Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Similar documents
Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Supporting Information

Supporting Information

Supporting Information

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

state asymmetric supercapacitors

Supporting information

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Electronic Supplementary Information (ESI)

Supporting Information

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supplementary Material

Supporting Information for

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Electronic Supplementary Information (ESI)

Supporting Information

Supporting Information

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Supplementary Information

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supplementary Information

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

noble-metal-free hetero-structural photocatalyst for efficient H 2

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Supporting Information for

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Electronic Supporting Information (ESI)

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Supplementary Information

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Electronic Supplementary Information

Supporting Information

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supporting information

Electronic Supplementary Information

Supporting Information

Supporting Information

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Supplementary Information

Supporting Information

Supporting Information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Supporting Information

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Supporting Information

Supporting Information

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Supporting Information

Highly enhanced performance of spongy graphene as oil sorbent

Electronic Supplementary Information

Supporting Information

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Curriculum Vitae. Yu (Will) Wang

Electronic Supplementary Information

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Electronic Supplementary Information for

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Complex Systems and Applications

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Supporting Information

Zhaohuai Li, Qiu He, Xu Xu,* Yan Zhao, Xiaowei Liu, Cheng Zhou, Dong Ai, Lixue Xia, and Liqiang Mai*

Supporting Information

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Supplementary Information

Supporting Information

3D CNTs/Graphene-S-Al 3 Ni 2 Cathodes for High-Sulfur-Loading and Long-Life Lithium Sulfur Batteries

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

2012 International Conference on Future Energy, Environment, and Materials

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Supporting information

Flexible Nb 4 N 5 /rgo Electrode for High-Performance Solid State Supercapacitors. Huazhong University of Science and Technology Wuhan , China

Applied Medical Parasitology By LI CHAO PIN, ZHANG JIN SHUN ZHU BIAN SUN XIN

Supporting Information. High-performance nonfullerene polymer solar cells based on fluorinated wide

small

Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm:CLNGG laser with MoS 2 saturable absorber mirror

Identification of a Large Amount of Excess Fe in Superconducting Single- Layer FeSe/SrTiO 3 Films

Room 399 College of Technology Building University of Houston Work ; Fax

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

A tribute to Guosen Yan

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Fabrication of Novel Lamellar Alternating Nitrogen-Doped Microporous Carbon Nanofilm/MoS 2 Composites with High Electrochemical Properties Zhen Chen, Huiqi Xie, Linfeng Hu, Min Chen and Limin Wu Fig. S1. XRD pattern of NMC-powder@MoS 2 and MoS 2.

Fig. S2. a,b) HR-TEM images and c-f) Surface SEM images of NMC nanofilms. d) The cross section of NMC nanofilm shows the thickness is 25 nm, f) the enlarge SEM image of NMC nanofilm.

Fig. S3. a) Mo 3d, b) S 2p and c) Mo 3p and N 1S XPS spectra of NMCnanofilm@MoS 2. d) Mo 3d XPS spectra of pure MoS 2. Fig. S4. SEM image of MOP powders.

Fig. S5. SEM image of the layer-by-layer stacking of NMC-nanofilm@MoS 2. Fig. S6. TEM image of the layer-by-layer stacking of NMC-nanofilm@MoS 2.

Fig. S7. HR-TEM image of NMC-nanofilm@MoS 2. Fig. S8. EDS sum spectra of NMC-nanofilm@MoS 2, Mo: S= 1: 1.98 (atomic ratio).

Fig. S9. a) CV curves of the MoS 2 powders and b) CV curves of the NMC nanofilms, for the first three cycles at a scan rate of 0.05 mvs -1 between 0.005 and 3.0 V. Fig. S10. a) Charge/discharge curves of the NMC-powder@MoS 2 for the first three cycles at a current density of 1.0 A g -1 between 0.005 and 3.0 V. b) Cycling behaviors of NMC-powder@MoS 2 at current density of 1.0 A g -1.

Fig. S11. HR-TEM image of NMC-powder@MoS 2 after 500 charge/discharge cycles at 1.0 A g 1. Fig. S12. a) EDS electron image and b-d) EDS Element mapping of NMCnanofilm@MoS 2 after 500 charge/discharge cycles at 1.0 A g 1.

Table S1. Comparison of specific capacity at different current densities for NMC- 1.0 300 732 [11] nanofilm@mos 2 electrode with those MoS 2 -based electrodes reported previously. Materials Current Cycle Capacity Ref. density (A g -1 ) number (mah g -1 ) NMC-nanofilm @MoS 2 1.0 2.0 500 2000 1190 908 This work 2D-Mesoporous-Carbon@MoS 2 10 300 400 [1] CNT/MoS 2 hybrids 5.0 1000 800 [2] Monolayer MoS 2 -graphene hybrid aerogels 2.0 200 780 [3] Carbon nanosheet @few-layer MoS 2 2.0 520 676 [4] Co 9 S 8 /MoS 2 yolk shell spheres 2.0 1200 300 [5] Few-layer MoS 2 / reduced graphene oxide hybrids 1.0 1100 966 [6] Carbon nanotubes @Low-crystallinity MoS 2 1.0 400 600 [7] MoS 2 -graphene composite films 1.0 400 980 [8] Nitrogen-doped graphene/mos 2 1.0 100 820 [9] Column-like MoS 2 superstructure 1.0 500 650 [10] Hierarchical porous carbon nanosheets@mos 2 Graphene sheets @MoS 2 nanosheets 1.0 400 900 [12] MoS 2 hollow nanospheres 0.5 100 1100 [13] 3D radially oriented MoS 2 0.5 500 1009.2 [14] nanospheres SWNT/MoS 2 composites 0.5 50 1215 [15] N-doped carbon nanoboxes@mos 2 0.4 200 952 [16] Mesoporous carbon@mos 2 0.4 500 1023 [17] Nitrogen-doped carbon@mos 2 0.15 300 1050 [18] microspheres Graphene/TiO 2 @C/few-layer MoS 2 0.1 100 802 [19] Nitrogen-doped graphene/mos 2 0.1 100 1169 [20] composites MoS 2 C nanocomposite 0.1 100 970 [21] S-doped graphene @MoS 2 0.1 300 1546 [22] MoS 2 /SiO 2 /graphene hybrids 0.1 100 1060 [23] 3D honeycomb-like structured MoS 2 0.1 50 1025 [24] Hollow fullerene-like MoS 2 0.1 100 1043.7 [25] nanocages Interconnected carbon nanotube 0.1 100 1893 [26]

@layered MoS 2 nanohybrid Core shell carbon@mos 2 nanotube 0.1 100 740 [27] sponges C 3 N 4 /N-RGO/MoS 2 hybrids 0.1 100 855 [28] References [1] Y. Fang, Y. Lv, F. Gong, A. A. Elzatahry, G. Zheng and D. Zhao, Adv. Mater., 2016, 28, 9385-9390. [2] Y. M. Chen, X. Y. Yu, Z. Li, U. Paik and X. W. Lou, Sci. Adv., 2016, 2, e1600021. [3] L. F. Jiang, B. H. Lin, X. M. Li, X. F. Song, H. Xia, L. Li and H. B. Zeng, ACS Appl. Mater. Interfaces, 2016, 8, 2680-2687. [4] J. W. Zhou, J. Qin, X. Zhang, C. S. Shi, E. Z. Liu, J. J. Li, N. Q. Zhao and C. N. He, ACS Nano, 2015, 9, 3837-3848. [5] H. Geng, J. Yang, Z. Dai, Y. Zhang, Y. Zheng, H. Yu, H. Wang, Z. Luo, Y. Guo, Y. Zhang, H. Fan, X. Wu, J. Zheng, Y. Yang, Q. Yan and H. Gu, Small, 2017, 13, 1603490. [6] Z. Yu, J. Ye, W. Chen, S. Xu and F. Huang, Carbon, 2017, 114, 125-133. [7] X. Li, G. Wu, J. Chen, M. Li, W. Li, T. Wang, B. Jiang, Y. He and L. Mai, Appl. Surf. Sci., 2017, 392, 297-304. [8] T. T. Shan, S. Xin, Y. You, H. P. Cong, S. H. Yu and A. Manthiram, Angew. Chem. Int. Ed., 2016, 55, 12783-12788. [9] C. Y. Zhao, X. Wang, J. H. Kong, J. M. Ang, P. S. Lee, Z. L. Liu and X. H. Lu, ACS Appl. Mater. Interfaces, 2016, 8, 2372-2379. [10] J. B. Ding, Y. Zhou, Y. G. Li, S. J. Guo and X. Q. Huang, Chem. Mater., 2016, 28, 2074-2080. [11] S. K. Park, J. Lee, S. Bong, B. Jang, K. D. Seong and Y. Z. Piao, ACS Appl. Mater. Interfaces, 2016, 8, 19456-19465. [12] Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L. Zhao, X. Du, Z. Du, P. Lv and K. Swierczek, ACS Nano, 2016, 10, 8526-8535. [13] Y. W. Wang, L. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2016, 55, 7423-7426. [14] S. P. Zhang, B. V. R. Chowdari, Z. Y. Wen, J. Jin and J. H. Yang, ACA Nano, 2015, 9, 12464-12472. [15] Y. Liu, X. He, D. Hanlon, A. Harvey, U. Khan, Y. Li and J. N. Coleman, ACS Nano, 2016, 10, 5980-5990. [16] X. Y. Yu, H. Hu, Y. Wang, H. Chen and X. W. Lou, Angew. Chem. Int. Ed., 2015, 54, 7395-7398. [17] H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang and C. Li, Adv. Mater., 2015, 27, 3687-3695. [18] D. Xie, X. H. Xia, Y. D. Wang, D. H. Wang, Y. Zhong, W. J. Tang, X. L. Wang and J. P.

Tu, Chem. Eur. J., 2016, 22, 11617-11623. [19] B. Chen, E. Liu, T. Cao, F. He, C. Shi, C. He, L. Ma, Q. Li, J. Li and N. Zhao, Nano Energy, 2017, 33, 247-256. [20] J. B. Ye, Z. T. Yu, W. X. Chen, Q. N. Chen, S. R. Xu and R. Liu, Carbon, 2016, 107, 711-722. [21] W. Y. Sun, Z. Hu, C. Y. Wang, Z. L. Tao, S. L. Chou, Y. M. Kang and H. K. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 22168-22174. [22] X. Wang, G. Li, M. H. Seo, F. M. Hassan, M. A. Hoque and Z. Chen, Adv. Energy Mater., 2015, 5, 1501106. [23] S. Han, Y. R. Zhao, Y. P. Tang, F. Z. Tan, Y. S. Huang, X. L. Feng and D. Q. Wu, Carbon, 2015, 81, 203-209. [24] J. Zhou, J. Qin, N. Zhao, C. Shi, E. Z. Liu, F. He, J. Li and C. He, J. Mater. Chem. A, 2016, 4, 8734-8741. [25] X. Zuo, K. Chang, J. Zhao, Z. Xie, H. Tang, B. Li and Z. Chang, J. Mater. Chem. A, 2016, 4, 51-58. [26] J. Y. Li, Y. Hou, X. F. Gao, D. S. Guan, Y. Y. Xie, J. H. Chen and C. Yuan, Nano Energy, 2015, 16, 10-18. [27] Y. Wang, Z. Ma, Y. Chen, M. Zou, M. Yousaf, Y. Yang, L. Yang, A. Cao and R. P. S. Han, Adv. Mater., 2016, 28, 10175-10181. [28] Y. Hou, J. Y. Li, Z. H. Wen, S. M. Cui, C. Yuan and J. H. Chen, Nano Energy, 2014, 8, 157-164.