashingtonwinter run 0.731(0.656 0.815) NisquallyRiverwinter run 0.935(0.876 0.997) PortAngeleswinter run 0.964(0.899 1.031) PuyallupRiverwinter run 0.902(0.850 0.957) SamishRiverwinter run 0.966(0.934 0.998) SkagitRiverwinter run 0.978(0.931 1.029) SkokomishRiverwinter run 1.006(0.958 1.057) SnohomishRiverwinter run 0.961(0.878 1.050) StillaguamishRiverwinter run 0.879(0.820 0.943) WestHoodCanalwinter run 1.101(1.046 1.160) WhiteRiverwinter run 0.933(0.905 0.963) c) Datafromthemostrecentfiveyears 205

Overthemostrecentfiveyears(2005 2009),PugetSoundwinter runsteelhead abundancehasbeenlowovermuchofthedps,withageometricmeanlessthan250 fishannuallyforallbuteightpopulationsofthe15evaluated(table57).fourofthese areinnorthernpugetsound(samish,skagit,snohomishandstillaguamishrivers), threeareinsouthernpugetsound(nisqually,puyallup,andwhiterivers),andoneison theolympicpeninsula(skokomishriver).onlythreepopulationshaveageometric meangreaterthan500fish Green,SkagitandSamishrivers andtwoofthesearein northernpugetsound.theelwhariver,lakewashington,andsouthsoundtributaries populationsallhaveverylowrecentmeanabundances(<15fish). Table65 Geometricmeansofnaturalspawnersforseveralwinter runpopulationsofsteelheadinthepuget SoundDPSoverthemostrecentfiveyears(2005 2009).NC,notcalculated. Population Geometricmean(95%CI) SouthSoundtributarieswinter run NC EastHoodCanalwinter run 213(122 372) ElwhaRiverwinter run NC GreenRiverwinter run 986(401 2428) LakeWashingtonwinter run 12(3 55) NisquallyRiverwinter run 402(178 908) PortAngeleswinter run 147(53 405) PuyallupRiverwinter run 326(178 596) SamishRiverwinter run 534(389 732) SkagitRiverwinter run 4648(2827 7642) SkokomishRiverwinter run 355(183 686) SnohomishRiverwinter run 4573(500 41865) StillaguamishRiverwinter run 327(100 1067) WestHoodCanalwinter run 208(118 366) WhiteRiverwinter run 265(206 342) Collectively,thesedataindicaterelativelylowabundance(4of15populationswithfewer than500spawnersannually)anddecliningtrends(6of16populations)innatural escapementofwinter runsteelheadthroughoutpugetsound,particularlyinsouthern PugetSoundandontheOlympicPeninsula. Supplementaryanalyses Wepresentseveraladditionalanalysesofsteelheadabundancedatathatrelyon multivariateauto regressivestate spacemodels(marss;holmesandward2010)to estimatequasi extinctionriskmetricsfromestimatesoftotalnaturalrunsize.themarss analyseswereconductedinr,version2.10(rdct2009).thesestochasticmodelsevaluate 206

linearunivariateormultivariatetimeseriestoestimatefuturetrend.theyhaveadistinct advantageinevaluatingecologicalapplicationssuchastimeseriesofabundancebecause theycanaccommodatemissingdataandconsiderbothprocess(e.g.,demographic stochasticity)andnon process(e.g.,measurementerror)errorsinthedata(holmesand Ward2010,Wardetal.2010).Theyalsodonotrequireanassumptionofaspecific underlyingdemographicstructure(e.g.,aspecificspawner recruitrelationship).the MARSSmodelsarefititerativelytothedataviamaximumlikelihood,usingaKalmanfilteredExpectation Maximization(EM)algorithm.Thisalgorithmisespeciallywellsuited todynamicsystemswherehiddenrandomvariablesoccurinthemodel.thekalmanfilter, whichiswidelyusedintheanalysisoftimeseries,usesdiffusionapproximationmethods tosolvefortheexpectedvaluesofthehiddenstates(ofthemultivariateauto regressive processes),conditionedonthedataovertheentiretimeseries.thisapproachis appropriateforsteelheadabundancedataforpugetsoundbecausethesedatainclude primarilyobservedreddcounts,oftenfromindexstreamreaches,andcreelcensusdata, whicharetakenusingconventionalprotocolsbutofteninvolvemissingorinconsistent catchinformation. ThePVAswerebasedonestimatesofnaturalrunsize(oranindexofrunsize)formostof thepugetsoundsteelheadpopulations;theseestimateswereobtainedfromwdfwby addingunexpandedestimatesofnaturalescapement(whichwereoftenbasedonredd countsfromindexreaches)toestimatesofnaturalfishcaughtintribalandsportfisheries between1985and2009.thepvasprovideestimatesofprocessandmeasurementerror, andprobabilitiesofextinctionriskandassociatedconfidenceintervalsarecomputedfrom theestimatesofabundancetrendsandprocesserror.thepvasestimatedbymarssdonot accountfordensitydependenteffectsonproductivityandabundance,butthisisatypical assumptionofpvawhenappliedtosmallordecliningpopulations.ifhabitatcapacityis changingorifalleeeffectsexpressedatlowabundanceareimportantinfluenceson populationtrends,theyarenotdetectedbythesemethods.althoughmissingdataarenot strictlylimitingtotheapproach(solongassufficientdataarepresentinthetimeseries), thepvasdoassumethatapopulationisstationarythroughtime,i.e.,trendsarelinearand environmentalconditionsaffectingmortalityandproduction(includingharvest)are constant.becauseitisastate spaceapproach,amarssanalysiscanprovidemore precisioninestimatesoftrendbecauseobservationerrorisexplicitlyincludedinthe analysis(ignoringobservationerrortendstoleadtoinflatedestimatesofprocess variance).thestate spaceframeworkpartitionsthetotalvarianceintoprocessand observationvariance,whichcanyieldmoreconstrained,realisticestimatesofprocess varianceand,asaresult,morepreciseestimatesofviabilitymetrics. Thefollowingthreegraphs(Figure85 Figure87)examinethetrendsinestimatednatural runsizeforpugetsoundwinter runsteelheadovertheentiredataseries(1985 2009),for populationscombinedintothreedraftputativempgsinthedps:northerncascades,south Sound,andOlympic.Ineachcase,thegraphsplotthemaximum likelihoodestimateof log(totalno.naturalsteelhead)forthecandidatepopulationsinthempgagainstthe observeddata,assumingthat1)eachpopulationtimeseriesfollowsasinglempg trajectoryandaresimplyscaledupordownrelativetoit,and2)variancesinthe observationerrorsforeachtimeseriesaremultivariatenormalbutareallowedtobe 207

uniqueforeachpopulation.theestimateofthelog(totalmpgcount)(solidblackcurve) hasbeenscaledrelativetothefirstpopulationatthetopofthelegend(i.e.,samishriverfor thenortherncascadesmpg,lakewashingtonforthesouthsoundmpg,andelwhariver fortheolympicmpg).the95%confidenceintervals(ci)aroundthetotalmpgestimate aregivenbythereddashedcurves(note:thesearenottheconfidenceintervalsaroundthe observeddata,whichareexpectedtofalloutsidethecidependingonthedegreeof population specificnon processerror,butareinsteadaroundthecompositeestimate; HolmesandWard2010).TheapproximateCIswerecomputedusingeitheranumerically estimatedhessianmatrix(asquarematrixofsecond orderpartialderivativesofthe function)orviaparametricbootstrapping.therelativelytightcisarisebecausethe estimateofprocessvarianceissmallandbecauseallthetime seriesdataarefittoasingle population trajectory.thetotalmpgestimateaccountsforthebiasestimatedforthefirst populationtimeseries. TheNorthernCascadesMPGshowsaclearlydecliningtrendinwildabundance(Figure 85).Theaveragelong termmpggrowthrate(uest,equivalenttoln(λ);seetables55and 56)isestimatedfromtheslopeoftheregression.Thisgrowthrateisnegative( 0.039), correspondingtoanestimatedlossinabundanceof3.9%peryearandaλof0.962.the processvariance(qest),whichisthetemporalvariabilityinpopulationgrowthratearising fromdemographicstochasticity,isestimatedfromthevarianceofresidualsaroundthe regressionline,andis0.024.thesouthsoundmpgalsoshowsaclearlydecliningtrendin wildabundance(figure86).itsestimatedlong termmpggrowthrateisnegative,witha lossof6.9%peryear(λ=0.933),anditsestimatedprocessvarianceis<0.001.the OlympicMPGshowsanegativelong termpopulationgrowthrateof1.3%peryear(λ= 0.987),withanestimatedprocessvarianceof0.096(Figure87). 208

Figure85 PlotoftheestimateoftotalPugetSoundwinter runsteelheadforaputativenortherncascadesmajor PopulationGroup(MPG).Thegraphplotsthemaximum likelihoodestimateoflog(totalno.steelhead)inthempg againsttheobserveddata,assumingasingle populationmodelforthempg.theestimateofthelog(totalmpg count)(solidblackline)hasbeenscaledrelativetothesamishriverpopulation.the95%confidenceintervals aroundthetotalmpgestimatearegivenbythereddashedlines(note:thesearenottheconfidenceintervals aroundtheobserveddata,whichareexpectedtofalloutsidetheci,dependingonpopulation specificnonprocesserror).seetextfordetails.nosuitabledatawereavailablefornooksackriversteelhead. 209

Figure86 PlotoftheestimateoftotalPugetSoundwinter runsteelheadforaputativesouthsoundmajor PopulationGroup(MPG).Thegraphplotsthemaximum likelihoodestimateoflog(totalno.steelhead)inthempg againsttheobserveddata.theestimateofthelog(totalmpgcount)(solidblackline)hasbeenscaledrelativeto thelakewashingtonpopulation.the95%confidenceintervalsaroundthetotalmpgestimatearegivenbythe reddashedlines(note:thesearenottheconfidenceintervalsaroundtheobserveddata,whichareexpectedto falloutsidetheci,dependingonpopulation specificnon processerror).seetextfordetails.nosuitabledata wereavailableforsouthsoundtributariessteelhead. 210

Figure87 Plotofthemaximum likelihoodestimateoftotalpugetsoundwinter runsteelheadforaputative OlympicMajorPopulationGroup(MPG).Thegraphplotstheestimateoflog(totalno.steelhead)intheMPG againsttheobserveddata.theestimateofthelog(totalmpgcount)(solidblackline)hasbeenscaledrelativeto theelwhariverpopulation.the95%confidenceintervalsaroundthetotalmpgestimatearegivenbythered dashedlines(note:thesearenottheconfidenceintervalsaroundtheobserveddata,whichareexpectedtofall outsidetheci,dependingonpopulation specificnon processerror).seetextfordetails. 211

Thenextseveralsetsofmulti plots(startingwithfigure88)summarizemarssanalyses thatevaluatethetrendsinestimatedwildabundancefordraftputativedipsofpuget Soundsteelheadovertheentiredataseries(1985 2009;typically,thesepopulation estimatesaretakenfromacombinationofobservedreddcountsfromindexreachesand observedcatches),projectpopulationtrends100yearsintothefuture,andwherepossible evaluatetheseprojectionsagainstspecifiedviabilitycriteria.foreachpopulation,the graphsprovideuptosixplotssummarizingthepopulationviabilityanalyses(pvas).the topleftpanelplotstheobservedcountsagainstyear,givingthemarssmaximumlikelihoodestimateoffittotheabundancedata(redcurve),theestimatedlong term populationgrowthrate(uest,equivalenttoln(λ)),andtheprocessvariance(qest).the toprightpanelplotstheprobabilitythatthepopulationwillreachaquasi extinction threshold(qet)abundanceequalto10%ofitscurrentabundanceoverthenext100years (withapproximate95%confidenceintervals).themiddleleftpanelplotstheprobability densityofthetimeinyearstoreachqetgiventhatitisreachedwithin100years,andthe middlerightpaneldepictstheprobabilityofreachingqetin100years,givenasafunction ofthenumberofindividualsattheendoftheprojection.thebottomleftpanelplots severalofthesamplepopulationprojectionsestimatedbymarss.finally,thebottomright paneldepictstheregionsofhighcertaintyanduncertaintysurroundingthepopulation projections(anextinctionrisk envelope ).Thegreenregioniswheretheupper95%CIsof theprojectionsdonotexceedp=0.05 i.e.,wheretheprobabilityofthespecified populationdeclineis<5%.theredregioniswherethelower95%cisoftheprojections exceedp=0.95 i.e.,wheretheprobabilityofthespecifiedpopulationdeclineis>95%. Thegreyregionsdefinelesscertainareasofparameterspacebetweentheseextremes, withthedarkgreyregionrepresentingtheregionofhighestuncertainty.notethatnotall plotsandcorrespondingestimatescouldbeconstructedforeachpopulation.forexample, wewerenotabletocalculatepvaestimatesforputativewinter runsteelhead DemographicallyIndependentPopulations(DIPs)intheNooksackRiverorinSouthPuget Soundtributaries,norwereweabletodosoforanysummer runsteelheadpopulationsin thepugetsounddpsexceptforthatinthetoltriver. 212

Figure88depictspopulationtrendsforSamishRiverwinter runsteelhead.steelhead countsinthesamishriverhavedeclinedsharplyinrecentyears.assumingthatthese countsareareasonablereflectionofspawnerabundance,theestimatedprobabilitythat thissteelheadpopulationwoulddeclineto10%ofitscurrentestimatedabundance(i.e.,to 43fish)ishigh about80%within25years.withanestimatedmeanpopulationgrowth rate(uest)of 0.037(λ=0.964)andprocessvariance(Qest)of0.140,wecanbehighly confident(p<0.05)thata90%declineinthispopulationwillnotoccurwithinthenext5 10years,andthata99%declinewillnotoccurwithinthenext15years.However,beyond thenext25yearswearehighlyuncertainaboutthepreciselevelofrisk. Figure88 PopulationViabilityAnalysis(PVA)forSamishRiverwinter runsteelhead.seetextfordescription. 213

Figure89depictspopulationtrendsforSkagitRiverwinter runsteelhead.steelhead countsintheskagitriverhavedeclinedsteadilysincethe1980s.theestimatedprobability thatthissteelheadpopulationwoulddeclineto10%ofitscurrentestimatedabundance (i.e.,to504fish)ishigh about80%within75years.withanestimatedmeanpopulation growthrateof 0.037(λ=0.964)andprocessvarianceof0.005,wecanbehighlyconfident (P<0.05)thata90%declineinthispopulationwillnotoccurwithinthenext30years,and thata99%declinewillnotoccurwithinthenext60years.however,beyondthenext50 yearswearehighlyuncertainaboutthepreciselevelofrisk. Figure89 PopulationViabilityAnalysis(PVA)forSkagitRiverwinter runsteelhead.seetextfordescription. 214

Figure90depictspopulationtrendsforStillaguamishRiverwinter runsteelhead. SteelheadcountsintheStillaguamishRiverhavedeclinedsteadilysincethe1980s.The estimatedprobabilitythatthissteelheadpopulationwoulddeclineto10%ofitscurrent estimatedabundance(i.e.,to37fish)ishigh about90%within60years.withan estimatedmeanpopulationgrowthrateof 0.071(λ=0.931)andprocessvarianceof0.016, wecanbehighlyconfident(p<0.05)thata90%declineinthispopulationwillnotoccur withinthenext15years,andthata99%declinewillnotoccurwithinthenext30years. However,a50%declineishighlylikelywithin100years.Beyondthenext30 40years,we arehighlyuncertainaboutthepreciselevelofrisk. 215

Figure90 PopulationViabilityAnalysis(PVA)forStillaguamishRiverwinter runsteelhead.seetextfor description. Figure91depictspopulationtrendsforSnohomishRiverwinter runsteelhead.steelhead countsinthesnohomishriverhavedeclinedsincethe1980s.theestimatedprobability thatthissteelheadpopulationwoulddeclineto10%ofitscurrentestimatedabundance (i.e.,to445fish)ismoderatelyhigh about50%within100years.withanestimatedmean populationgrowthrateof 0.024(λ=0.976)andprocessvarianceof0.033,wecanbe highlyconfident(p<0.05)thata90%declineinthispopulationwillnotoccurwithinthe next15years,andthata99%declinewillnotoccurwithinthenext35years.however, beyondthenext40 50yearswearehighlyuncertainaboutthepreciselevelofrisk.. 216

Figure91 PopulationViabilityAnalysis(PVA)forSnohomishRiverwinter runsteelhead.seetextfor description. Figure92depictspopulationtrendsforLakeWashingtonwinter runsteelhead.thecounts havebeenverylowsince2000.theestimatedmeanpopulationgrowthrateis 0.23(λ= 0.794)andprocessvarianceis0.380.TheestimatedprobabilitythattheLakeWashington steelheadpopulationwoulddeclineto10%ofitscurrentestimatedabundance(<1fish)is high ~90%within40years.Anextinctionriskenvelopecouldnotbecalculatedforthis populationfromthedata. 217

Figure92 PopulationViabilityAnalysis(PVA)forLakeWashingtonwinter runsteelhead.seetextfor description. 218

Figure93depictspopulationtrendsforGreenRiverwinter runsteelhead.steelheadcounts inthegreenriverhavedeclinedsteadilysincethe1980sandmostsharplysince2005.the estimatedprobabilitythatthissteelheadpopulationwoulddeclineto10%ofitscurrent estimatedabundance(i.e.,to45fish)ishigh about90%within80years.withan estimatedmeanpopulationgrowthrateof 0.042(λ=0.959)andprocessvarianceof0.001, wecanbehighlyconfident(p<0.05)thata90%declineinthispopulationwillnotoccur withinthenext20years,andthata99%declinewillnotoccurwithinthenext45years. However,beyondthenext50yearswearehighlyuncertainaboutthepreciselevelofrisk. Figure93 PopulationViabilityAnalysis(PVA)forGreenRiverwinter runsteelhead.seetextfordescription. 219

Figure94depictspopulationtrendsforPuyallupRiverwinter runsteelhead.steelhead countsinthepuyallupriverhavedeclinedsteadilysincethe1980s.theestimated probabilitythatthissteelheadpopulationwoulddeclineto10%ofitscurrentestimated abundance(i.e.,to29fish)ishigh about90%within25 30years.Withanestimated meanpopulationgrowthrateof 0.092(λ=0.912)andprocessvarianceof0.004,wecanbe highlyconfident(p<0.05)thata90%declineinthispopulationwillnotoccurwithinthe next15 20years(butwilloccurwithin40years),andthata99%declinewillnotoccur withinthenext30 40years(butwilloccurwithin80years).However,forintermediate periodsandothervaluesofdeclinewearehighlyuncertainaboutthepreciselevelofrisk. 220

Figure94 PopulationViabilityAnalysis(PVA)forPuyallupRiverwinter runsteelhead.seetextfordescription. Figure95depictspopulationtrendsforNisquallyRiverwinter runsteelhead.steelhead countsinthenisquallyriverdeclinedsteeplyinthe1980sand1990sandhaveremained lowsince.theestimatedprobabilitythatthissteelheadpopulationwoulddeclineto10%of itscurrentestimatedabundance(i.e.,to54fish)ishigh about80%within40years.with anestimatedmeanpopulationgrowthrateof 0.088(λ=0.916)andprocessvarianceof 0.070,wecanbehighlyconfident(P<0.05)thata90%declineinthispopulationwillnot occurwithinthenext6 8years,andthata99%declinewillnotoccurwithinthenext15 18 years.however,beyondthenext20yearswearehighlyuncertainaboutthepreciselevelof risk. 221

Figure95 PopulationViabilityAnalysis(PVA)forNisquallyRiverwinter runsteelhead.seetextfordescription. Figure96depictspopulationtrendsforWhiteRiverwinter runsteelhead.steelheadcounts inthewhiteriverhavedeclinedsteadilysincethe1980s.theestimatedprobabilitythat thissteelheadpopulationwoulddeclineto10%ofitscurrentestimatedabundance(i.e.,to 26fish)ishigh about90%within50years.withanestimatedmeanpopulationgrowth rateof 0.062(λ=0.940)andprocessvarianceof0.002,wecanbehighlyconfident(P< 0.05)thata90%declineinthispopulationwillnotoccurwithinthenext25years(butwill occurwithin60years),andthata99%declinewillnotoccurwithinthenext50 55years 222

(butwilloccurwithin100years).however,beyondthenext20yearswearehighly uncertainaboutthepreciselevelofrisk. Figure96 PopulationViabilityAnalysis(PVA)forWhiteRiverwinter runsteelhead.seetextfordescription. Figure97depictspopulationtrendsforSkokomishRiverwinter runsteelhead.thecounts havebeenespeciallylowsincethelate1990s.theestimatedprobabilitythatthissteelhead populationwoulddeclineto10%ofitscurrentestimatedabundance(i.e.,to35fish)is high about80%within80years.withanestimatedmeanpopulationgrowthrateof 0.037(λ=0.964)andprocessvarianceof0.019,wecanbehighlyconfident(P<0.05)that 223

a90%declineinthispopulationwillnotoccurwithinthenext20yearsandthata99% declinewillnotoccurwithinthenext40years.however,beyondthenext30 40yearswe areuncertainaboutthepreciselevelofrisk. Figure97 PopulationViabilityAnalysis(PVA)forSkokomishRiverwinter runsteelhead.seetextfor description. Figure98depictspopulationtrendsforEastHoodCanalwinter runsteelhead.steelhead countsineasthoodcanalshownocleartrendoverthetimeseries.theestimated probabilitythatthissteelheadpopulationwoulddeclineto10%ofitscurrentestimated abundance(i.e.,to22fish)isrelativelylow about30%within100years.withan 224

estimatedmeanpopulationgrowthrateof 0.002(λ=0.998)andprocessvarianceof0.052, wecanbehighlyconfident(p<0.05)thata90%declineinthispopulationwillnotoccur withinthenext10years,andthata99%declinewillnotoccurwithin30years.however, beyondabout30yearswearehighlyuncertainaboutthepreciselevelofrisk. Figure98 PopulationViabilityAnalysis(PVA)forEastHoodCanalwinter runsteelhead.seetextfor description. Figure99depictspopulationtrendsforWestHoodCanalwinter runsteelhead.steelhead countsinwesthoodcanalhaveshownanincreasingtrendsincethemid1990s.the estimatedprobabilitythatthissteelheadpopulationwoulddeclineto10%ofitscurrent 225

estimatedabundance(i.e.,to31fish)islow nearzerowithin100years.withan estimatedmeanpopulationgrowthrateof0.093(λ=1.097)andprocessvarianceof0.017, wecanbehighlyconfident(p<0.05)thata50%orgreaterdeclineinthispopulationwill notoccurwithinthenext100years. Figure99 PopulationViabilityAnalysis(PVA)forWestHoodCanalwinter runsteelhead.seetextfor description. Figure100depictspopulationtrendsforPortAngeleswinter runsteelhead.steelhead countsinportangeleshavedeclinedsharplysincethelate1990s.theestimated probabilitythatthissteelheadpopulationwoulddeclineto10%ofitscurrentestimated 226

abundance(i.e.,to11fish)ishigh nearly80%within100years.withanestimatedmean populationgrowthrateof 0.033(λ=0.968)andprocessvarianceof0.078,wecanbe highlyconfident(p<0.05)thata90%declineinthispopulationwillnotoccurwithinthe next8 10years,andthata99%declinewillnotoccurwithinthenext20years.However, beyondthenext20yearswearehighlyuncertainaboutthepreciselevelofrisk. Figure100 PopulationViabilityAnalysis(PVA)forPortAngeleswinter runsteelhead.seetextfordescription. Figure101depictspopulationtrendsforDungenessRiverwinter runsteelhead.the countshavebeenverylowandhavesteadilydeclinedsincetheearly1990s.theestimated probabilitythatthissteelheadpopulationwoulddeclineto10%ofitscurrentestimated 227

abundance(i.e.,to8fish)within100yearsishighbutcouldnotbecalculated.withan estimatedmeanpopulationgrowthrateof 0.096(λ=0.908)andprocessvarianceof< 0.001,wecanbehighlyconfident(P<0.05)thata90%declineinthispopulationwillnot occurwithinthenext20years(butwilloccurwithin30years),andthata99%declinewill notoccurwithinthenext40years(butwilloccurwithin55 60years).However,forother yearsandvaluesofdeclinewearelesscertainaboutthepreciselevelofrisk. Figure101 PopulationViabilityAnalysis(PVA)forDungenessRiverwinter runsteelhead.seetextfor description. Figure102depictspopulationtrendsforElwhaRiverwinter runsteelhead.thecounts declinedsharplyinthelate1980sandearly1990shavebeenverylowinrecentyears.the 228

estimatedprobabilitythattheelwhariversteelheadpopulationwoulddeclineto10%of itscurrentestimatedabundance(i.e.,to10fish)isfairlyhigh ~90%within40years. Withanestimatedmeanpopulationgrowthrateof 0.092(λ=0.912)andprocessvariance of0.013,wecanbehighlyconfident(p<0.05)thata90%declineinthispopulationwill notoccurwithinthenext8 10years(butwilloccurwithin70years),andthata99% declinewillnotoccurwithin25 30years(butmightoccurwithin120 150years). However,forintermediateyearsandothervaluesofdeclinewearehighlyuncertainabout thepreciselevelofrisk. Figure102 PopulationViabilityAnalysis(PVA)forElwhaRiverwinter runsteelhead.seetextfordescription. 229

Figure103depictspopulationtrendsforToltRiversummer runsteelhead(theonly summer runpopulationforwhichreddcountdataareavailable).steelheadcountsinthe ToltRiverhavedeclinedsincethelate1990s.Theestimatedprobabilitythatthissteelhead populationwoulddeclineto10%ofitscurrentestimatedabundance(i.e.,to6fish)is high nearly80%within100years.withanestimatedmeanpopulationgrowthrateof 0.040(λ=0.961)andprocessvarianceof0.010,wecanbehighlyconfident(P<0.05)that a90%declineinthispopulationwillnotoccurwithinthenext8 10,andthata99%decline willnotoccurwithinthenext15 18years.However,beyondthenext20yearsweare highlyuncertainaboutthepreciselevelofrisk. Figure103 PopulationViabilityAnalysis(PVA)forToltRiversummer runsteelhead.seetextfordescription. 230

Summary ForallbutafewputativedemographicallyindependentpopulationsofsteelheadinPuget Sound,estimatesofmeanpopulationgrowthratesobtainedfromobservedspawneror reddcountsaredeclining typically3to10%annually andextinctionriskwithin100 yearsformostpopulationsinthedpsisestimatedtobemoderatetohigh,especiallyfor draftpopulationsintheputativesouthsoundandolympicmpgs.collectively,these analysesindicatethatsteelheadinthepugetsounddpsremainatriskofextinction throughoutallorasignificantportionoftheirrangeintheforeseeablefuture,butarenot currentlyindangerofimminentextinction. StatusandTrendsintheLimitingFactorsandThreatsFacingESU/DPS TheBiologicalReviewTeamidentifieddegradationandfragmentationoffreshwater habitat,withconsequenteffectsonconnectivity,asaprimarylimitingfactorandthreat facingthepugetsoundsteelheaddps.inthethreeyearssincelisting,thestatusofthis threathasnotchangedappreciably. Hatcheryreleases HatcheryreleasesofsteelheadinPugetSoundhaveremainedrelativelyconstantoverthe last20years,althoughreleasesofchinookandcohohavedeclined(figure104). 231

Figure104 SummaryofannualhatcheryreleaseswithinthespawningandrearingareasofthePugetSound steelheaddps.datasource:rmis. 232

Harvest PugetSoundsteelheadareimpactedinterminaltribalgillnetfisheriesandinrecreational fisheries.fisheriesaredirectedathatcherystocks,butsomeharvestofnaturalorigin steelheadoccursasincidentaltohatcherydirectedfisheries.winter runhatchery steelheadproductionisprimarilyofchamberscreek(southernpugetsound)stockwhich hasbeenselectedforearlierruntimingthannaturalstockstominimizefishery interactions.hatcheryproductionofsummersteelheadisprimarilyofskamaniariver(a lowercolumbiarivertributary)stockwhichhasbeenselectedforearlierspawntiming thannaturalsummersteelheadtominimizeinteractionsonthespawninggrounds.in recreationalfisheries,retentionofwildsteelheadisprohibited,soallharvestimpactsoccur astheresultofreleasemortalityandnon compliance.intribalnetfisheries,mostfishery impactsoccurinfisheriesdirectedatsalmonandhatcherysteelhead. MostPugetSoundstreamshaveinsufficientsufficientcatchandescapementdatato calculateexploitationratesfornaturalsteelhead.populationswithsufficientdatainclude theskagit,green,nisqually,puyallup,andsnohomishrivers(figure105).exploitation ratesdifferwidelyamongthedifferentrivers,butallhavedeclinedsincethe1970sand 1980s.Exploitationratesonnaturalsteelheadinrecentyearshavebeenstableand generallylessthan5%. 233

Figure105 TotalexploitationratesonnaturalsteelheadfromPugetSoundRivers.DatafromthePugetSound SteelheadHarvestManagementPlan,AppendixA(BobLeland,WDFW,personalcommunication. 234

Conclusions ThestatusofthelistedPugetSoundsteelheadDPShasnotchangedsubstantiallysincethe 2007listing.MostpopulationswithintheDPSareshowingcontinueddownwardtrendsin estimatedabundance,afewsharplyso. References Busby,P.J.,T.C.Wainwright,G.J.Bryant,L.Lierheimer,R.S.Waples,F.W.Waknitz,andI.V. Lagomarsino.1996.StatusreviewofWestCoaststeelheadfromWashington,Idaho, Oregon,andCalifornia.U.S.Dept.Commer.,NOAATech.Memo.NMFS NWFSC 27,261p. Hard,J.J.,J.M.Myers,M.J.Ford,R.G.Kope,G.R.Pess,R.S.Waples,G.A.Winans,B.A. Berejikian,F.W.Waknitz,P.B.Adams.P.A.Bisson,D.E.Campton,andR.R.Reisenbichler. 2007.StatusreviewofPugetSoundsteelhead(Oncorhynchusmykiss).U.S.Dept.Commer., NOAATech.Memo.NMFS NWFSC 81,117p. Holmes,E.E.,andE.J.Ward.2010.Analysisofmultivariatetime seriesusingthemarss package.technicalreport,northwestfisheriessciencecenter,mathematicalbiology Program,June2010. RDCT(RDevelopmentCoreTeam).2009.R:ALanguageandEnvironmentforStatistical Computing.RFoundationforStatisticalComputing,Vienna,Austria.ISBN3 900051 07 0, Availableat:http://www.R project.org. Ward,E.J.,H.Chirakkal,M.González Suárez,D.Aurioles Gamboa,E.E.Holmes,andL. Gerber.2010.Inferringspatialstructurefromtime seriesdata:usingmultivariatestatespacemodelstodetectmetapopulationstructureofcaliforniasealionsinthegulfof California,Mexico.J.Appl.Ecol.47:47 56. 235

236

LowerColumbiaRiverChinooksalmon 20 ListedESU/DPS TheESUincludesallnaturallyspawnedpopulationsofChinooksalmonfromtheColumbia RiveranditstributariesfromitsmouthatthePacificOceanupstreamtoatransitional pointbetweenwashingtonandoregoneastofthehoodriverandthewhitesalmonriver, andincludesthewillametterivertowillamettefalls,oregon. ESU/DPSBoundaryDelineation Utilizingnewinformation,theESUBoundariesReviewGroup(seeESUBoundaries above)undertookarevaluationoftheboundarybetweenalllowercolumbiaandmid ColumbiaESUsandDPSs.Thereviewconclusionsemphasizethetransitionalnaturethe boundarybetweenthelowercolumbiaesusandthemid ColumbiaESUs.After consideringnewdnadata,thereviewconcludes, Giventhetransitionalnatureofthe KlickitatRiverChinooksalmonpopulationitmightbereasonabletoassignthatpopulation tothelowercolumbiariverchinooksalmonesu. Thisstatusevaluationisbasedonthe existinglowercolumbiaesuboundariesthatdonotincludetheklickitatpopulation, however. SummaryofPreviousBRTConclusions NMFS reviewed the status of the Lower Columbia River Chinook salmon ESU initially in 1998 (Myers et al. 1998), updated it that same year (NMFS 1998a) and then conducted the most recent update in 2005 (NMFS 2005). In the 1998 update, the BRT noted several concerns for this ESU. The 1998 BRT was concerned that very few naturally self-sustaining populations of native Chinook salmon remained in the Lower Columbia River ESU. The 1998 BRT identified naturally reproducing (but not necessarily self-sustaining) populations: the Lewis and Sandy rivers bright fall runs and the tule fall runs in the Clackamas, East Fork Lewis, and Coweeman rivers. These populations were identified as the only bright spots in the ESU. The 1998 BRT did not consider the few remaining populations of spring run Chinook salmon in the ESU to be naturally self-sustaining because of either small size, extensive hatchery influence, or both. The 1998 BRT felt that the dramatic declines and losses of spring-run Chinook salmon populations in the Lower Columbia River ESU represented a serious reduction in life history diversity in the region. The team felt that the presence of hatchery Chinook salmon in this ESU posed an important threat to the persistence of the ESU and obscured trends in abundance of native fish. The team noted that habitat degradation and loss due to extensive hydropower development projects, urbanization, logging, and agriculture threatened the Chinook salmon spawning and rearing habitat in the lower Columbia River. A majority of the 1998 BRT concluded that the Lower Columbia River ESU was likely to become endangered in the foreseeable future. A minority felt that Chinook salmon in this ESU were not presently in danger of extinction, nor were they likely to become so in the foreseeable future. In the 2005 update, a majority of the BRT votes for the Lower Columbia River Chinook salmon ESU fell in the likely to become endangered category, with minorities falling in the danger of extinction and not likely to become endangered categories. The BRT was still concerned about all of the risk factors identified in the 1998 review. The WLC-TRT estimated 20 Sectionauthor:PaulMcElhany 237

that 8 to 10 historical populations in this ESU have been extirpated, most of them spring-run populations. Near loss of that important life history type remained an important BRT concern. Although some natural production appeared to occur in 20 or so populations, only one exceeded 1,000 spawners. High hatchery production continued to pose genetic and ecological risks to natural populations and to mask their performance. Most populations in this ESU had not seen as pronounced increases in recent years as occurred in many other geographic areas. SummaryofRecentEvaluations AreportonthepopulationstructureofLowerColumbiasalmonandsteelhead populationswaspublishedbythewlc TRTin2006(Myersetal.2006).TheChinook populationdesignationsinthatreport(figure106andfigure107)areusedinthisstatus updateandwereusedforstatusevaluationsinrecentrecoveryplansbyodfwandlcfrb. LCRChinookpopulationsexhibitthreedifferentlifehistorytypesbaseonreturntiming andotherfeatures:fallrun(a.k.a. tules),latefallrun(a.k.a. brights )andspringrun. In2010,ODFWcompletedarecoveryplanthatincludedOregonpopulationsof LowerColumbiaChinookESU.Alsoin2010,theLCFRBcompletedarevisionofitsrecovery planthatincludeswashingtonpopulationsoflowercolumbiachinook.bothofthese recoveryplansincludeanassessmentofcurrentstatusoflcrchinookpopulations.these assessmentsreliedandbuiltupontheviabilitycriteriadevelopedbythewlc TRT (McElhanyetal2006)andanearlierevaluationofOregonWLCpopulations(McElhanyet al.2007).theseevaluationsassessedthestatusofpopulationswithregardtothevsp parametersofabundanceandproductivity,spatialstructureanddiversity(mcelhanyetal. 2000).TheresultsoftheseanalysesareshowninFigure108 Figure110. Theseanalysesindicatethatforallbutoneofthe21fallChinookpopulationsare mostlikelyinthe veryhighrisk category(alsodescribedas extirpatedornearlyso ). Veryhighrisk isbroadcategoryrangingfrom100%extinctionprobability(already extirpated)to60%probabilityofextinctionin100years(table66).theclatskaniefall Chinookpopulationwasdesignatedmostlikelyinthe highrisk category,butwith substantialpossibilityoffallinginthe veryhighrisk category.oftheninespringchinook populations,eightaremostlikelyat veryhighrisk.thesandyspringchinookwas consideredmostlikelyinthe moderate to high riskrange.thelatefalllifehistory(two populations)wasconsideredthestrongestintheesuwiththelewislatefallpopulation mostlikelyinthe verylowrisk categoryandthesandylatefallpopulationmostlikelyin the lowrisk category. 238

Table66 Populationpersistencecategories(fromMcElhanyetal2006). In addition to the recovery plans, two analyses of Lower Columbia fall Chinook have been conducted to inform Biological Opinions related to harvest (Ford et al. 2007, NWFSC 2010). The NWFSC 2010 analysis used a life-cycle modeling approach to estimate how six of the populations targeted by recovery planners for high viability might respond with various recovery scenarios involving harvest, hatchery and habitat changes. The analysis results can be summarized by the first paragraph of the report s discussion section describing current viability: Oneoftheclearestresultsofthismodelingeffortisthestrikingdifferencein apparentviabilityamongthesixpopulationswemodeled.threepopulations Lewis, Coweeman, and Washougal are relatively large and have low estimated risks of quasi extinction under a variety of the scenarios we explored, at least at harvest rates below ~30%. Three other populations Clatskanie, Elochoman and Scappoose appear to be sustained mostly throughhatcherystrayingundercurrentconditions,andarepredictedtobe self sustainingunderthe recovery actionsmodeledonlyatverylowharvest rates.thehoodandmagpopulationswereintermediatebetweenthesetwo cases and could sustain themselves without hatchery input at low harvest ratesundercurrentconditionsandundersomemodeledassumptionsbutnot others. This basic result that the populations differ markedly in their current status and ability to sustain harvest is consistent with previous modelingefforts. Theseresultsprovideamorenuancedviewoftulestatusthanisimpliedbythenearuniform veryhighrisk designationoftherecoveryplans. 239

Figure106 Historical LCR fall and late fall Chinook populations (From Myers et al. 2006). 240

Figure107 Historical LCR spring Chinook populations (From Myers et al. 2006). 241

Figure108 ExtinctionriskratingsforLCRChinookpopulationsinOregonfortheassessmentattributes abundance/productivity,diversity,andspatialstructureaswellasanoverallratingforpopulationsthat combinesthethreeattributeratings.whereupdatedratingsdifferfromthosepresentedbymcelhanyetal. (2007),theolderratingisshownasanopendiamondwithadashedoutline.ReproducedfromODFW(2010). 242

Figure109 CurrentstatusofWashingtonLCRfall( tule )ChinookpopulationsfortheVSPparametersand overallpopulationrisk.(lcfrb2010recoveryplan,chapter6).apopulationscoreofzeroindicatesapopulation extirpatedornearlyso,ascoreof1ishighrisk,2ismoderaterisk,3islowrisk( viable )and4isverylowrisk. 243

Figure110 CurrentstatusofWashingtonLCRspringChinookandlatefall( bright )Chinookpopulationsfor thevspparametersandoverallpopulationrisk.(lcfrb2010recoveryplan,chapter6).apopulationscoreof zeroindicatesapopulationextirpatedornearlyso,ascoreof1ishighrisk,2ismoderaterisk,3islowrisk ( viable )and4isverylowrisk. NewDataandAnalyses The2005BRTstatusevaluationincludedabundancedataformostLCRChinook populationsuptotheyear2001.forthecurrentevaluation,wehavecompileddata through2008or2009formostpopulations,thoughdataareavailablefortwopopulations (ClatskaniefallandSandylatefall)onlythrough2006.TrenddataarepresentedinFigure 111 Figure114,withstatisticalsummaryintheAppendix.Sincethelaststatus evaluations,allofthepopulationsincreasedinabundanceduringtheearly2000 sbuthave sincedeclinedbacktoaboutthelevelsseenin2000.anexceptionisthesandyspring Chinook,whichdeclinedfromtheearly2000levels,butarestillhigherthan2000.In general,thepopulationsdonotshowanydramaticchangesinabundanceorfractionof hatcheryoriginspawnerssincethe2005brtevaluation. 244

Figure111 EstimatedspawningabundancefortheCoastalmajorpopulationgroup(stratum).Thedarkline indicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(includingnaturally spawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotalspawners,andthe greenshadedareaindicates+/ 1standarddeviationaroundthemean. 245

Figure112 EstimatedspawningabundancefortheCascadefallandspringmajorpopulationgroup(strata).The darklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(including naturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotal spawners,andthegreenshadedareaindicates+/ 1standarddeviationaroundthemean. 246

Figure113 EstimatedspawningabundancefortheCascadefallandspringmajorpopulationgroup(strata) (cont).thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners (includingnaturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthe totalspawners,andthegreenshadedareaindicates+/ 1standarddeviationaroundthemean. 247

Figure114 EstimatedspawningabundancefortheGorgefallrunmajorpopulationgroup(stratum).Thedark lineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners(including naturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthetotal spawners,andthegreenshadedareaindicates+/ 1standarddeviationaroundthemean. Harvest LowerColumbiaRiverChinooksalmonincludethreedistinctcomponents:springrunChinook,tulefallChinook,andbrightfallChinook.Thesedifferentcomponentsare subjecttodifferentin riverfisheriesbecauseofdifferencesinriverentrytiming,butshare similaroceandistributions.becauseofthistheyhavesimilarpatternsofexploitation.all sawadropinexploitationratesintheearly1990swithamodestincreasesincethen (Figure115).Fisheryimpactrateshavebeenrelativelystableinthepastfewyears,with theexceptionofthebrightfallcomponentoftheesu.thetuleportionoftheesuhave beensubjecttoseveraldetailedmodelingeffortsaimedatevaluatingtheviabilityimpacts ofalternativeexploitationrates(fordetal.2007,nwfsc2010). 248

Figure115 TotalexploitationratesonthethreecomponentsoftheLowerColumbiaRiverChinookESU.Data fortulefallchinookfromexploitationrateanalysisofaggregatetulestockmadeupoftagcodesfromthebig Creek,Cowlitz,Kalama,andWashougalhatcheries.DataforbrightfallChinookfromtheCTCexploitationrate analysis(ctcinprep).dataforspringchinookfromctcmodelcalibrationforcowlitzspringchinook(ctcin prep.)foroceanimpactsandtacrunreconstructiondataforin riverimpacts(cindlylefleur,wdfw,personal communication). Hatcheries TotalhatcheryreleasesofallChinooklife historiesinthelcresuhavebeen relativelystablesincethelaststatusreviewupdate(figure116).althoughrecoveryplans callformultipleactionstothereducetheimpactofhatcheryfishonthelcrchinookesu, provisionsintheplanshaveyettobeimplimentedforallpopulationsandhatcheryfishstill remainasignificantriskfactorinthisesu. Figure116 TotalChinookhatcheryreleasesintheLCRESU.Dottedlineindicatesthemean,andtheshaded areathestandarddeviations.source:rmis. 249

LowerColumbiaRiverChinooksalmon:UpdatedRiskSummary ThreestatusevaluationsofLCRChinookstatus,allbasedonWLC TRTcriteria,have beenconductedsincethelastbrtstatusupdatein2005(mcelhanyetal.2007,odfw 2010,LCFRB2010).AllthreeevaluationsconcludedthattheESUiscurrentlyatveryhigh riskofextinction.ofthe32historicalpopulationsintheesu,28areconsideredextirpated oratveryhighrisk.basedontherecoveryplananalyses,allofthetulepopulationsare consideredveryhighriskexceptonethatisconsideredathighrisk.themodeling conductedinassociationwithtuleharvestmanagementsuggeststhatthreeofthe populations(coweeman,lewisandwashougal)areatasomewhatlowerrisk.however, eventhesemoreoptimisticevaluationssuggestthattheremaining18populationsareat substantialriskbecauseofverylownaturaloriginspawnerabundance(<100/population), highhatcheryfraction,habitatdegradationandharvestimpacts. SpringChinookpopulationsremaincut offfromaccesstoessentialspawning habitatbyhydroelectricdams.projectstoallowaccesshavebeeninitiatedinthecowlitz andlewissystemsbutthesearenotclosetoproducingself sustainingpopulations.the SandyspringChinookpopulation,withoutamainstemdam,isconsideredatmoderaterisk andistheonlyspringchinookpopulationnotconsideredextirpatedornearlyso.thehood Rivercurrentlycontainsanout of ESUhatcherystock.Thetwolatefallpopulations,Lewis andsandy,aretheonlypopulationsconsideredatloworverylowrisk.theycontain relativelyfewhatcheryfishandhavemaintainedhighspawnerabundances(especially Lewis)sincethelastBRTevaluation.Overall,thenewinformationconsidereddoesnot indicateachangeinthebiologicalriskcategorysincethetimeofthelastbrtstatusreview. References Ford,M.J.,N.J.Sands,P.McElhany,K.R.G.,D.Simmons,andP.Dygert.2007.Analysesto SupportaReviewofanESAJeopardyConsultationonFisheriesImpactingLower ColumbiaTuleChinookSalmon..inN.F.S.C.NationalMarineFisheriesService, ConservationBiologyDivision;NationalMarineFisheriesService,Northwest RegionalOffice,SustainableFisheriesDivision,editor. Good,T.P.,R.S.Waples,andP.Adams,editors.2005.Updatedstatusoffederallylisted ESUsofWestCoastsalmonandsteelhead.U.S.DepartmentofCommerce,Seattle. LowerColumbiaFishRecoveryBoard.2010.WashingtonlowerColumbiasalmonrecovery andfishandwildlifesubbasinplan.lowercolumbiafishrecoveryboard,olympia, WA. McElhany,P.,C.Busack,M.Chilcote,S.Kolmes,B.McIntosh,J.M.Myers,D.Rawding,A. Steel,C.Steward,D.Ward,T.Whitesel,andC.Willis.2006.Revisedviabilitycriteria forsalmonandsteelheadinthewillametteandlowercolumbiabasins.report, NOAANorthwestFisheriesScienceCenter,Seattle. McElhany,P.,M.Chilcote,J.M.Myers,andR.Beamesderfer.2007.ViabilitystatusofOregon salmonandsteelheadpopulationsinthewillametteandlowercolumbiabasins. NOAA NorthwestFisheriesScienceCenter,Seattle,WA. 250

McElhany,P.,M.H.Ruckelshaus,M.J.Ford,T.C.Wainwright,andE.P.Bjorkstedt.2000. Viablesalmonidpopulationsandtherecoveryofevolutionarilysignificantunits. TechnicalMemorandumNMFS NWFSC 42,NOAA,Seattle. Myers,J.M.,C.Busack,D.Rawding,A.R.Marshall,D.J.Teel,D.M.VanDoornik,andM.T. Maher.2006.HistoricalpopulationstructureofPacificsalmonidsintheWillamette RiverandlowerColumbiaRiverbasins.NMFS NWFSC 73,NOAANWFSC,Seattle, WA. Myers,J.M.,R.G.Kope,G.J.Bryant,D.J.Teel,L.J.Lierheimer,T.C.Wainwright,W.S.Grant, F.W.Waknitz,K.Neely,S.T.Lindley,andR.S.Waples.1998.Statusreviewof ChinooksalmonfromWashington,Idaho,Oregon,andCalifornia.Tech.Memo. NMFS NWFSC 35,U.S.Dept.Commer,NOAA. NMFS.1998.Endangeredandthreatenedspecies:ThreatenedstatusfortwoESUsof steelheadinwashington,oregon,andcalifornia.[docketno.980225046 8060 02, 19March1998].Page13347.FederalRegister. NWFSC.2010.LowerColumbiaRivertuleChinooksalmonlife cyclemodeling.northwest FisheriesScienceCenter. OregonDepartmentofFishandWildlife,R.Beamesderfer,L.Berg,M.Chilcote,J.Firman,E. Gilbert,K.Goodson,D.Jepsen,T.Jones,S.Knapp,C.Knutsen,K.Kostow,B.McIntosh, J.Nicholas,J.Rodgers,T.Stahl,andB.Taylor.2010.LowerColumbiariver conservationandrecoveryplanfororegonpopulationsofsalmonandsteelhead. OregonDepartmentofFishandWildlife,Salem,OR. 251

UpperWillametteRiverChinooksalmon 21 ListedESU/DPS TheESUincludesallnaturallyspawnedpopulationsofspring runchinooksalmoninthe ClackamasRiverandintheWillametteRiver,anditstributaries,aboveWillametteFalls, Oregon,aswellassevenartificialpropagationprograms:theMcKenzieRiverHatchery (OregonDepartmentofFishandWildlife(ODFW)stock#24),MarionForks/NorthFork SantiamRiver(ODFWstock#21),SouthSantiamHatchery(ODFWstock#23)intheSouth ForkSantiamRiver,SouthSantiamHatcheryintheCalapooiaRiver,SouthSantiam HatcheryintheMollalaRiver,WillametteHatchery(ODFWstock#22),andClackamas hatchery(odfwstock#19)spring runchinookhatcheryprograms. ESU/DPSBoundaryDelineation TheESUBoundariesReviewGroup(seeESUBoundariesabove)didnotidentifyany newinformationsuggestingarevaluationoftheuwspringchinookesu.thisstatus evaluationwasconductedbasedonexistingesuboundaries. SummaryofPreviousBRTConclusions NMFS reviewed the status of the Upper Willamette River Chinook salmon ESU initially in 1998 (Myers et al. 1998) and updated it that same year (NMFS 1998). The most recent status review update was in 2005 (Good et al. 2005). In the 1998 update, the BRT noted several concerns for this ESU. The 1998 BRT was concerned about the few remaining populations of spring-run Chinook salmon in the Upper Willamette River ESU, and the high proportion of hatchery fish in the remaining runs. The 1998 BRT noted with concern that the Oregon Department of Fish and Wildlife (ODFW) was able to identify only one remaining naturally reproducing population in this ESU, the spring-run Chinook salmon in the McKenzie River. The 1998 BRT was concerned about severe declines in short-term abundance that occurred throughout the ESU, and that the McKenzie River population had declined precipitously, indicating that it may not be self-sustaining. The 1998 BRT also noted that the potential for interactions between native spring-run and introduced fall-run Chinook salmon had increased relative to historical times due to fall-run Chinook salmon hatchery programs and the laddering of Willamette Falls. The 1998 BRT partially attributed the declines in spring-run Chinook salmon in the Upper Willamette River ESU to the extensive habitat blockages caused by dam construction. A majority of the 1998 BRT concluded that the Upper Willamette River Chinook salmon ESU was likely to become endangered in the foreseeable future. A minority of 1998 BRT members felt that Chinook salmon in this ESU were not presently in danger of extinction, nor were they likely to become so in the foreseeable future. The 2005 BRT considered updated abundance information, habitat accessibility analyses and the results of preliminary WLC-TRT analyses. These analyses supported previous BRT conclusions that the majority of populations in the ESU are likely extirpated or nearly so and that excessive numbers of hatchery and loss of access to historical habitat are important risk factors. The McKenzie River population was the only population identified as potentially self-sustaining and increases in abundance were noted for this population in the most recent returns available at the time (2000 and 2001). However, BRT was concern about the long-term potential for this 21 Sectionauthor:PaulMcElhany 252

population. The majority (70%) of the 2005 BRT votes fell in the likely to become endangered category, with a minority in the in danger of extinction and the not likely to become endangered categories. Summary of Recent Evaluations AreportonthepopulationstructureofLowerColumbiaandWillamettesalmonand steelheadpopulationswaspublishedbythewlc TRTin2006(Myersetal.2006).TheUW SpringChinookpopulationdesignationsinthatreport(Figure117)areusedinthisstatus updateandwereusedforstatusevaluationsinarecentrecoveryplanbyodfw(2010). AdraftrecoveryplanforUWChinookandSteelheadwasreleasedforcommentby ODFWin2010.ThestatusevaluationintheODFWrecoveryplanprovidedanupdateofthe statusevaluationofmcelhanyetal.(2007),whichreliedonmethodsandviabilitycriteria developedbythewlc TRT(McElhanyetal.2006).TheresultsoftheMcElhanyetal. (2007)evaluationaresummarizedinFigure118.Theseresultsindicatethattheoverall statusofallpopulationsexcepttheclackamasandmckenziefallinthe veryhighrisk category(alsocalled extirpatedornearlyso).themcelhanyetal(2007)analysisfound thattheclackamaspopulationismostlikelyinthe lowrisk category(thoughwith substantialuncertainty)andthemckenziepopulationmostlikelyinthemoderaterisk category.theodfwrecoveryplanupdateanalysis(2010)foundtheclackamaspopulation mostlikelyinthemoderateriskcategoryandthemckenziemostlikelyinthelowrisk category.themcelhanyetal.analysisandtheodfwanalysesbothusedabundancedata onthemckenzieforyears1970 2005.FortheClackamasanalyses,McEhanyetal.used abundancedataforyears1958 2005,whereasODFWuseddataforyears1980 2008. BasedonthestatusofthecomponentpopulationsineithertheMcElhanyetalor ODFWanalyses,theoverallstatusoftheentireESUwasdeterminedtobesubstantially belowtheviabilitycriteriaestablishedbythewlc TRT.Usinga0 4populationviability scale(table67),thewlc TRTcriteriarequireaviableESUtohaveaveragepopulation scoregreaterthan2.25.theaveragefortheuwspringchinookesuwasestimatedat0.71. ThemainfactorscontributingtothehighriskdeterminationforthisESUwerethelow abundanceofnaturaloriginspawners,highfractionofhatcheryoriginspawners(>90%in mostpopulations)andlackofaccesstotheprimaryspawninghabitat.additionalfactors citedincludeahighincidenceofpre spawningmortalityandincreasedhuman developmentintheentirewillamettebasin. 253

Figure117 UpperWillamettespringChinookpopulations(fromMyersetal2006). 254

Figure118 Status evaluation for UW spring Chinook populations (McElhany et al 2007). 255

Table67 Populationpersistencecategories(fromMcElhanyetal2006). NewDataandAnalysis Clackamas TheClackamasRivercontainsoneoftwopopulationintheESU(alongwiththe McKenzie)consideredtohavesomenaturalproduction.Themajorityofnaturalproduction intheclackamasoccursupstreamofthenorthforkdam,thoughthereissomespawning, primarilybyhatcheryoriginfish,downstreamofthedam.since2001,onlyfishwithouta hatcherymarkhavebeenpassedabovenorthforkdam,though,duetoincomplete markingoridentification,somefishclassifiedasunmarkedandpassedoverthedamare actuallyofhatcheryorigin.the2005brtstatusevaluationincludedabundancedatafor theclackamasspringchinookpopulationfortheyears1958 2002.Themostrecent abundancetimeseriesfortheclackamasriverpopulationcombinesthedataintheodfw 2010FMEPreportwithdatafromPortlandGeneralElectric(2010)(Figure119).Summary statisticsforthispopulationareincludedintheappendix.whenthebrtconsideredthis populationin2005,thepopulationwasatthebeginningofwhatturnedouttobeavery short termincreaseinabundance.afterapeakofover12,000returnstothenorthfork Damin2004,thereturnatthedamhasdroppedtoabout2,000.Thegeometricmean numberofnaturaloriginspawnersforthelastfiveyearsis850fish. 256

Figure119 ClackamasRiverSpringChinookabundanceestimates.The NFcount isthetotalnumberof ChinookcountedattheNorthForkDam.Since2001,allhatcheryfishreturnshavebeenmarkedwithanadipose finclip.onlyunmarkedfishhavebeenpassedabovenorthforkdam.thecountofunmarkedfishpassedover thedamareshownintheserieslabeled NFunmarked(passed).Studieshaveshownthatbecauseofincomplete marking,onlyabout72%oftheunmarkedfishpassedovernorthforkdamareactuallyofnaturalorigin (labeled NFNat.Or. inthefigure).themajorityofspringchinookspawningoccursabovenorthforkdam,but somespawningisestimatedbelowthedam(labeled SpawnbelowNF ).ThemajorityofthesebelowNorthForks spawnersarelikelyofhatcheryorigin.the Totalpotentialspawners arethefishpassedabovenorthforkdam plustheestimatednumberoffishspawningbelowthedam.datafor1979 2009arefromODFW2010FMEP report.datafor2010arefromthepgefishcountdatabase (http://portlandgeneralelectric.net/community_environment/initiatives/protecting_fish/clackamas_river/defa ult.aspx).notethatthepgedataonlyincludethecountuptoseptember9,2010.peakreturnatnorthforkdam occursmay JulybutthetailofthereturnextendsintoOctober,sothefinalcountfor2010maybeslightlyhigher thanshownhere. WillametteFalls ExceptthosereturningtotheClackamasRiver,allofthefishinthisESUarecounted atwillamettefalls(figure120).thecountdoesnotidentifywhetherreturningchinook areofhatcheryornaturalorigin,butspawninggroundsurveysinwillamettetributaries indicatethatthevastmajorityoffishareofhatcheryorigin.theprimarysourceof naturallyproducespringchinookabovewillamettefallsisthemckenzieriverpopulation upstreamofleaburgdam.figure120showsboththewillamettefallscount(averaging about40,000fish)andtheestimatednumberofunmarked(mostlynaturalorigin) spawnersaboveleaburgdam(averagingabout2,000fish). 257

Figure120 WillametteFallstotalspringChinookcount(blueline includesnaturalandhatcheryorigin)and thecountofunmarkedfishatleaburgdamonthemckenzie(redline unmarkedfishareabout70%natural origin).willamettefallsdatafromodfwonlinedatabase (http://www.dfw.state.or.us/fish/fish_counts/willamette%20falls.asp).mckenziedatafromodfwfmepreport (2010). McKenzieRiver TheMcKenzieRivercontainsoneoftwopopulations(alongwiththeClackamas) withsomelevelofnaturalproduction.themajorityofnaturaloriginspawningoccurs aboveleaburgdamandinrecentyears,managershavelimitedthepassageofhatchery markedfishabovethedam.the2005brtstatusevaluationincludedabundancedatafor themckenziespringchinookpopulationfortheyears1970 2001.Themostrecent abundancetimeseriesfortheclackamasriverpopulationcombinesthedataintheodfw 2010FMEPreportwithdatafromtheODFWonlinedatabase(Figure121andFigure122). Dataacquiredsincethe2005BRTreportshowinincreaseinabundancepeakingin2004 thatassincedroppedandhascurrentlyreturnedtopreviouslevelsofalittlemorethan 1,000unmarkedfishatLeaburg. ItisinterestingtonotethattheincreaseinreturnsatWillametteFallsobservedin 2010isnotreflectedbyanincreaseinabundanceofnaturaloriginspawnersinthe McKenzie.TheMcKenzieabundanceremainsflatin2010,thoughitdidfollowtheincrease thatpeakedin2004.thismaysignalafailureofthenaturalpopulationtorespondto increasedoceansurvivals,butitisonlyasingledatapointandtheremultiplefactorsat playthathavenotyetbeencompletelyevaluated. 258

Figure121 McKenzieRiverspringChinookabundanceestimates.The LeaburgDamCount isthetotalnumber ofchinookcountedatleaburgdam.thecountwithoutahatcherymark(finclip)areshownintheseries labeled Leaburgunmarked.Studieshaveshownthatbecauseofincompletemarking,onlyafractionofthe unmarkedfishareactuallyofnaturalorigin(e.g..only72%ofunmarkedfishintheclackamasareofnatural origin).themajorityofspringchinookspawningoccursaboveleaburgdam,butsomespawningisestimated belowthedam(labeled SpawnersbelowLeaburg ).ThemajorityofthesebelowLeaburgspawnersarelikelyof hatcheryorigin.the Totalpotentialspawners arethefishcountedatleaburgplustheestimatednumberof fishspawningbelowthedam.datafor1970 2009arefromODFW2010FMEPreport.The2010Leaburgcounts arefromtheodfwfishcountonlinedatabase ((http://www.dfw.state.or.us/fish/fish_counts/leaburg_dam/index.asp). 259

Figure122 Naturalorigin(lowerblackline)andtotalspawner(upperredline)estimatesfortheMcKenzie riverbasedontherunreconstructioninodfw2010fmepreport.estimatesdifferfromthoseshowninfigure 121becauseofdifferentextrapolationassumptions. Otherpopulations(Mollala,NorthSantiam,SouthSantiam,Calapooia,MiddleFork) The2005BRTanalysisreportedthatnearlyallthefishreturningandspawningin thesepopulationsareofhatcheryorigin.theanalysisofhatcheryfractiondatacollected sincethe2005brtreportsupporttheviewthatthesepopulationsarehatcherydominated andlikelynotself sustaining(schroederetal.2005,mcelhanyetal.2007,schroederetal. 2007,ODFW2010b).Inaddition,thesepopulationsappeartobeexperiencingsignificant risksfrompre spawningmortality(schroederetal.2005,mcelhanyetal.2007,schroeder etal.2007). Harvest UpperWillametteRiverspringChinookaretakeninoceanfisheriesprimarilyin CanadaandAlaska.TheyarealsotakeninlowermainstemColumbiaRivercommercial gillnetfisheries,andinrecreationalfisheriesinthemainstemcolumbiariverandthe WillametteRiver.Thesefisheriesaredirectedathatcheryproduction,buthistorically couldnotdiscriminatebetweennaturalandhatcheryfish.inthelate1990sodfwbegan mass markingthehatcheryproduction,andrecreationalfisherieswithinthewillamette Riverswitchedovertoretentionofonlyhatcheryfish,withmandatoryreleaseof unmarkedfish.overallexploitationratesreflectthischangeinfisheriesdroppingfromthe 50% 60%rangeinthe1980sandearly1990stoaround30%since2000(Figure123). 260

Figure123 TotalexploitationratesonWillametteRiverSpringChinook.DatafromCTC(inprep)exploitation rateanalysisforoceanimpacts,fromtac(2010)forinriverimpactsfrom1980 1997,andChrisKern,ODFW, personalcommunicationfor1998 2008. Hatcheries Since1995,totalspringChinookhatcheryproductionhasremainedrelatively constantintheupperwillametteatabout5millionsmolts(figure124).asnotedabove themajoritiyofpopulationsaredominatedhatcheryoriginspawners.nomajorhacthery productionchangeshavebeennotedsincethelast(2005)brtreport. 261

Figure124 HatcheryreleasesofChinook,cohoandSteelheadintheareaoftheUpperWillametteChinookESU. Dottedlinesindicatethemeans,shadedareasthestandarddeviations.Datasource:RMIS. UpperWillametteChinooksalmon:UpdatedRiskSummary TworelatedstatusevaluationsofUWChinookhavebeenconductedsincethelast BRTstatusupdatein2005(McElhanyetal.2007,ODFW2010).Bothevaluationswere basedonthewlc TRTviabilitycriteriaandbothconcludedthattheESUiscurrentlyat veryhighriskofextinction.ofthesevenhistoricalpopulationsintheesu,fiveare consideredatveryhighrisk.theremainingtwo(clackamasandmckenzie)areconsidered atmoderatetolowrisk.newdatacollectedsincethelastbrtreporthaveverifiedthehigh fractionofhatcheryoriginfishinallofthepopulationsallintheesu(eventheclackamas andmckenziehavehatcheryfractionsabovewlc TRTviabilitythresholds).Thenewdata havealsohighlightedthesubstantialrisksassociatedwithpre spawningmortality. Althoughrecoveryplansaretargetingkeylimitingfactorsforfutureactions,therehave beennosignificanton the ground actionssincethelastbrtreporttoresolvethelackof accesstohistoricalhabitatabovedamsnorhavetherebeensubstantialactionsremoving hatcheryfishfromthespawninggrounds.overall,thenewinformationconsidereddoes notindicateachangeinthebiologicalriskcategorysincethetimeofthelastbrtstatus review. References 262

Good,T.P.,R.S.Waples,andP.Adams,editors.2005.Updatedstatusoffederallylisted ESUsofWestCoastsalmonandsteelhead.U.S.DepartmentofCommerce,Seattle. McElhany,P.,C.Busack,M.Chilcote,S.Kolmes,B.McIntosh,J.M.Myers,D.Rawding,A. Steel,C.Steward,D.Ward,T.Whitesel,andC.Willis.2006.Revisedviabilitycriteria forsalmonandsteelheadinthewillametteandlowercolumbiabasins.report, NOAANorthwestFisheriesScienceCenter,Seattle. McElhany,P.,M.Chilcote,J.M.Myers,andR.Beamesderfer.2007.ViabilitystatusofOregon salmonandsteelheadpopulationsinthewillametteandlowercolumbiabasins. NOAA NorthwestFisheriesScienceCenter,Seattle,WA. Myers,J.M.,C.Busack,D.Rawding,A.R.Marshall,D.J.Teel,D.M.VanDoornik,andM.T. Maher.2006.HistoricalpopulationstructureofPacificsalmonidsintheWillamette RiverandlowerColumbiaRiverbasins.NMFS NWFSC 73,NOAANWFSC,Seattle, WA. Myers,J.M.,R.G.Kope,G.J.Bryant,D.J.Teel,L.J.Lierheimer,T.C.Wainwright,W.S.Grant, F.W.Waknitz,K.Neely,S.T.Lindley,andR.S.Waples.1998.Statusreviewof ChinooksalmonfromWashington,Idaho,Oregon,andCalifornia.Tech.Memo. NMFS NWFSC 35,U.S.Dept.Commer,NOAA. NMFS.1998.Endangeredandthreatenedspecies:ThreatenedstatusfortwoESUsof steelheadinwashington,oregon,andcalifornia.[docketno.980225046 8060 02, 19March1998].Page13347.FederalRegister. ODFW.2010a.Fisheriesmanagementandevaluationfor2009WillametteRiverspring Chinook.inO.D.o.F.a.Wildlife,editor. ODFW.2010b.UpperWillametteconservationandrecoveryplanforChinookand steelhead(draftfebruary23,2010)oregondepartmentoffishandwildlife. Schroeder,R.K.,K.R.Kenaston,andL.K.Krentz.2005.SpringChinooksalmoninthe WillametteandSandyRivers.OregonDepartmentofFishandWildlife,Corvalis,OR. Schroeder,R.K.,K.R.Kenaston,andL.K.McLaughlin.2007.SpringChinooksalmoninthe WillametteandSandyRivers(AnnualProgressReport).inO.D.o.F.a.Wildlife, editor. 263

ColumbiaRiverchumsalmon 22 ListedESU/DPS TheESUincludesallnaturallyspawnedpopulationsofchumsalmoninthe ColumbiaRiveranditstributariesinWashingtonandOregon,aswellasthreeartificial propagationprograms:thechinookriver(searesourceshatchery),graysriver,and WashougalRiver/DuncanCreekchumhatcheryprograms. SummaryofPreviousBRTConclusions NMFS provided an updated status report on the Columbia River chum salmon ESU in 1999 (NMFS 1999). As documented in the 1999 report, the previous BRT s were concerned about the dramatic declines in abundance and contraction in distribution from historical levels. Previous BRTs were also concerned about the low productivity of the extant populations, as evidenced by flat trend lines at low population sizes. A majority of the 1999 BRT concluded that the Columbia River chum salmon ESU was likely to become endangered in the foreseeable future, and a minority concluded that the ESU was currently in danger of extinction. The most recent status update for CR chum was in 2005(Good et al. 2005). In the 2005 BRT, nearly all votes for the Columbia River chum salmon ESU fell in the likely to become endangered (63%) or danger of extinction (34%) categories. The BRT had substantial concerns about every VSP element. Most or all risk factors the BRT previously identified remain important concerns. The WLC-TRT estimated that close to 90% of this ESU s historical populations are extinct or nearly so, resulting in loss of much diversity and connectivity between populations. The 2005 BRT was concerned that populations that remained are small, and overall abundance for the ESU was low. The ESU had shown low productivity for many decades, even though the remaining populations were at low abundance and density-dependent compensation might be expected. The BRT was encouraged that unofficial reports for 2002 suggested a large increase in abundance in some (perhaps many) locations, but was unclear on the cause of the increase and whether it would be sustaining for multiple years. SummaryofRecentEvaluations AreportonthepopulationstructureofLowerColumbiasalmonandsteelhead populationswaspublishedbythewlc TRTin2006(Myersetal.2006).Thechum populationdesignationsinthatreport(figure125)areusedinthisstatusupdateandwere usedforstatusevaluationsinrecentrecoveryplansbyodfwandlcfrb. In2010,ODFWcompletedarecoveryplanthatincludedOregonpopulationsofthe ColumbiaRiverchumESU.ConsistentwithpreviousBRTandotheranalyses(e.g. McElhanyetal.2007),theODFWrecoveryplanconcludedthatchumareextirpatedor nearlysoinalloregoncolumbiariverpopulations.afewchumareoccasionally encounteredduringsurveysorreturntohatcherycollectionfacilities,butthisarelikely eitherstraysfromoneofthewashingtonpopulationorpartofafewextremelysmalland erraticremnantpopulations. TheLCFRBcompletedarevisionrecoveryplanin2010thatincludesWashington populationsofcolumbiariverchum.thisplanincludesanassessmentofthecurrentstatus 22 Sectionauthor:PaulMcElhany 264

ofcrchumpopulations.thisassessmentreliedandbuiltupontheviabilitycriteria developedbythewlc TRT(McElhanyetal2006)andanearlierevaluationofOregonWLC populations(mcelhanyetal.2007).thisevaluationassessedthestatusofpopulationswith regardtothevspparametersofabundanceandproductivity,spatialstructureand diversity(mcelhanyetal.2000).theresultofthisanalysisisshowninfigure126.this analysisindicatesthatallofthewashingtonpopulationswithtwoexceptionsareinthe overall veryhighrisk category(alsodescribedas extirpatedornearlyso ).TheGrays riverpopulationwasconsideredtobeatmoderateriskandthelowergorgepopulationbe atlowrisk.theveryhighriskstatusassignedtothethemajorityofwashington populations(andalltheoregonpopulations)reflectstheverylowabundanceobservedin thesepopulations(e.g.<10fish/year). Figure125 Historical Columbia River chum populations (from Myers et al. 2006). 265

Figure126 CurrentstatusofWashingtonCRchumpopulationsfortheVSPparametersandoverallpopulation risk.(lcfrb2010recoveryplan,chapter6).apopulationscoreofzeroindicatesapopulationextirpatedor nearlyso,ascoreof1ishighrisk,2ismoderaterisk,3islowrisk( viable )and4isverylowrisk. NewDataandAnalyses PopulationDesignations GeneticstudiessincethelastBRTanalysisindicatethattherehistoricallyexisteda summerrunchumpopulationinthecowlitzriver(smalletal.2006).thispopulation appearstohaveoccupiedtheupperreachesofthechumdistributioninthecowlitz.afew fishdisplayingthissummerrunlife historyareoccasionallyobservedinthecowlitz.the newanalysissuggestsaddinganewpopulationtothecascadestrataofthewlc TRT criteria.thissummerrunpopulationexhibitsauniquelifehistoryinthechumesuand representsanimportantcomponentofchumdiversity. GraysandLowerGorge GraysRiverandtheLowerGorgeareaaretheonlylocationsthathaveconsistently maintainednaturalspawning.surveysforchumareregularlyconductedintheseareas,but 266

aconsistentmethodologyforobtainingpopulationlevelabundanceestimatesarestillin development.figure127andfigure128showlong termabundanceindexseriesandafew recentyearswithabsoluteabundanceestimates.thesedataindicateasignificantincrease inabundancein2002 2004inGraysRiverandLowerGorgepopulation.The2002increase wasnotedbythe2005brtasanencouragingsign.however,recentdataindicatethat abundanceshavereturnedtopreviousrelativelylowlevelsofperhapsafewthousandin thegraysandlessthanathousandinthelowergorge.thegraysdataareconfoundedby theinitiationofahatcheryprogramintheearly1999,sothegraystimeseriescontainsand unknownnumberofhatcheryoriginspawnersstartingin2002(coincidingwiththelarge increaseinabundanceforthatpopulation).thelowergorgepopulationdoesnothavea hatcheryprogram. Figure127 GraysRiverchumspawnertimeseries.Thebluelineanddiamondsare spawnerspermile from thewdfwsasidatabase.thepurplelinesandstarsarethe Totallive countfromthestreamnetdatabase.the reddotsandlinearetheestimateof TotalSpawners fromthewdfwsasidatabase. 267

Figure128 LowerGorgechumspawnertimeseries.Thebluediamondsarethe SpawnerIndex fromthe WDFWSaSidatabase.Thepurplesquaresare Spawnerspermile fromthewdfwsasidatabase.thegreen trianglesarethe TotalLive countfromthestreamnetdatabase.theredsquaresare TotalSpawners fromthe WDFWSaSidatabase. Washougal The2005BRTreportnotedthediscoveryofachumspawninggroupinthe mainstemcolumbiabeneaththei 205bridgewithintheareaoftheWashougalRiver population.approximately350spawnerswereobservedin2000.althoughsurveysofthis populationhavebeenconducted,updatedabundanceinformationisnotavailableatthis time. AboveBonneville Inmostyears,asmallnumberofchummigratepastBonnevilleDamtotheUpper Gorgepopulationarea(Figure129).SpawningaboveBonnevilleisthoughttobelimited, however,forthefirsttime,chumfrywereobservedoutmigratingpastbonnevillein2010 (Krasnowpers.com.) 268

Figure129 ChumcountatBonnevilleDam.Somechumfallbackoverthedamafterbeingcounted.(datafrom FishPassageCenteronlinedatabase). OtherWashingtonPopulation NewdatasincethelastBRTreport stilloccasionalreportsofafewchum. Oregonpopulations NewdatasincethelastBRTreport stilloccasionalreportsofafewchum. Harvest ColumbiaRiverchumsalmonwerehistoricallyabundantandsubjecttosubstantial harvest.inrecentyearstherehasbeennodirectedharvestofcolumbiariverchum salmon.dataontheincidentalharvestofchumsalmoninlowercolumbiarivergillnet fisheriesexist,butescapementdataareinadequatetocalculateexploitationrates. Commercialharvesthasbeenlessthan100fishperyearsince1993,andallrecreational fisherieshavebeenclosedsince1995. Hatcheries AchumhatcherywasinitiatedinGraysRiverin1999thatcurrentlyreleases approximately200,000fryaspartofanintegratedconservationhatcheryprogram(hsrg 2009)(Figure130).Thehatcheryfisharenotexternallymarked.TheHSRGhas recommendedthatthehatchery sunset inthreegenerations. 269

Figure130 ColumbiaRiverchumhatcheryreleases.Thedottedlineindicatesthemean,andtheshadedarea thestardarddeviation.source:rmis. ColumbiaRiverchumsalmon:UpdatedRiskSummary Thevastmajority(14outof17)chumpopulationsremainextirpatedornearlyso. TheGraysRiverandLowerGorgepopulationsshowedasharpincreasein2002,buthave sincedeclinedbacktorelativelylowabundancelevelsintherangeofvariationobserved overthelastseveraldecades.chinookandcohopopulationsinthelowercolumbiaand Willametteshowsimilarincreasesintheearly2000 sfollowedbydeclinestotypicalrecent levels,suggestingtheincreaseinchummayberelatedtooceanconditions.recentdataon thewashougal/mainstemcolumbiapopulationarenotavailable,butwesuspectthey followapatternsimilartothegraysandlowergorgepopulations.overall,thenew informationconsidereddoesnotindicateachangeinthebiologicalriskcategorysincethe timeofthelastbrtstatusreview. References Good,T.P.,R.S.Waples,andP.Adams,editors.2005.Updatedstatusoffederallylisted ESUsofWestCoastsalmonandsteelhead.U.S.DepartmentofCommerce,Seattle. HSRG.2009.HatcheryScientificReviewGroupreviewandrecommendations:GraysRiver chumpopulationandrelatedhatcheryprograms. LowerColumbiaFishRecoveryBoard.2010.WashingtonlowerColumbiasalmonrecovery andfishandwildlifesubbasinplan.lowercolumbiafishrecoveryboard,olympia, WA. McElhany,P.,C.Busack,M.Chilcote,S.Kolmes,B.McIntosh,J.M.Myers,D.Rawding,A. Steel,C.Steward,D.Ward,T.Whitesel,andC.Willis.2006.Revisedviabilitycriteria forsalmonandsteelheadinthewillametteandlowercolumbiabasins.report, NOAANorthwestFisheriesScienceCenter,Seattle. McElhany,P.,M.Chilcote,J.M.Myers,andR.Beamesderfer.2007.ViabilitystatusofOregon salmonandsteelheadpopulationsinthewillametteandlowercolumbiabasins. NOAA NorthwestFisheriesScienceCenter,Seattle,WA. McElhany,P.,M.H.Ruckelshaus,M.J.Ford,T.C.Wainwright,andE.P.Bjorkstedt.2000. Viablesalmonidpopulationsandtherecoveryofevolutionarilysignificantunits. TechnicalMemorandumNMFS NWFSC 42,NOAA,Seattle. 270

Myers,J.M.,C.Busack,D.Rawding,A.R.Marshall,D.J.Teel,D.M.VanDoornik,andM.T. Maher.2006.HistoricalpopulationstructureofPacificsalmonidsintheWillamette RiverandlowerColumbiaRiverbasins.NMFS NWFSC 73,NOAANWFSC,Seattle, WA. NMFS.1999.ConclusionsregardingtheupdatedstatusoftheColumbiaRiverchumsalmon ESUandHoodCanalsummer runchumsalmonesu.memo12february1999tow. Stelle,NorthwestFisheriesScienceCenter,andW.Hogarth,SouthwestFisheries ScienceCenter,fromM.H.Schiewe,NorthwestFisheriesScienceCenter,2725 MontlakeBlvd.E.,Seattle,WA98112. OregonDepartmentofFishandWildlife,R.Beamesderfer,L.Berg,M.Chilcote,J.Firman,E. Gilbert,K.Goodson,D.Jepsen,T.Jones,S.Knapp,C.Knutsen,K.Kostow,B.McIntosh, J.Nicholas,J.Rodgers,T.Stahl,andB.Taylor.2010.LowerColumbiariver conservationandrecoveryplanfororegonpopulationsofsalmonandsteelhead. OregonDepartmentofFishandWildlife,Salem,OR. Small,M.P.,A.E.Frye,J.F.VonBargen,andS.F.Young.2006.Geneticstructureofchum salmon(oncorhynchusketa)populationsinthelowercolumbiariver:arechum salmonincascadetributariesremnantpopulations?consevationgenetics7:65 78. 271

272 LowerColumbiaRivercohosalmon 23 ListedESU/DPS ThisreportcoverstheEvolutionarilySignificantUnit(ESU)ofLowerColumbia RiverCohoSalmon(Oncorhynchuskisutch).OriginallypartofalargerLowerColumbia River/SouthwestWashingtonESU,LowerColumbiacohowereidentifiedasaseparateESU andlistedasthreatenedonjune28,2005.theesuincludesallnaturallyspawned populationsofcohosalmoninthecolumbiariveranditstributariesinwashingtonand Oregon,fromthemouthoftheColumbiaRiveruptoandincludingtheBigWhiteSalmon andhoodrivers,andincludesthewillametterivertowillamettefalls,oregon,aswellas twenty fiveartificialpropagationprograms:thegraysriver,searesourceshatchery, PetersonCohoProject,BigCreekHatchery,AstoriaHighSchool(STEP)CohoProgram, WarrentonHighSchool(STEP)CohoProgram,ElochomanType SCohoProgram, ElochomanType NCohoProgram,CathlametHighSchoolFFAType NCohoProgram, CowlitzType NCohoProgramintheUpperandLowerCowlitzRivers,CowlitzGameand AnglersCohoProgram,FriendsoftheCowlitzCohoProgram,NorthForkToutleRiver Hatchery,KalamaRiverType NCohoProgram,KalamaRiverType SCohoProgram, WashougalHatcheryType NCohoProgram,LewisRiverType NCohoProgram,Lewis RiverType SCohoProgram,FishFirstWildCohoProgram,FishFirstType NCoho Program,SyversonProjectType NCohoProgram,EagleCreekNationalFishHatchery, SandyHatchery,andtheBonneville/Cascade/Oxbowcomplexcohohatcheryprograms. ESU/DPSBoundaryDelineation Utilizingnewinformation,theESUBoundariesReviewGroup(seeESUBoundaries above)undertookarevaluationoftheboundarybetweenalllowercolumbiaandmid ColumbiaESUsandDPSs.Thereviewconclusionsemphasizethetransitionalnaturethe boundarybetweenthelowercolumbiaesusandthemid ColumbiaESUs.Theoriginal LowerColumbiacohoESUboundarywasassignedbasedlargelyonextrapolationfrom informationabouttheboundariesforchinookandsteelhead.theesuboundariesreview GroupconsidereditreasonabletoassigntheKlickitatChinookandsteelheadpopulations theappropriatelowercolumbiaesu/dps.theesuboundariesreviewgroupconcludes, ItisthereforereasonabletoassigntheKlickitatpopulationtotheLowerColumbiacoho ESU.ThiswouldestablishacommonboundaryforChinooksalmon,cohosalmon,chum salmon,andsteelheadatthecelilofalls(dallesdam). Thisstatusevaluationwas conductedusingexistingesuboundaries. SummaryofPreviousBRTConclusions NMFSreviewedthestatusoftheLowerColumbiaRivercohosalmonESUin1996 (NMFS1996),againin2001(NMFS2001),andmostrecentlyin2005(NMFS2005).Inthe 2001review,theBRTwasveryconcernedthatthevastmajority(over90%)ofhistorical populationsinthelowercolumbiarivercohosalmonesuappeartobeeitherextirpated ornearlyso.thetwopopulationswithanysignificantproduction(sandyandclackamas rivers)wereatappreciableriskbecauseoflowabundance,decliningtrends,andfailureto 23 Sectionauthor:PaulMcElhany

respondafteradramaticreductioninharvest.thelargenumberofhatcherycohosalmon intheesuwasalsoconsideredanimportantriskfactor.themajorityofthe2001brt voteswerefor atriskofextinction withasubstantialminority likelytobecome endangered. Anupdatedstatusevaluationwasconductedin2005,alsowithamajorityof BRTvotesfor atriskofextinction andasubstantialminorityfor likelytobecome endangered. SummaryofRecentEvaluations AreportonthepopulationstructureofLowerColumbiasalmonandsteelhead populationswaspublishedbythewlc TRTin2006(Myersetal.2006).Thecoho populationdesignationsinthatreport(figure131)areusedinthisstatusupdateandwere usedforstatusevaluationsinrecentrecoveryplansbyodfwandlcfrb. In2010,ODFWcompletedarecoveryplanthatincludedOregonpopulationsof LowerColumbiacohoESU.Alsoin2010,theLCFRBcompletedarevisionofitsrecovery planthatincludeswashingtonpopulationsoflowercolumbiacoho.bothoftheserecovery plansincludeanassessmentofcurrentstatusoflcrcohopopulations.theseassessments reliedandbuiltupontheviabilitycriteriadevelopedbythewlc TRT(McElhanyetal 2006)andanearlierevaluationofOregonWLCpopulations(McElhanyetal.2007).These evaluationsassessedthestatusofpopulationswithregardtothevspparametersof abundanceandproductivity,spatialstructureanddiversity(mcelhanyetal.2000).the resultsoftheseanalysesareshowninfigure132andfigure133. TheseanalysesindicatethatalloftheWashingtonpopulationsandallbuttwoofthe Oregonpopulationsareintheoverall veryhighrisk category(alsodescribedas extirpatedornearlyso ).TwopopulationsinOregon,theScappooseandClackamas,were consideredbyodfwtomostlikelybeinthemoderateriskcategory.asshowninfigure 132,theseresultsdiffersomewhatfromtheMcElhanyetal.(2007)analysis,whichfound ScappooseandSandyathighrisk,Clackamasbarelyinthelowriskcategoryandallother Oregonpopulationsconsideredveryhighrisk.TheresultsfromOregonandWashington arelargelydrivenbytheverylowabundanceandproductivityofnaturallyproducedlcr coho. 273

Figure131 HistoricalpopulationsofLCcoho.FromMyersetal.(2006). 274

Figure132 ExtinctionriskratingsforLCRcohopopulationsinOregonfortheassessmentattributes abundance/productivity,diversityandspatialstructureaswellasanoverallratingforpopulationsthat combinesthethreeattributesratings.whereupdatedratingsdifferfromthosepresentedbymcelhanyetal. (2007),theolderratingisshownasanopendiamondwithadashedoutline.ReproducedfromODFW(2010). 275

Figure133 CurrentstatusofWashingtonLCRcohopopulationsfortheVSPparametersandoverallpopulation risk.(lcfrb2010recoveryplan,chapter6).apopulationscoreofzeroindicatesapopulationextirpatedor nearlyso,ascoreof1ishighrisk,2ismoderaterisk,3islowrisk( viable )and4isverylowrisk. 276

NewDataandAnalyses SandyandClackamas The2005BRTstatusevaluationincludedabundancedatafortheClackamas populationfortheyears1957 2002andfortheSandypopulationfrom1977 2002.The timeseriesusedforthisnewstatusupdateisthesameasthatusedforthe2010oregon recoveryplan,whichincludestheyears1974 2008forboththeSandyandClackamas populations.thesetimeseriesareshowninfigure134,withsummarystatisticsintable 68.Thetotalabundanceovertheyearssincethelaststatusreview(2003 2008)have remainedwithinonestandarddeviationofeachpopulationslong termmean,withthe exceptionof2008intheclackamas,whichisslightlyaboveonestandarddeviation.the geometricmeanabundanceforbothpopulationsissubstantiallybelowthelong term MinimumAbundanceThreshold of3,000spawnersidentifiedinthemcelhanyetal.2007 reportusingwlc TRTmethodology.Neitherpopulationshowsaclearlongtermtrendin lognaturaloriginabundanceovertheentiretimeseries,butbothindicateapositivetrend overtheyears1995 2008.Anegativegrowthrate(lambda)wasobservedwhen consideringtheentiretimeseriesassuminghatcheryoriginfishhavethesame reproductivesuccessasnaturaloriginfish.allotherlambdaestimatesshowednotrend. NotethattheClackamasabundancedatacombinesspawnersupstreamoftheNorthFork Dam(whichhasrelativelyfewhatcheryoriginspawners)anddownstreamofthedam (whichhasahigherfractionofhatcheryoriginspawners seetables2 4). 277

278 Figure134 AbundanceofLowerColumbiaRivercohopopulations.Thered(upper)solidlineindicatestotal spawners.thegreen(lower)solidlineindicatesnaturaloriginspawners.thedashlineindicatestheoverall geometricmeanabundanceofnaturaloriginspawnerswiththegreenbandshowingonestandarddeviation aboutthemean. Table68 SummarystatisticsforLowerColumbiaCoho.The95%confidenceintervalsareshownin parentheses.cellshighlightedyellowindicatenegativepopulationindicatorsandbluecellsindicatepositive. ThegeometricmeannaturaloriginspawnersarehighlightedbasedoncomparisontotheMcElhanyetal2007 MinimumAbundanceThreshold(MAT)of3,000fishforaviablepopulationinalargewatershed.Themean hatcheryfractionishighlightedbasedoncomparisontotheviabilitystandardof10%hatcheryoriginspawners. Thetrendandlambdavaluesarehighlightedbasedonwhetherthe95%confidenceintervalisentirelyaboveor belowone. Population Analysis Window Years Geomean Nat.Or. Spawners TrendinLog Nat.Or. Spawners Lambda withhat. Repro.=0 Lambda withhat. Repro.=1 Mean hatchery fraction last3 years 2006 2008 3,799 (2,450 5,890) 0.35 Since 1995 1995 2008 1,534 (752 3,130) 1.174 (1.006 1.37) 1.098 (0.448 2.694) 0.939 (0.388 2.27) 0.3621 Clackamas AllYears 1974 2008 1,810 (1,297 2,526) 1.003 (0.969 1.037) 1.027 (0.911 1.158) 0.886 (0.788 0.995) 0.3554

279 last3 years 2006 2008 870 (445 1,702) 0 Since 1995 1995 2008 515 (323 822) 1.13 (1.028 1.241) 1.105 (0.378 3.232) 1.105 (0.378 3.232) 0 Sandy AllYears 1974 2008 610 (468 796) 1.003 (0.977 1.03) 1.019 (0.873 1.19) 0.971 (0.845 1.115) 0.0763 OtherOregonPopulations (YoungsBay,BigCreek,Clatskanie,Scappoose.LowerGorge,HoodRiver) In2002,ODFWinitiatedasmonitoringprogramforLowerColumbiacohospawners basedonastratifiedrandomsamplesurveydesign.areportcoveringmonitoringresults theyears2002 2004waspublishedin2006(Suringetal.).Abundanceestimatesand hatcheryfishfractionsfromthatstudyaresummarizedintable69 Table71.In2010, ODFWpublishedareportcoveringLCRcohomonitoringfortheyears2004 2008.The reportsindicateoverallrelativelylowabundanceofnaturaloriginintheoregonportionof thelcrcohoesu.allofthepopulationsexceptsandyandclackamasaveragelessthan500 spawners.thereareveryhighfractionsofhatcheryoriginfishintheyoungsbay,big Creek,LowerGorgeandHoodRiverpopulations.Itisdoubtfulthatthesepopulationsare self sustaining.theclatskanieshowshighlyvariablefractionsofhatcheryoriginspawners, rangingfromanestimateof0%to80%.thescappooseshowsconsistentlylowfractionsof hatcheryoriginspawnerscomparabletothelowlevelsinthesandy.itappearsthatsome naturalproductionisoccurringintheclatskanieandscappoosepopulations,thoughthe abundancesaresmallrelativetotheminimumabundancethreshold(mat)longterm geometricmeanof1,000spawnersinasmallwatershed(mcelhanyetal.2007).

Table69 LowerColumbiaRivercohosalmonescapementestimatesforthe2002 2004spawningseasons (estimatesarederivedfromcountsinrandomemapspawningsurveys).reproducedfromsuringetal.2006. 280

Table70 Markratesbasedonobservationsofadiposefinclipsonliveanddeadcohocohospawnersinrandom cohosurveysduringthe2002 2004spawningsseasons.ReproducedfromSuringetal.2006. Table71 LowerColumibacohoESUestimatedabundanceofadultcohospawningnaturallyby:ESU,stratum, andpopulationforthe2004 2008runyears.ReproducedfromLewisetal.2010. Washingtonpopulations 281

(Grays,Elochoman,Mill/Germany/Abernathy,Cispsus,Tilton,UpperCowlitz,LowerCowlitz, NFToutle,SFToutle,Coweeman,Kalama,NFLewis,EFLewis,Salmon,Wahougal,Lower Gorge,WhiteSalmon/Uppergorge) Inthe2005BRTreport,nospawnerdatawereavailableforanypopulationinthe WashingtonportionofthisESU.Startingin2005spawnersurveyswereinitiatedinthe Mill/Germany/Abernathycohopopulation.DatafromWDFWareavailableforthe2006 spawningyear(figure135).thesedatashowanestimated3,150spawnerswithslightly overhalf(51%)ofhatcheryorigin.thisisalargefractionofhatcheryoriginspawnersfora populationnotreceivingdirectoutplantsofhatcheryfishandsuggeststhatother Washingtonpopulationsthatdohavein basinhatcherieshaveevenhigherfractionsof hatcheryoriginspawners.thisobservationisconsistentwiththeconclusionofthe2005 BRTreportandtheLCFRBanalysis(2010)thatWashingtoncohopopulationsare dominatedbyhatcheryoriginspawnersandarenotdemonstrablyself sustaining.dataon cohosmoltproductionarealsocollectedinthemill/germany/abernathypopulation indicatesomenaturalproductiondoesoccurinthesestreams(figure136).thenew Mill/Germany/Abernathysmoltproductiondata(2003 2005)issimilartothedata(2001 2002)consideredinthe2005BRTreport Figure135 CohospawnerestimatesfortheMill/Germany/Abernathypopulationin2006.Totalcohospanwer estimateforthepopulationwas3,150with51%ifhatcheryorigin.datasource:wdfw. 282

Figure136 CohosmoltproductionestimatesforMill,GermanyandAbernathyCreeks(datafor2001 2001from 2005BRTreport;datafor2003 2005fromWDFW http://wdfw.wa.gov/fish/wild_salmon_monitor/lower_columbia.htm#mag) Table72 CohosmoltproductionfromCedarCreek(tributaryintheNFLewispopulation).Dataforyears1998 2002from(BRTreport2005);datafor2003from(Seileretal.2004);datafor2004from(Volkhardtetal.2005); datafor2005from(volkhardtetal.2006);datafor2006from(toppingetal.2008). Year Natural Origin Hatchery Origin Remote Site Incubator 283 Cedar Creek smolts Percent Supplementation (Hatchery + Remote Incubator) 1998 38,354? 1999 27,987? 2000 20,282? 2001 20,695? 2002 32,695? 2003 35,096 8,476 43,572 19% 2004 34,999 20,831 1,970 57,800 39% 2005 49,770 9,151 58,921 16% 2006 35,424 7,584 43,008 18% Smolt trap data are also available for Cedar Creek, a tributary of the NF Lewis population (Table 72). The new data (2003-2006) show similar smolt production levels to the data (1998-2002)

considered in the 2005 BRT report. Simple calculations suggest that more than a thousand coho spawned in Cedar Creek to produce the observed number of smolts (e.g. if the smolt to adult ratio is less than 30, there were on average at least 1,000 spawners; substantially more if the smolt to adult ratio is much lower.). There is a production hatchery in the NF Lewis and it is likely based on the high hatchery ratios observed in the Mill/Germany/Abernathy population (which does not have a production hatchery) that the majority of spawners in Cedar Creek are of hatchery origin. However, these data do suggest that the habitat is capable of supporting some natural production. Smoltestimatesarealsoavailableforthe2004cohooutmigrantyearfortheCoweeman population(sharpeandglaser2007).theyestimated17,389 smolts (± 1,769), indicating some production potential for this basin. LowerColumbiaRiverHarvest LowerColumbiaRivercohosalmonarepartoftheOregonProductionIndex,andare harvestedinoceanfisheriesprimarilyoffthecoastsoforegonandwashington,withsome harvestthathistoricallyoccurredoffofwcvi.canadiancohosalmonfisherieswere severelyrestrictedinthe1990stoprotectupperfraserrivercoho,andhaveremainedso eversince.oceanfisheriesoffcaliforniawereclosedtocohoretentionin1993andhave remainedcloseeversince.oceanfisheriesforcohooffoforegonandwashingtonwere dramaticallyreducedin1993inresponsetothelistingoforegoncoastnaturalcoho,and movedtomark selectivefishingbeginningin1999.lowercolumbiarivercohobenefitted fromthemorerestrictivemanagementofoceanfisheries.overallexploitationrates regularlyexceeded80%inthe1980s,buthaveremainedbelow30%since1993(figure 137). Figure137 TotalexploitationrateonlowerColumbiaRivernaturalcohosalmon.DatafromTAC(2010). 284

LCRCohoHatcheries Hatcheryreleaseshaveremainedrelativelysteadyatbetween10and15millionsincethe 2005BRTreport(Figure138).Overallhatcheryproductionremainsrelativelyhighand mostofthepopulationsintheesucontainasubstantialfractionofhatcheryorigin spawners.inthatregard,littlehaschangedsincethe2005brtreport.recenteffortsto shiftproductionintolocalizedareas(e.g.youngsbayandbigcreek)inordertoreduce hatcheryfishpressureinotherpopulations(e.g.scapposseandclatskanie)areconsidered asintransitionatthistime.itisimportanttonotethatdirectdataonthefactionof hatcheryoriginspawnerareavailableforonlyoneofwashington s17cohopopulations only(mill/germany/abernathy)forasingleyear(2006).thislackofdatacontributes greatlytouncertaintyabouttheesusstatus. 285

Figure138 LCRhatcheryreleasesforallsalmonandsteelheadspeciesreleasedwithinthespawningand rearingareaofthelcrcohoesu.dottedlinesindicatemeans,andshadedareasindicatestandarddeviations. LowerColumbiaRiverCohosalmon:UpdatedRiskSummary ThreestatusevaluationsofLCRcohostatus,allbasedonWLC TRTcriteria,havebeen conductedsincethelastbrtstatusupdatein2005(mcelhanyetal.2007,odfw2010, 286

LCFRB2010).AllthreeevaluationsconcludedthattheESUiscurrentlyatveryhighriskof extinction.ofthe27historicalpopulationsintheesu,24areconsideredatveryhighrisk. Theremainingthree(Sandy,ClackamasandScapposse)areconsideredathightomoderate risk.allofthewashingtonsidepopulationsareconsideredatveryhighrisk,although uncertaintyishighbecauseofalackofadultspawnersurveys.aswasnotedinthe2005 BRTevaluation,smolttrapsindicatesomenaturalproductioninWashingtonpopulations, thoughgiventhehighfractionofhatcheryoriginspawnerssuspectedtooccurinthese populationsitisnotclearthatanyareself sustaining.overall,thenewinformation considereddoesnotindicateachangeinthebiologicalriskcategorysincethetimeofthe lastbrtstatusreview. References Lewis,M.,E.Brown,B.Sounhein,M.Weeber,E.Suring,andH.Truemper.2010.Statusof Oregonstocksofcohosalmon,2004through2008:theOregonplanforsalmonand watersheds.inw.o.r.a.m.program,editor.oregondepartmentoffishand Wildlife,Salem,OR. LowerColumbiaFishRecoveryBoard.2010.WashingtonlowerColumbiasalmonrecovery andfishandwildlifesubbasinplan.lowercolumbiafishrecoveryboard,olympia, WA. McElhany,P.,M.Chilcote,J.M.Myers,andR.Beamesderfer.2007.ViabilitystatusofOregon salmonandsteelheadpopulationsinthewillametteandlowercolumbiabasins. NOAA NorthwestFisheriesScienceCenter,Seattle,WA. McElhany,P.,M.H.Ruckelshaus,M.J.Ford,T.C.Wainwright,andE.P.Bjorkstedt.2000. Viablesalmonidpopulationsandtherecoveryofevolutionarilysignificantunits. TechnicalMemorandumNMFS NWFSC 42,NOAA,Seattle. Myers,J.M.,C.Busack,D.Rawding,A.R.Marshall,D.J.Teel,D.M.VanDoornik,andM.T. Maher.2006.HistoricalpopulationstructureofPacificsalmonidsintheWillamette RiverandlowerColumbiaRiverbasins.NMFS NWFSC 73,NOAANWFSC,Seattle, WA. OregonDepartmentofFishandWildlife,R.Beamesderfer,L.Berg,M.Chilcote,J.Firman,E. Gilbert,K.Goodson,D.Jepsen,T.Jones,S.Knapp,C.Knutsen,K.Kostow,B.McIntosh, J.Nicholas,J.Rodgers,T.Stahl,andB.Taylor.2010.LowerColumbiariver conservationandrecoveryplanfororegonpopulationsofsalmonandsteelhead. OregonDepartmentofFishandWildlife,Salem,OR. Seiler,D.,G.Volkhardt,A.Murdoch,S.Hawkins,H.Fuss,andB.Ehinger.2002.2002Index watershedsalmonrecoverymonitoringreport.washingtondepartmentoffishand WildlifeandWashingtonDepartmentofEcology,Olympia,WA. Seiler,D.,G.Volkhardt,P.Topping,L.Fleischer,T.Miller,S.Schonning,D.Rawding,M. Groesbeck,R.Woodard,andS.Hawkins.2004.2003Juvenilesalmonidproduction evaluationreport:greenriver,wenatcheeriver,andcedarcreek.inf.s.d.a.f.m. Division,editor.WashingtonDepartmentofFishandWildlife,Olympia,Wa. Sharpe,C.andB.Glaser.2007.2005Coweemanriverjuvenilesalmonidproduction evaluation.inf.p.s.division,editor.washingtondepartmentoffishandwildlife, Olympia,WA 287

Takata,T.T.2008.OregonlowerColumbiariverfallandwinterChinookspawningground surverys,1952 2008:focuson2008.inC.R.Management,editor.Oregon DepartmentofFishandWildlife,Salem,OR. Topping,P.,L.Kishimoto,J.Holowatz,D.Rawding,andM.Groesbeck.2008.2006Juvenile salmonidproductionevaluationreport:greenriver,dungenessriver,andcedar creek.inr.fishprogramandf.s.division,editors.washingtondepartmentoffish andwildlife,olympia,wa. Volkhardt,G.,P.Topping,L.Fleischer,T.Miller,S.Schonning,D.Rawding,andM. Groesbeck.2005.2004Juvenilesalmonidproductionevaluationreport:Greenriver, Wenatcheeriver,andCedarcreek.inS.D.a.F.M.Division,editor.Washington DepartmentofFishandWildlife,Olympia,Washington. Volkhardt,G.,P.Topping,L.Kishimoto,D.Rawding,andM.Groesbeck.2006.2005Juvenile salmonidproductionevaluationreport:greenriver,dungenessriver,andcedar creek.ins.d.a.f.m.division,editor.washingtondepartmentoffishandwildlife, Olympia,WA. 288

289 MiddleColumbiaRiversteelhead 24 TheMiddleColumbiaRiversteelheaddistinctpopulationsegment(DPS)includesall naturallyspawningpopulationsofsteelhead(oncorhynchusmykiss)usingtributaries upstreamandexclusiveofthewindriver(washington)andthehoodriver(oregon), excludingtheuppercolumbiarivertributaries(upstreamofpriestrapidsdam)andthe SnakeRiver.TheMiddleColumbiaRiversteelheadDPSwaslistedasthreatenedbyNOAA Fisheriesin1999,withthatlistingdesignationbeingaffirmedin2006.NOAAFisherieshas defineddpssofsteelheadtoincludeonlytheanadromousmembersofthisspecies(70fr 67130).OurapproachtoassessingthecurrentstatusofasteelheadDPSisbased evaluatinginformationtheabundance,productivity,spatialstructureanddiversityofthe anadromouscomponentofthisspecies(goodetal.2005;70fr67130).manysteelhead (O.mykiss)populationsalongtheWestCoastoftheU.S.co occurwithconspecific populationsofresidentrainbowtrout.werecognizethattheremaybesituationswhere reproductivecontributionsfromresidentrainbowtroutmaymitigateshort term extinctionriskforsomesteelheaddpss(goodetal.2005;70fr67130).weassumethat anybenefitstoananadromouspopulationresultingfromthepresenceofaconspecific residentformwillbereflectedindirectmeasuresofthecurrentstatusoftheanadromous form. SummaryofpreviousBRTconclusions ResultsofthepreviousBRTreviewofthestatusoftheMiddleColumbiaSteelhead DPSweresummarizedinGoodetal.2005.Aslightmajority(51%)ofthecumulative scoresacrossthebrtwereforassigningthisdpstothe threatenedbutnotendangered category.theremainingvotes(49%)wereforthe notlikelytobecomeendangered designation.thebrtnotedthatthisparticulardpswasdifficulttoscore.reasonscited included:thewiderangeinrelativeabundanceforindividualpopulationsacrossthedps (e.g.,spawningabundanceinthejohndayanddeschutesbasinshasbeenrelativelyhigh, whilereturnstomuchoftheyakimariverdrainagehaveremainedrelativelylow); chronicallyhighlevelsofhatcherystraysintothedeschutesriver,andalackofconsistent informationonannualspawningescapementsinsometributaries(e.g.klickitatriver). ResidentO.mykissarebelievedtobeverycommonthroughoutthisDPS.TheBRTassumed thatthepresenceofresidento.mykissbelowanadromousbarriersmitigatedextinction risktothedpstosomeextent,butthemajorityofbrtmembersconcludedthatsignificant threatstotheanadromouscomponentremained. BriefReview:RecoveryPlanning TheInteriorColumbiaTechnicalRecoveryTeam(ICTRT)hasidentified17extant populationsinthisdps(ictrt,2003).thepopulationsfallintofourmajorpopulation groups:theyakimariverbasin(fourextantpopulations),theumatilla/walla Walla drainages(3extantand1extirpatedpopulations);thejohndayriverdrainage(5extant populations)andtheeasterncascadesgroup(5extantand2extirpatedpopulations). NOAAFisheries(NationalMarineFisheriesService)recentlyadoptedarecovery planforthemid ColumbiaSteelheadDistinctPopulationSegment(DPS).TheNOAA FisheriesMid ColumbiaSteelheadRecoveryPlan(www.nwr.noaa.gov/Salmon Recovery 24 Sectionauthor:TomCooney

Planning/Recovery Domains/Interior Columbia/Mid Columbia/Mid Col Plan.cfm) summarizesinformationfromfourregionalmanagementunitplanscoveringtherangeof tributaryhabitatsassociatedwiththedpsinwashingtonandoregon.eachofthe managementunitplansareincorporatedasappendicestotherecoveryplan,alongwith modulesforthemainstemcolumbiahydropowersystemandtheestuary,whereconditions affectthesurvivalofsteelheadproductionfromallofthetributarypopulationscomprising thedps.therecoveryobjectivesdefinedintheplanarebasedonthebiologicalviability criteriadevelopedbytheictrt.theplanalsoincorporatesinformationoncurrentstatus developedthroughtheictrt(ictrt,2010b). TRTandRecoveryPlanCriteria Recoverystrategiesoutlinedintheplananditsmanagementunitcomponentsare targetedonachieving,ataminimum,theictrtbiologicalviabilitycriteriaforeachmajor populationgroupinginthedps...tohaveallfourmajorpopulationgroupsatviable(low risk)statuswithrepresentationofallthemajorlifehistorystrategiespresenthistorically,and withtheabundance,productivityspatialstructureanddiversityattributesrequiredforlongtermpersistence. Theplanrecognizesthat,atthemajorpopulationgrouplevel,theremay beseveralspecificcombinationsofpopulationsthatcouldsatisfytheictrtcriteria.each ofthemanagementunitplansidentifiesparticularcombinationsthatarethemostlikelyto resultinachievingviablemajorpopulationgroupstatus.therecoveryplanrecognizesthat themanagementunitplansincorporatearangeofobjectivesthatgobeyondtheminimum biologicalstatusrequiredfordelisting. TheICTRTrecoverycriteriaarehierarchicalinnature,withESU/DPSlevelcriteria beingbasedonthestatusofnaturaloriginsteelheadassessedatthepopulationlevel.a detaileddescriptionoftheictrtviabilitycriteriaandtheirderivation(ictrt,2007)can befoundatwww.nwfsc.noaa.gov/trt/col/trt_viability.cfm. UndertheICTRTapproach,populationlevelassessmentsarebasedonasetof metricsdesignedtoevaluateriskacrossthefourviablesalmonidpopulationelements abundance,productivity,spatialstructureanddiversity(mcelanyetal.2000).theictrt approachcallsforcomparingestimatesofcurrentnaturaloriginabundance(measuredasa 10yeargeometricmeanofnaturaloriginspawners)andproductivity(estimateofreturn perspawneratlowtomoderateparentspawningabundance)againstpredefinedviability curves.inaddition,theictrtdevelopedasetofspecificcriteria(metricsandexamplerisk thresholds)forassessingthespatialstructureanddiversityrisksbasedoncurrent informationrepresentingeachspecificpopulation.theictrtviabilitycriteriaare generallyexpressedrelativetoparticularriskthreshold 5%riskofextinctionovera100 yearperiod. MidColumbiaRecoveryPlanMajorPopulationGroupRecoveryScenarios TheMid ColumbiaRecoveryPlanidentifiesasetofmostlikelyscenariostomeetthe ICTRTrecommendationsforlowriskpopulationsatthemajorpopulationgrouplevel.In addition,themanagementunitplansgenerallycallforachievingmoderateriskratings (Maintainedstatus)acrosstheremainingextantpopulationsineachMPG. CascadesEasternSlopesTributariesMPG...theKlickitat,FifteenMileandboththeDeschutesEastsideandWestsidepopulations shouldreachatleastviablestatus.themanagementunitplansalsocallforatleastone populationtobehighlyviable,consistentwithictrtrecommendations.therockcreek populationshouldreachmaintainedstatus(25%orlessrisklevel).mpgviabilitycouldbe 290

futherbolsteredifreintroductionofsteelheadintothecrookedriversucceedsandifthe WhiteSalmonpopulationsuccessfullyrecolonizesitshistoricalhabitatfollowingthe upcomingremovalofconditdam. JohnDayRiverMPG...(t)heLowerMainstemJohnDayRiver,NorthForkJohnDayRiverandeitherthe MiddleForkJohnDayRiverorUpperMainstemJohnDayRiverpopulationsshouldachieveat leastviablestatus.themanagementunitplanalsocallsforatleastonepopulationtobe highlyviable,consistentwithictrtrecommendations. YakimaRiverMPG...toachieveviablestatus,twopopulationsshouldberatedasviable,includingatleast oneofthetwoclassifiedaslarge thenachesriverandtheupperyakimariver.the remainingtwopopulationsshould,ataminimummeetthemaintainedcriteria.the managementunitplanalsocallsforatleastonepopulationtobehighlyviable,consistent withictrtrecommendations. Umatilla/WallaWallaMPG..twopopulationsshouldmeetviabilitycriteria.Themanagementunitplanalsocalls foratleastonepopulationtobehighlyviable,consistentwithictrtrecommendations.the UmatillaRiveristheonlylargepopulation,andthereforeneedstobeviable.Inadditioneither thewallawallaortouchetriveralsoneedstobeviable. NewDataandUpdatedAnalyses The2005BRTstatusassessmentoftheMid ColumbiaDPSincludedquantitative estimatesofpopulationabundance,trendsandhatchery/naturalspawnercompositions basedonasetofavailableindicesrepresentingnaturalproductionperformanceinspecific tributaries.sincethatreview,theictrthasworkedwithregionalbiologiststodocument anddevelopastandardsetofpopulationlevelestimatesofspawningabundanceand hatchery/naturalproportionsrepresentingalloftheextantpopulationsinthebasin (ICTRT,2010b).Insomecasesthenewmethodsrepresentanexpansionfromdatasets representingspecificreacheswithinpopulationstotoestimatesoftheannualnumberof totalspawnersinapopulation(e.g.,fifteenmilecreek,thejohndaydrainagepopulations). Inothercasesthecurrentdataseriesrepresentabreakoutofaggregaterunestimatesthat includecontributionsfrommultipleictrtpopulations(e.g.,thedeschutesriverandthe YakimaRiver).Inaddition,the2005reviewwasbasedonreturnsthroughthe2001 spawningyear.currentlyavailabledataseriesformid Columbiasteelheadpopulations generallyextendthroughthe2007/2008return/spawncycleyearwithsomeseries includinganadditionalyear,the2008/2008return(figure139 Figure146). Standardabundanceandtrends Abundancedataseriesareavailableforthreeofthefiveextantpopulationsinthe NorthCascadesMPG(Table73)alongwithtwoyearsofestimatesforafourthpopulation (KlickitatRiver).Totalspawningabundanceforthemostrecentfiveyearseries(2005 2009)arebelowthelevelsreportedinthe2005BRTanalysisforallthreepopulation series.however,naturaloriginspawnerabundanceishigherforthemorerecentestimates forallthreeseries.basedonmark recaptureanalysis,1,577naturalandhatchery steelheadpassedupstreamofthefallsandintospawningreachesin2006 2007inthe KlickitatRiver.Estimatesoftheproportionnaturaloriginspawnerswerehigherforall threepopulationsinthemostrecentbroodcycle. 291

Totalescapementandnaturaloriginescapementsweredownfromthelevels reportedinthe2005brtreportinfouroutofthefivejohndaypopulations.bothtotal andnaturaloriginspawningescapementsinthesouthforkjohndayriverwerehigherin themorerecentbroodcyclethanin1997 2001.Estimatesofthefractionnaturalorigin spawnerswererelativelyunchangedfortheupstreamjohndaypopulations,buthad increasedforthelowermainstemjohndayriver(table73). Totalandnaturaloriginescapementestimateswerehigherinthemostrecentbrood cycleforallfouroftheyakimariverpopulationsthaninthecycleassociatedwiththe2005 BRTreview(Table73,Figure1).SteelheadescapementsintotheUpperYakimaRiver, althoughincreasedrelativetothepreviousreview,remainverylowrelativetothetotal amountofhabitatavailable.proportionnaturaloriginremainedhighintheyakimabasin (estimatedforaggregaterunatprosserdam). Totalspawningescapementshaveincreasedinthemostrecentbroodcycleoverthe periodassociatedwiththe2005brtreviewforallthreepopulationsintheumatilla WallaWallaMPG(Table73).Naturaloriginescapementsarehigherfortwopopulations (UmatillaRiverandWallaWallaRiver)whileremainingattheapproximatelythesame levelasinthepriorreviewforthetouchetriver. Relativetothebroodcyclejustpriortolisting(1992 1996spawningyear)current broodcycle(fiveyeargeometricmean)naturalabundanceissubstantiallyhigher(more thantwice)forsevenofthemid Columbiasteelheadpopulationdataseries,lowerforthree populationsandatsimilarlevelsfortheremaining4populations. ShorttermtrendsforallpopulationsintheYakimaRiverMPGswerestrongly positiveovertheperiod1995 2009(Figure143).TrendsforEastCascades,JohnDayand Umatilla/WallaWallapopulationsweregenerallypositivewiththreeexceptions.The geometricmeantrendestimatesforfifteenmilecreek,themiddleforkjohndayandthe TouchetRiverwereatorslightlybelowone,withtheconfidenceboundsforallthree estimatesincluding1.0. PopulationsinallfouroftheMid ColumbiasteelheadMPGsexhibitedsimilar temporalpatternsinreturnsperspawner(figure140,figure142,figure144,figure 146).Returnratesforbroodyears1995 1999weregenerallyexceededreplacement(1:1). Spawnertospawnerratiosforbroodyears2001 2003weregenerallywellbelow replacementformanypopulations.broodyearproductivityestimatesreturnedlevelsator above1:1forthemostrecent1 2broodyearsforpopulationsintheYakimaandJohnDay RiverMPGsbutremainedbelowreplacementfortheEasternCascadesandUmatilla/Walla Wallapopulations.Broodyearreturnratesreflectthecombinedimpactsofyeartoyear patternsinmarinelifehistorystages,upstreamanddownstreampassagesurvivalsaswell asdensitydependenteffectsresultingfromcapacityorsurvivallimitationsontributary spawningorjuvenilerearinghabitats. 292

Table73 SummaryofabundanceandhatcheryproportionsforMid ColumbiaSteelheadpopulationsorganizedbyMPG.Estimatesforbroodcycleprior listing(1992 1996)andthe2005BRTreviewincludedforcomparison.Estimatesforallseriescalculatedusingcurrentdatasets. Population (organized by major population group) Total Spawners ( 5 year geometric mean, range) Prior (1997-2001) Listing (1992-1996) East Side Deschutes MPG Fifteen Mile Cr. East Side Deschutes West Side Deschutes John Day MPG Upper Mainstem North Fork Middle Fork South Fork Lower Mainstem Yakima MPG Satus Creek Toppenish Creek Naches River Upper Yakima 396 571 (234-974) 651 3,114 (1,829-10,005) 248 594 (417-920) 601 699 (333-1,771) 1,242 2,134 (1021 4,539) 926 302 1,169 (477-3,478) 293 (105-1094) 1,001 2,139 (652-6,096) 347 131 278 53 Umatilla/Walla Walla MPG Umatilla River 1,549 Touchet River Walla Walla River 511 365 (310 413) 345 (156-1229) 471 (346 1000) 66 (42-171) 2163 (1527-3360) 382 (286 559) 772 631 (421-1172) Current (2005-2009) 452 (225-1,956) 2,457 (1,720-4,151) 574 (408-780) 500 (166-980) 1,618 (789 4,072) 400 (238 770) 434 (232 662) 1,382 (749-4,324) 831 (524 1129) 482 (265-820) 848 (496 1199) 158 (80-226) 2893 (1654-4667) 497 (385 626) 838 (472-1658) Listing (1992-1996 Natural Spawning Areas Natural Origin ( 5 year geometric mean) Prior (1997-2001) 396 571 (234-974) 421 1,753 (475-8,637) 175 414 (290-766) 578 651 (326-1,593) 1,196 1,988 (978 4,083) 891 290 1,089 (457-3,129) 273 (103-984) 964 2,013 (625 5,553) 317 119 254 51 337 (269 398) 318 (132-1208) 435 (304 983) 65 (42-162) 1,118 1288 (769-2451) 449 345 (252 493) 765 618 (419-1118) Current (2005-2009) 452 (225-1,956) 1,945 (1,600-2,395) 472 (314-567) 459 (149 910) 1,484 (707 3,878) 367 (213 707) 398 (207-630) 1,006 (508-3,480) 809 (519 1121) 469 (262-802) 825 (491 1190) 156 (80-223) 2273 (1373 3625) 347 (277 438) 815 (464-1623) Listing (1992-1996 % Natural Origin (5 year average) Prior (1997-2001) Current (2005-2009) 65% 62% 80% 71% 70% 82% 96% 93% 92% 96% 93% 92% 96% 93% 92% 96% 93% 92% 96% 94% 73% 91% 92% 97% 91% 92% 97% 91% 92% 97% 91% 99% 99% 72% 61% 79% 88% 90% 70% 99% 98% 97% 293

Figure139 SpawningabundancefortheEastCascadesMajorPopulationGroupintheMiddleColumbia steelheaddps.thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnatural spawners(includingnaturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries) meanofthetotalspawers,andthegreenshadedareaindicates+/ 1standarddeviationaroundthemean. 294

Figure140 ProductivityoftheEastCascadesMajorPopulationGroupintheMiddleColumbiasteelheadDPS. Filledmarkers:parentspawnerestimatebelow75%ofminimumabundancethreshold.Openmarkers:parent escapementgreaterthan75%ofminimumabundancethreshold. 295

Figure141 SpawningabundancefortheJohnDayMajorPopulationGroupintheMiddleColumbiasteelhead DPS.Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners (includingnaturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthe totalspawers,andthegreenshadedareaindicates+/ 1standarddeviationaroundthemean. 296

Figure142 ProductivityoftheJohnDayMajorPopulationGroupintheMiddleColumbiasteelheadDPS.Filled markers:parentspawnerestimatebelow75%ofminimumabundancethreshold.openmarkers:parent escapementgreaterthan75%ofminimumabundancethreshold. 297

Figure143 SpawningabundancefortheYakimaMajorPopulationGroupintheMiddleColumbiasteelheadDPS. Thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnaturalspawners (includingnaturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries)meanofthe totalspawers,andthegreenshadedareaindicates+/ 1standarddeviationaroundthemean. 298

Figure144 ProductivityoftheYakimaMajorPopulationGroupintheMiddleColumbiasteelheadDPS.Filled markers:parentspawnerestimatebelow75%ofminimumabundancethreshold.openmarkers:parent escapementgreaterthan75%ofminimumabundancethreshold. 299

Figure145 SpawningabundancefortheUmatilla/WallaWallaMajorPopulationGroupintheMiddleColumbia steelheaddps.thedarklineindicatesnaturaloriginspawnernumbers,light(red)lineindicatestotalnatural spawners(includingnaturallyspawninghatcheryfish).thedottedlineisthelong term(wholetimeseries) meanofthetotalspawners,andthegreenshadedareaindicates+/ 1standarddeviationaroundthemean. 300

Figure146 ProductivityoftheUmatilla/WallaWallaMajorPopulationGroupintheMiddleColumbiasteelhead DPS.Filledmarkers:parentspawnerestimatebelow75%ofminimumabundancethreshold.Openmarkers: parentescapementgreaterthan75%ofminimumabundancethreshold. 301

302

Figure147 Thetoppanelillustratestheshort term(1995 2009)trendsinnaturaloriginspawners.Estimated asslopeofln(naturaloriginabundance)vs.year.populationestimatesorganizedbymajorpopulationgroup (MPG).EasternCascades(EC);JohnDayRiver(JD);Umatilla/WallaWalla(UWW),YakimaRiver(YK).Lines: upperandlower95%confidencelimits.pointestimatesareexp(ln(trend)).themiddlepanelillustratesshort termpopulationgrowthrate(lambda)estimatesformid Columbiasteelheadpopulations.Relativehatchery effectivenesssetto0.0.soliddiamond/bar:pointestimateand95%cffor1995 2009.Thebottompanel illustratesshorttermpopulationgrowthrate(lambda)estimatesformid Columbiasteelheadpopulations. Relativehatcheryeffectivenesssetto1.0.Soliddiamond/bar:pointestimateand95%cffor1995 2009. 303

CurrentStatus:RecoveryPlanViabilityCriteria ThecurrentstatusoftwoofthefivepopulationsintheCascadesEasternSlopeMPG, FifteenMileCreekandtheDeschutesRiver(Eastside),areratedasviableusingtheICTRT criteriaincorporatedintothemid ColumbiaSteelheadRecoveryPlan.TheDeschutes (Westside)populationremainsratedatHighRiskdrivenbyrelativelylowestimatesfor currentproductivityandnaturaloriginabundancevs.thedpsspecificviabilitycurvefor Intermediatesizedpopulations.ThedataseriesfortheKlickitatRiverpopulationisnot sufficienttoallowarating,howeveravailablemark recapturebasedestimatesfortwo recentyearsindicatethatthepopulationmaybefunctioningatornearviablelevels.data arenotavailablefortheremainingextantpopulation(rockcreek).thecurrentratings againstspatialstructureanddiversitycriteriareflecttheassessmentsdoneforthe2008 ICTRTstatusassessments. Table74 SummaryofcurrentstatusofpopulationsusingviabilitycriteriaincorporatedintotheMid Columbia SteelheadRecoveryPlanfortheCascadesEasternSlopeMPG. Cascades Eastern Slope MPG Population Fifteen Mile 1999-2008 1995-2004 Klickitat East Side Deschutes 2000-2009 1995-2004 West Side Deschutes 2000-2009 ICTRT Minimum Threshold 500 1000 1000 1000 Abundance/Productivity Metrics Natural Spawning Abundance 675 (225-1946) 695 (236-1946) Insufficient data 2,730 (1600-8637) 1633 (462-8637) 591 (314-1284) ICTRT Productivity 1.83 (0.95-3.54) 1.83 (0.95-3.54) Insufficient data 2.31 (1.49-3.60) 2.31 (1.49-3.60) 0.96 (0.68-1.37) Integrated A/P Risk Spatial Structure and Diversity Metrics Natural Processes Risk Diversity Risk Integrated SS/D Risk Overall Viability Rating Low Very Low Low Low Viable Moderate 25 Low Moderate Moderate Maintained? Low Low Moderate Moderate Viable High Low Moderate Moderate High Risk 410 1.08 1995-2004 (108-1284) (0.82-1.42) Rock Creek Insufficient Insufficient 500 data data High 26 Moderate Moderate Moderate High Risk? White Salmon River 500 N/A N/A Extinct 27 N/A N/A N/A Extinct Crooked River 2,250 N/A N/A Extinct N/A N/A N/A Extinct 25 Moderaterating(provisional)forKlickitatRiverpopulationbasedonreddcountsin someyears,relativehatchery/natural originfractionsincatchsamples,andextrapolation fromotherdpspopulations. 26 Annualsurveysnotconducted;thereforeweassumedaprovisionalA/PratingofHigh. 27 Assumedtobefunctionallyextinct(upstreamhabitatcutoffbyConditDam). 304

TheNorthForkJohnDaypopulationcontinuestoberatedHighlyViablewhenthe dataupdatesthroughthe2009spawningyearareincorporatedintotheassessment againstrecoveryplan/ictrtcriteria.theremainingfourpopulationsinthejohnday RiverMPGremainratedasMaintained.Naturaloriginabundanceestimates(tenyear geometricmeans)arehigherinthecurrentassessmentsforfourpopulationsandlowerfor themiddleforkjohndayriver.productivityestimates(geometricmeanbroodyear spawner/spawneratlowtomoderateparentescapements)weregenerallylowerinthe updateddataseriesthantheestimatesgeneratedfortheictrtstatusreviewsendingin spawningyear2005.thecurrentratingsagainstspatialstructureanddiversitycriteria reflecttheassessmentsdoneforthe2008ictrtstatusassessments. Table75 SummaryofcurrentstatusofpopulationsusingviabilitycriteriaincorporatedintotheMid Columbia SteelheadRecoveryPlanfortheJohnDayRiverMPG. John Day MPG Population Upper Mainstem 2000-2009 1995-2004 North Fork 2000-2009 1995-2004 Middle Fork 2000-2009 1995-2004 South Fork 2000-2009 1995-2004 Lower Mainstem 2000-2009 1995-2004 ICTRT Minimum Threshold 1000 1500 1000 500 2250 Abundance/Productivity Metrics Natural Spawning Abundance 558 (149-1593) 524 (185-1593) 1826 (707-4083) 1740 (640-4083) 672 (213-3129) 756 (436-3129) 443 (207-984) 259 (103-984) 1881 (508-7419) 1800 (625-7419) ICTRT Productivity 0.90 (1.83-2.83) 2.14 (1.04-2.31) 2.53 (1.57-4.08) 2.41 (1.54-3.63) 2.28 (1.79-2.90) 2.45 (1.84-2.71) 1.52 (1.00-2.30) 2.06 (1.23-2.80) 2.55 (1.51-4.32) 2.99 (1.96-4.88) Integrated A/P Risk Moderate Moderate Very Low Very Low Moderate Moderate Moderate Moderate Moderate Moderate Natural Processes Risk Spatial Structure and Diversity Metrics Diversity Risk Integrated SS/D Risk Overall Viability Rating Very Low Moderate Moderate Maintained Very Low Low Low Highly Viable Low Moderate Moderate Maintained Very Low Moderate Moderate Maintained Very Low Moderate Moderate Maintained 305

Table76 SummaryofcurrentstatusofpopulationsusingviabilitycriteriaincorporatedintotheMid Columbia SteelheadRecoveryPlanfortheUmatilla/WallaWallaMPG. Umatilla/Walla Walla MPG Abundance/Productivity Metrics Spatial Structure and Diversity Metrics ICTRT Natural ICTRT Integrated A/P Natural Diversity Integrated Population Minimum Spawning Productivity Risk Processes Risk SS/D Risk Threshold Abundance Risk Willow Creek N/A N/A N/A Extinct N/A N/A N/A Extinct Umatilla River 2000-2009 1500 2257 (1654-5176) 1.21 (0.48-3.07) Moderate Overall Viability Rating Moderate Moderate Moderate Maintained 1995-2004 Touchet River 2000-2009 1995-2004 1000 1472 (1074-3360) 394 (316-626) 414 (245-563) 1.50 (1.10-1.91) 0.96 (0.64-1.46) 1.19 (1.08-2.20) Moderate High Moderate? 28 Low Moderate Moderate High Risk Walla Walla River 2000-2009 1000 894 (472-1811) 1.15 (0.69-1.92) Moderate Moderate Moderate Moderate Maintained 1995-2004 650 (464-1746) 1.34 (1.05-1.68) Moderate TheratingsforindividualpopulationsintheYakimaMPGshouldbeinterpretedwith cautiongiventhebasisforestimatingpopulationspecificreturnsfromprosserdamcounts. TheoverallviabilityratingshaveincreasedfromMaintainedtoViableforthetwobasic sizedpopulationsinthismpg,remainingatmaintainedforthenachesriverandhighrisk fortheupperyakimariverpopulation.thechangesinratingsreflecttherelativelyhigh annualreturnsinmostyearssince2001.productivityestimatesbasedonthereturnseries updatedthrough2009(previouslythrough2005)haveincreasedorremainedat approximatelythesamelevelsasestimatedintherecoveryplan/ictrtstatus assessments.thecurrentratingsforspatialstructureanddiversitycriteriareflectthe assessmentsdoneforthe2008ictrtstatusassessments. 28 AnnualabundancedataseriesfortheTouchetRiversteelheadpopulationisrelatively shortandhasseveralmissingyears.productivityestimatesofa/{ratingareprovisional andshouldbeinterpretedwithcaution. From2007CSA 306

Table77 SummaryofcurrentstatusofpopulationsusingviabilitycriteriaincorporatedintotheMid Columbia SteelheadRecoveryPlanfortheYakimaMPG. Yakima MPG Population Satus Creek 2000-2009 1995-2004 Toppenish Creek 2000-2009 1995-2004 Naches River 2000-2009 1995-2004 Upper Yakima 2000-2009 1995-2004 ICTRT Minimum Threshold 500 500 1,500 1,500 Abundance/Productivity Metrics Natural Spawning Abundance 660 (347-1121) 379 (138-1032) 599 (262-1252) 322 (57-1252) 840 (491-1454) 472 (142-1454) 151 (60-265) 85 (40-265) ICTRT Productivity 1.79 (1.42-2.26) 1.73 (1.33-2.25) 2.84 (1.81-4.45) 1.60 (0.94-2.71) 1.59 (1.25-2.01) 1.12 (0.75-1.65) 1.52 (1.17-1.98) 1.12 (0.76-1.64) Integrated A/P Risk Moderate Moderate Moderate Moderate High High High High Natural Processes Risk Spatial Structure and Diversity Metrics Diversity Risk Integrated SS/D Risk Low Moderate Moderate Low Moderate Moderate Overall Viability Rating Viable (Maintained) Viable (Maintained) Low Moderate Moderate High Risk Moderate High High High Risk OverallstatusratingsfortheUmatillaRiverandWallaWallapopulationsremainedat Maintainedafterincorporationoftheupdatedabundanceandproductivitydata.The currentstatusofthetouchetriverpopulationremainedathighrisk,primarilydrivenby relativelylowgeometricmeanproductivity.naturaloriginabundanceestimateshave increasedfortheumatillariverandthewallawallariverpopulationsrelativetothelevels reportedintherecoveryplan/ictrtcurrentstatusreviews(throughreturnyear2005). ProductivityestimatesforallthreeextantpopulationsinthisMPGarelowerthaninthe previousreviews.thecurrentratingsagainstspatialstructureanddiversitycriteriareflect theassessmentsdoneforthe2008ictrtstatusassessments. 307

Harvest Summer runsteelheadfromtheupperbasinaredividedinto2runsbymanagers: TheA run,andtheb run.theserunsarebelievedhavedifferencesintiming,but managersseparatethemonthebasisofsizealoneinestimatingthesizeoftheruns.thearunisbelievedtooccurthroughoutthemiddlecolumbia,uppercolumbia,andsnakeriver Basins,whiletheB runisbelievedtooccurnaturallyonlyinthesnakeriveresu,inthe ClearwaterRiver,MiddleForkSalmonRiver,andSouthForkSalmonRiver. Steelheadwerehistoricallytakenintribalandnon tribalgillnetfisheries,andin recreationalfisheriesinthemainstemcolumbiariverandintributaries.inthe1970s, retentionofsteelheadinnon tribalcommercialfisherieswasprohibited,andinthemid 1980s,tributaryrecreationalfisheriesinWashingtonadoptedmark selectiveregulations. Steelheadarestillharvestedintribalfisheries,inmainstemrecreationalfisheries,and thereisincidentalmortalityassociatedwithmark selectiverecreationrecreational fisheries.themajorityofimpactsonthesummerrunoccurintribalgillnetanddipnet fisheriestargetingchinooksalmon.becauseoftheirlargersize,theb runfisharemore vulnerabletothegillnetgear.consequently,thiscomponentofthesummerrun experienceshigherfishingmortalitythanthea runcomponent(figure148).inrecent years,totalexploitationratesonthea runhavebeenstableataround5%,while exploitationratesontheb runhavegenerallybeenintherangeof15%to20%. Figure148 TotalharvestimpactsonnaturalsummersteelheadaboveBonnevilleDam.Datafor1985 1998 fromnmfsbiologicalopinion(peterdygert,nmfs,personalcommunication),andfor1999 2008fromTACrun reconstruction(cindylefleur,wdfwpersonalcommunication). 308

Hatcheryreleases Totalhatcheryreleasesofsteelhead,Chinookandcohohaveremainedsimilarsince 2005.Releasesforcohoandsteelheadfellsubstantiallyfromtheirlevelsinthemid 1990s (Figure149). 309

Figure149 SummaryofhatcheryreleasesbyspecieswithinthespawningandrearingboundariesoftheMid ColumbiaRiversteelheadESU.Datasource:RMIS. MiddleColumbiasteelhead:UpdatedRiskSummary Therehavebeenimprovementsintheviabilityratingsforsomeofthecomponent populations,butthemid ColumbiaSteelheadDPSisnotcurrentlymeetingtheviability 310

criteria(adoptedfromtheictrt)inthemid ColumbiaSteelheadRecoveryPlan.In addition,severalofthefactorscitedbythe2005brt(goodetal.2005)remainasconcerns orkeyuncertainties.naturaloriginspawningestimatesarehighlyvariablerelativeto minimumabundancethresholdsacrossthepopulationsinthedps.updatedinformation indicatesthatstraylevelsintoatleastthelowerjohndayriverpopulationarealsohigh. ReturnstotheYakimaRiverbasinandtotheUmatillaandWallaWallaRivershavebeen higheroverthemostrecentbroodcyclewhilenaturaloriginreturnstothejohndayriver havedecreased.outofbasinhatcherystrayproportions,althoughreduced,remainvery highinthedeschutesriverbasin.overallthenewinformationconsidereddoesnot indicateachangeinthebiologicalriskcategorysincethetimeofthelastbrtstatusreview. References Good, T.P., R.S. Waples and P. Adams (editors). 2005. Updated status of federally listed ESUs of West Coast salmon and steelhead. U.S. Dept. of Commer., NOAA Tech. Memo. NMFS-NWFSC-66, 598 p. ICTRT, 2003. Independent populations of chinook, steelhead and sockeye for listed evolutionarily significant units within the interior Columbia River domain. Interior Columbia Basin Technical Recovery Team Technical Review Draft. July 2003. 171 p. ICTRT, 2007. Viability criteria for application to interior Columbia Basin salmonid ESUs. Interior Columbia Basin Technical Recovery Team. Technical Review Draft. March 2007. 91 p + appendices and attachments. ICTRT(2008)Currentstatusreviews:InteriorColumbiaBasinsalmonESUsandsteelhead DPSs.Vol.3.MiddleColumbiaRiversteelheaddistinctpopulationsegment.300p. 311

LowerColumbiaRiversteelhead 29 ListedESU/DPS TheDPSincludesallnaturallyspawnedanadromousO.mykiss(steelhead) populationsbelownaturalandmanmadeimpassablebarriersinstreamsandtributariesto thecolumbiariverbetweenthecowlitzandwindrivers,washington(inclusive),andthe WillametteandHoodRivers,Oregon(inclusive),aswellastenartificialpropagation programs:thecowlitztrouthatchery(inthecispus,uppercowlitz,lowercowlitz,and TiltonRivers),KalamaRiverWild(winter andsummer run),clackamashatchery,sandy Hatchery,andHoodRiver(winter andsummer run)steelheadhatcheryprograms. ExcludedareO.mykisspopulationsintheupperWillametteRiverBasinaboveWillamette Falls,Oregon,andfromtheLittleandBigWhiteSalmonRivers,Washington. ESU/DPSBoundaryDelineation Utilizingnewinformation,theESUBoundariesReviewGroup(Myersetal,this report)undertookarevaluationoftheboundarybetweenalllowercolumbiaandmid ColumbiaESUsandDPSs.Thereviewconclusionsemphasizethetransitionalnaturethe boundarybetweenthelowercolumbiaesusandthemid ColumbiaESUs.After consideringnewdnadata,thereviewconcludes, itisreasonabletoincludetheklickitatin thelowercolumbiaesusanddps,thusestablishingacommonboundaryforchinook salmon,chumsalmon,cohosalmonandsteelheadatthehistoricallocationofcelilofalls (currentlythedallesdam). ThisstatusevaluationisbasedontheexistingLowerColumbia ESUboundariesthatdonotincludetheKlickitatpopulation. SummaryofPreviousBRTConclusions NMFS initially reviewed the status of the Lower Columbia River steelhead ESU in 1996 (Busby et al. 1996) and most recently in 1998 (NMFS 1998). In the 1998 review, the BRT noted several concerns for this ESU, including low abundance relative to historical levels, universal and often drastic declines observed since the mid-1980s, and widespread occurrence of hatchery fish in naturally spawning steelhead populations. Analysis also suggested that introduced summer-run steelhead may negatively affect native winter-run steelhead in some populations. A majority of the 1998 BRT concluded that steelhead in the Lower Columbia River steelhead ESU were at risk of becoming endangered in the foreseeable future. LCR steelhead were most recently reviewed by the BRT in 2005 (Good et al. 2005). A large majority (over 73%) of the BRT votes for this ESU fell in the likely to become endangered category, with small minorities falling in the danger of extinction and not likely to become endangered categories. The BRT found moderate risks in all the VSP categories. All of the major risk factors identified by previous BRTs still remained. Most populations were at relatively low abundance, and those with adequate data for modeling were estimated to have a relatively high extinction probability. Some populations, particularly summer run, had higher returns in the most recent years included in the 2005 report (years 2001 and 2002). TheWLC- TRT (Myers et al. 2002) estimated that at least four historical populations were extirpated. The hatchery contribution to natural spawning remained high in many populations. 29 Sectionauthor:PaulMcElhany 312

SummaryofRecentEvaluations AreportonthepopulationstructureofLowerColumbiasalmonandsteelhead populationswaspublishedbythewlc TRTin2006(Myersetal.2006).Thesteelhead populationdesignationsinthatreport(figure150)areusedinthisstatusupdateandwere usedforstatusevaluationsinrecentrecoveryplansbyodfwandlcfrb.lcrchinook populationsexhibittwodifferentlifehistorytypesbaseonreturntimingandother features:winterrunandsummerrun. In2010,ODFWcompletedarecoveryplanthatincludedOregonpopulationsof LowerColumbiasteelheadDPS.Alsoin2010,theLCFRBcompletedarevisionofits recoveryplanthatincludeswashingtonpopulationsoflowercolumbiasteelhead.bothof theserecoveryplansincludeanassessmentofcurrentstatusoflcrsteelheadpopulations. TheseassessmentsreliedandbuiltupontheviabilitycriteriadevelopedbytheWLC TRT (McElhanyetal2006)andanearlierevaluationofOregonWLCpopulations(McElhanyet al.2007).theseevaluationsassessedthestatusofpopulationswithregardtothevsp parametersofabundanceandproductivity,spatialstructureanddiversity(mcelhanyetal. 2000).TheresultsoftheseanalysesareshowninFigure151andFigure152. Theseanalysesindicatethatonlytwoofthe26LCRsteelheadpopulations(Wind summerandclackamaswinter)arecurrentlyconsidered viable (i.e.<95%riskof extinction).17ofthe26populations(65%)areintheveryhighorhighriskcategory,with 11ofthepopulationsmostlikelyintheveryhighriskcategory(alsodescribedas extirpatedornearlyso ).Thepoorestperformingpopulationswerethosehabitatisabove impassibledams(e.g.nflewis)orinhighlyurbanizedwatersheds(e.g.salmoncreek). 313

Figure150 Populations of LCR winter steelhead (upper) and summer steelhead (Lower). From Myers et al. (2006). 314

Figure151 OregonLCRsteelheadpopulationstatusfromODFWLCRrecoveryplan(2010). 315

Figure152 CurrentstatusofWashingtonLCRsteelheadpopulationsfortheVSPparametersandoverall populationrisk.(lcfrb2010recoveryplan,chapter6).apopulationscoreofzeroindicatesapopulation extirpatedornearlyso,ascoreof1ishighrisk,2ismoderaterisk,3islowrisk( viable )and4isverylowrisk. NewDataandAnalyses 316

The2005BRTstatusevaluationincludedabundancedataformostoftheLCR steelheadpopulationsuptotheyear2001.forthecurrentevaluation,wehavecompiled datathrough2008formostpopulations.trenddataarepresentedinfigure153,with statisticalsummaryinappendixa.sincethelaststatusevaluations,allofthepopulations increasedinabundanceduringtheearly2000 s,generallypeakingin2004.most populationshavesincedeclinedbacktolevelswithinonestandarddeviationofthelong termmean.exceptionsarethewashougalsummerrunandnftoutlewinterrun,which arestillhigherthanthelongtermaverageandthesandywhichislower.thenftoutle winterrunappearstobeexperiencinganlongertermincreasingtrendsince1990,whichis partiallyattributedtowatershedrecoveryfromtheeruptionofmt.st.helensin1980.the Sandywintersteelheadpopulationisbelowonestandarddeviationfromthelong term meananddidnotsothe2004increasespikeoftheotherpopulationsintheesu, suggestingthatthepopulationlackresilience.ingeneral,thepopulationsdonotshowany sustaineddramaticchangesinabundanceorfractionofhatcheryoriginspawnerssincethe 2005BRTevaluation. 317

318

319

Figure153 LCRsteelheadtrendsinabundance.Thedarklineindicatesnaturaloriginspawnernumbers,light (red)lineindicatestotalnaturalspawners(includingnaturallyspawninghatcheryfish).thedottedlineisthe long term(wholetimeseries)meanofthetotalspawers,andthegreenshadedareaindicates+/ 1standard deviationaroundthemean. Harvest WinterRun Fewwinter runfishmigrateabovebonnevilledamwheretribalfisheriesoccur.in addition,winter runsteelheadareinthemainstemriveratatimewhenthereisgenerally littleornofishingoccurringthere.recreationalfisheriesinwashingtontributarieshave beenmarkselectivesincethemid 1980s.Thereisnodirectedwintersteelheadfisheryin thewillametteriver.wintersteelheadfisheriesusedtotargethatcheryrunsthathadan earlierruntimingbutthosehatcheryprogramswerediscontinuedintheperiodfrom 1989 1999.BecauseveryfewofthefishascendaboveBonnevilleDam,therewaslittle focusonthisrunpriortolisting.totalfisheryexploitationratesforthenaturalcomponent areonlyavailablebackto2001(figure154).inthattimeperiodexploitationrateshave beenbelowtheconsultationstandardof2%inallyearsexcept2002. 320

Figure154 TotalexploitationratesonnaturalwintersteelheadfromtheColumbiaBasin.Wintersteelhead includethelowercolumbiariveresu,upperwillametteriveresu,andportionsofthemiddlecolumbiariver andwashingtoncoastalesus.datafromtac(2010). Hatcheries ThetotalsteelheadhatcheryreleasesintheLCRESUhaveincreasedsincethelast statusevaluationin2005fromabout2milliontoaround3million(figure155).some populations(e.g.hoodriver,kalama)haverelativelyhighfractionsofhatcheryorigin spawnerswhereasothers(e.g.wind)haverelativelyfewhatcheryoriginspawners. AlthoughrecoveryplansandtheHSRGrecommendsomechangesinhatcheryprograms, therehavenotbeensubstantialchangesfromthelaststatusreview. Figure155 AnnualLCRsteelheadhatcheryreleases.Thedottedlineindicatesthemeanandtheshadedareathe standarddeviation.datasource:rmis. 321

LowerColumbiaRiversteelhead:UpdatedRiskSummary ThreestatusevaluationsofLCRsteelheadstatus,allbasedonWLC TRTcriteria, havebeenconductedsincethelastbrtstatusupdatein2005(mcelhanyetal.2007,odfw 2010,LCFRB2010).AllthreeevaluationsconcludedthattheESUiscurrentlyathighriskof extinction.ofthe26historicalpopulationsintheesu,17areconsideredathighorvery highrisk.populationsintheupperlewis,cowlitzandwhitesalmonwatershedsremain cut offfromaccesstoessentialspawninghabitatbyhydroelectricdams.projectstoallow accesshavebeeninitiatedinthecowlitzandlewissystemsbutthesehavenotyet producedself sustainingpopulations.thepopulationsgenerallyremainatrelativelylow abundancewithrelativelylowproductivity.overall,thenewinformationconsidereddoes notindicateachangeinthebiologicalriskcategorysincethetimeofthelastbrtstatus review. References Busby,P.J.,T.C.Wainwright,G.J.Bryant,L.J.Lierheimer,R.S.Waples,F.W.Waknitz,andI. V.Lagomarsino.1996.StatusreviewofWestCoaststeelheadfromWashington, Idaho,Oregon,andCalifornia.U.S.Dept.Commer.,NOAATech.Memo.NMFS NWFSC 27. Good,T.P.,R.S.Waples,andP.Adams,editors.2005.Updatedstatusoffederallylisted ESUsofWestCoastsalmonandsteelhead.U.S.DepartmentofCommerce,Seattle. LowerColumbiaFishRecoveryBoard.2010.WashingtonlowerColumbiasalmonrecovery andfishandwildlifesubbasinplan.lowercolumbiafishrecoveryboard,olympia, WA. McElhany,P.,C.Busack,M.Chilcote,S.Kolmes,B.McIntosh,J.M.Myers,D.Rawding,A. Steel,C.Steward,D.Ward,T.Whitesel,andC.Willis.2006.Revisedviabilitycriteria forsalmonandsteelheadinthewillametteandlowercolumbiabasins.report, NOAANorthwestFisheriesScienceCenter,Seattle. McElhany,P.,M.Chilcote,J.M.Myers,andR.Beamesderfer.2007.ViabilitystatusofOregon salmonandsteelheadpopulationsinthewillametteandlowercolumbiabasins. NOAA NorthwestFisheriesScienceCenter,Seattle,WA. McElhany,P.,M.H.Ruckelshaus,M.J.Ford,T.C.Wainwright,andE.P.Bjorkstedt.2000. Viablesalmonidpopulationsandtherecoveryofevolutionarilysignificantunits. TechnicalMemorandumNMFS NWFSC 42,NOAA,Seattle. Myers,J.M.,C.Busack,D.Rawding,andA.R.Marshall.2002.Identifyinghistorical populationsofchinookandchumsalmonandsteelheadwithinthelowercolumbia RiverandUpperWillametteRiverevolutionarilysignificantunits.May10draft reporttothecomanagersfromthewillamette/lowercolumbiarivertechnical RecoveryTeam,NorthwestFisheriesScienceCenter,2725MontlakeBlvd.E.,Seattle, WA98112. Myers,J.M.,C.Busack,D.Rawding,A.R.Marshall,D.J.Teel,D.M.VanDoornik,andM.T. Maher.2006.HistoricalpopulationstructureofPacificsalmonidsintheWillamette RiverandlowerColumbiaRiverbasins.NMFS NWFSC 73,NOAANWFSC,Seattle, WA. 322

NMFS.1998.StatusreviewupdatefordeferredandcandidateESUsofWestCoaststeelhead (LowerColumbiaRiver,UpperWillametteRiver,OregonCoast,KlamathMountains Province,NorthernCalifornia,CentralValley,andMiddleColumbiaRiverESUs). PredecisionalESAdocument,NationalMarineFisheriesService. OregonDepartmentofFishandWildlife,R.Beamesderfer,L.Berg,M.Chilcote,J.Firman,E. Gilbert,K.Goodson,D.Jepsen,T.Jones,S.Knapp,C.Knutsen,K.Kostow,B.McIntosh, J.Nicholas,J.Rodgers,T.Stahl,andB.Taylor.2010.LowerColumbiariver conservationandrecoveryplanfororegonpopulationsofsalmonandsteelhead. OregonDepartmentofFishandWildlife,Salem,OR. 323

UpperWillamettesteelhead 30 ListedESU/DPS TheDPSincludesallnaturallyspawnedanadromousO.mykiss(steelhead)populations belownaturalandmanmadeimpassablebarriersinthewillametteriver,oregon,andits tributariesupstreamfromwillamettefallstothecalapooiariver(inclusive). ESU/DPSBoundaryDelineation TheESUBoundariesReviewGroup(seeESUBoundariesabove)didnotidentifyany newinformationsuggestingarevaluationoftheupperwillamettesteelheadesu.this statusevaluationwasconductedbasedonexistingesuboundaries. SummaryofPreviousBRTConclusions NMFS initially reviewed the status of the Upper Willamette River steelhead ESU in 1996 (Busby et al. 1996), with an update in 1999 (NMFS 1999). In the 1999 review, the BRT noted several concerns for this ESU, including relatively low abundance and steep declines since 1988. The previous BRT was also concerned about the potential negative interaction between nonnative summer-run steelhead and native winter-run steelhead. The previous BRT considered the loss of access to historical spawning grounds because of dams to be a major risk factor. The 1999 BRT reached a unanimous decision that the Upper Willamette River steelhead ESU was at risk is of becoming endangered in the foreseeable future. In the most recent status update (Good et al. 2005), a majority (over 71%) of the BRT votes for this ESU fell in the likely to become endangered category, with small minorities falling in the danger of extinction and not likely to become endangered categories. The BRT did not identify any extreme risks for this ESU but found moderate risks in all the VSP categories. On a positive note, the 2005 BRT noted that after a decade in which overall abundance (Willamette Falls count) hovered around the lowest levels on record, adult returns for 2001 and 2002 were up significantly, on par with levels seen in the 1980s. Still, the total abundance was considered small for an entire ESU, resulting in a number of populations that were each at relatively low abundance. Summary of Recent Evaluations AreportonthepopulationstructureofLowerColumbiaandWillamettesalmonand steelheadpopulationswaspublishedbythewlc TRTin2006(Myersetal.2006).TheUW steelheadpopulationdesignationsinthatreport(figure156)areusedinthisstatusupdate andwereusedforstatusevaluationsinarecentrecoveryplanbyodfw(2010). AdraftrecoveryplanforUWChinookandSteelheadwasreleasedforcommentby ODFWin2010.ThestatusevaluationintheODFWrecoveryplanprovidedanupdateofthe statusevaluationofmcelhanyetal.(2007),whichreliedonmethodsandviabilitycriteria developedbythewlc TRT(McElhanyetal.2006).TheresultsoftheMcElhanyetal. (2007)evaluationaresummarizedinFigure157.Theseresultsindicatethatthemostlikely overallstatusofallpopulationswasinthe moderaterisk category.theodfwrecovery planupdateanalysis(2010)indicatedthatthemostlikelycategoryforthenorthandsouth 30 Sectionauthor:PaulMcElhany 324

Santiampopulationswas lowrisk ratherthan moderaterisk.themcelhanyetal. analysisuseddataupto2005,whereastheodfwanalysisuseddatathrough2008. ExtinctionriskmodelingintheODFW2010recoveryplansuggeststhat,basedonlyon biologicalinformation,theesuisviable.however,therecoveryplanindicatesthat increasingthreatstoesuplaceitatconsiderablerisk. Figure156 Upper Willamette steelhead populations (from Myers et al. 2006) 325

Figure157 Status of UW steelhead populations (from McElhany et al. 2007). NewDataandAnalysis Willamette Falls All steelhead in the UW steelhead ESU pass Willamette Falls (Figure158). In the 2005 BRT report, data were only available to the year 2002 when the ESU appeared to be increasing. However, population abundance peaked in 2002 and since returned to the relatively low abundance of the 1990s. The late-returning abundance for the entire ESU in 2009 was 2,110 fish. 326

Figure158 Count of winter steelhead at Willamette falls. The upper (orange) line shows the total winter steelhead run. The lower (black) line show the late winter steelhead run, which is considered the native life history. Hatchery releases of winter run steelhead in the Willamette were discontinued in 1999. Data from ODFW online Willamette Falls count database (http://www.dfw.state.or.us/fish/fish_counts/willamette%20falls.asp). Steelhead Populations The 2005 BRT report used abundance data for the years 1980-2000 for the Mollala population and years 1980-2001 for the other three populations. The current analysis uses data through 2008 (Figure159). The population estimates mirror the patterns at Willamette Falls with declines in the most recent years. In the 2008, the total abundance of winter steelhead at Willamette Falls was 4,915, which were distributed (minus in basin mortality) into the four populations. 327

Figure159 Spawner abundance of UW steelhead populations. The dark line indicates natural origin spawner numbers, light (red) line indicates total natural spawners (including naturally spawning hatchery fish). The dotted line is the longterm (whole time series) mean of the total spawners, and the green shaded area indicates +/- 1 standard deviation around the mean. Harvest ThereisnodirectedwintersteelheadfisheryintheWillametteRiver.Wintersteelhead fisheriesusedtotargethatcheryrunsthathadanearlierruntimingbutthosehatchery programswerediscontinuedintheperiodfrom1989 1999.Totalfisheryexploitationrates forthenaturalcomponentareonlyavailablebackto2001(figure160).inthattime 328

periodexploitationrateshavebeenbelowtheconsultationstandardof2%inallyears except2002. Figure160 Figure#.5:TotalexploitationratesonnaturalwintersteelheadfromtheColumbiaBasin.Winter steelheadincludethelowercolumbiariveresu,upperwillametteriveresu,andportionsofthemiddle ColumbiaRiverandWashingtonCoastalESUs.DatafromTAC(2010). Hatcheries Winter steelhead hatchery releases in the UW ceased in 1999. However, there is still a substantial hatchery program for non-native summer steelhead. In recent years, returning summer steelhead have outnumber the native winter run steelhead, which raises genetic and ecological concerns (Figure161). Total steelhead releases in the basin are shown in Figure162. 329

Figure161 Non-native, summer steelhead count at Willamette Falls. (data from ODFW online Willamette Falls count database.) Figure162 Steelhead hatchery releases in the upper Willamette basin. UpperWillamettesteelhead:UpdatedRiskSummary Since the last BRT status update, UW steelhead initially increased in abundance but subsequently declines and current abundance is at the levels observed in the mid-1990s when the DPS was first listed. The DPS appears to be at lower risk than the Upper Willamette Chinook ESU, but continues to demonstrate the overall low abundance pattern that was of concern during the last BRT review. The elimination of winter run hatchery release in the basin reduces hatchery 330