OPTICAL TOMOGRAPHY SYSTEM FOR BUBBLES DETECTION IN LIQUID MEDIUM JULIZA BINTI JAMALUDIN

Similar documents
A SYSTEM DYNAMIC MODEL FOR DECISION SUPPORT SYSTEM IN LEAN CONSTRUCTION ALI CHEGENI

BORANG PENGESAHAN STATUS TESIS

ASSOCIATION BETWEEN ERGONOMIC RISK FACTORS AND MUSCULOSKELETAL PAIN AMONG FIXIE BIKE CYCLISTS MOHD SHAMSHEMUN BIN MOHAMED

BLADE DESIGN FOR WINDMILL GENERATOR MUHAMMMAD FITRI BIN MOHAMED HASSAN

Small Gas Component Detection using Ultrasonic Transmission-mode Tomography System

DEVELOPMENT OF AUTOGREASE ELECTRIC MOTOR S BEARING SYSTEM AHMAD FATIHY BIN MOHD SUBBRI

PEDESTRIAN UTILIZATION; ENHANCING FROM EXISTING : A STUDY CASE OF PANTAI CHENANG, LANGKAWI AND MELAKA HISTORICAL CITY, MELAKA

ANALYSIS OF STROKE DISTRIBUTION BETWEEN PROFESSIONAL, INTERMEDIATE AND NOVICE SQUASH PLAYERS DIYANA ZULAIKA BINTI ABDUL GHANI

Autonomous blimp control with reinforcement learning

PRESSURE DROP OF DIFFERENT FLOW PATTERN IN MULTIPHASE FLOW SYSTEM

The Study of Bubbly Gas-Water Flow Using

INTEGRATED FARE PAYMENT SYSTEM IN MULTI OPERATORS SINGLE MARKET PUBLIC BUS NETWORK SAFIZAHANIN BINTI MOKHTAR UNIVERSITI TEKNOLOGI MALAYSIA

DESIGN AND CONSTRUCTION OF A FUEL LEVEL INDICATOR WITH LOW LEVEL ALARM SYSTEM

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNIKAL MALAYSIA MELAKA LAPORAN PROJEK SARJANA MUDA (PSM2)

Level MEASUREMENT 1/2016

Faculty of Electrical & Electronic Engineering University Malaysia Pahang

The learning of complex whole body activity (Downhill skiing) by simulation

Signature : Supervisor Name : Mr Safarudin Gazali Herawan

SUPERVISOR DECLARATION

Rules and Discipline of the Playing Field of the Smart Car Race

BIOMECHANICAL LOADING OF INSTEP KICK FOR MALAYSIAN FOOTBALLER DAYANG KHAIRUNNISA BINTI ABANG KIPRAWI

THE EFFECT OF OVERSIZED LANE WIDTH AND LANE SHOULDER ON HEAVY VEHICLE PARKING ON RESIDENTIAL STREETS NURAIN BINTI MOHD SITH

RESIDENTIAL HOUSING DEVELOPMENT IN KURDISTAN REGION GOVERNMENT OF IRAQI FEDERAL

New power in production logging

DESIGN OF REMOTE CONTROL SYSTEM FOR FAR-INFRARED LASER INTERFEROMETER

VALIDATING AND DEVELOPING A NEW AGILITY TEST FOR KARATE

TEACHING VOCABULARY THROUGH FLY SWATTER GAME. (An Experimental Research at the Second Grade Students of SMP N 2 Baturraden in Academic Year 2013/2014)

Water Level Indicator Project

THE DYNAMICS OF CURRENT CIRCULATION AT NEARSHORE AND VICINITY OF ISLAND IN TERENGGANU WATERS NURUL RABITAH BINTI DAUD

EXPERIMENTAL RESULTS OF GUIDED WAVE TRAVEL TIME TOMOGRAPHY

Test Plans & Test Results

COMPARATIVE ANALYSIS OF STAGE AND PHASE SIGNAL CONTROL OF A SIGNALISED INTERSECTION AKINMADE OLUWATOSIN DANIEL. Faculty of civil Engineering

Figure 2: Principle of GPVS and ILIDS.

New Generation System M, leading the World in the Non-Invasive Measurement of Critical Real-Time Parameters.

INTERNAL SURFACE PIPE ROUGHNESS CLASSIFICATION USING HIGH FREQUENCY ACOUSTIC EVALUATION

Measurement of Bubble Velocity using Spatial Filter Velocimetry

OptonPro. High-power laser up to 7000 mw. Laser therapy natural healing with the power of light

THE EFFECTIVENESS OF THE CYLINDER BLOCK ON STILLING BASIN AS ENERGY DISSIPATION SYSTEM NOR FARAHIAH IBRAHIM. Report submitted in fulfillment of the

Application Note AN-107

MITIGATE GAS COMBUSTION IN CASE OF INTERNAL ARC

DESIGN AND FABRICATION OF FISH FEED PELLETIZING MACHINE AGADA, DAVID ACHILE MATRIC NO. 2004/18368EA

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications

AIR FLOW AROUND BODIES IN SUBSONIC WIND TUNNEL LIM FONG KIAW

Safety Manual OPTISWITCH series relay (DPDT)

FINE SCALE MOMENTUM ADJUSTMENT ACROSS A FOREST EDGE: A WIND TUNNEL EXPERIMENT

Optimization of Air compressor Motor speed for Reducing Power Consumption

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006

VOLTAGE SAG ANALYSIS AND DETERMINATION OF THE SOURCE OF DISTURBANCE IN INDUSTRIAL SECTOR FARALYNA AISYAH BINTI ABDUL RASID

Safety Manual VEGAVIB series 60

Scanning Laser Vibrometry Assessment of Sports Equipment

T EK-COR 1100A. Coriolis Mass Flowmeter. FLOW. Technology Solutions

UNIVERSITI PUTRA MALAYSIA EVALUATION OF ROAD PAVEMENT CRACKS IN MALAYSIA

Measuring Sound Speed in Gas Mixtures Using a Photoacoustic Generator

Coriolis Mass Flow Meter

DESIGN AND CONSTRUCTION OF A 50kg CAPACITY BOTTOM POUR LADLE FOR STEEL

Outline Chapter 7 Waves

EWGAE 2010 Vienna, 8th to 10th September

Drone SAR System PRESENTED BY GOTOLONDON

1 nrrnrnr 1 FOOTBALL SPEED ANALYSIS AND GAME ANALYSIS BY USING IMAGE PROCESSING FILZAH LINA BINTI MOHD SAFEIEE

Effect of noise in the performance of the transducers in an ultrasonic flow meter of natural gas

MATRIX-MG Series. Innovation with Integrity. Automated High-Performance Gas Analyzers FT-IR

An Overview of a Market Research Study on the Worldwide Coriolis Flowmeter Market

KAJIAN BIOLOGI PEMBIAKAN IKAN KELAH (Tor tambra) DI SUNGAI MEUREUBO, ACEH BARAT, INDONESIA BAIHAQI

sorting solutions osx separator series

GOLFER. The Golf Putting Robot

1 THE TEST FACILITY DISCO-C

Instrumentation & Data Acquisition Systems

ABS. Acoustic Bubble Spectrometer. Measurement of Bubble Size, Bubble Number & Void Fraction DYNAFLOW, INC. Research & Development in Applied Sciences

Design of a Microcontroller-Based Pitch Angle Controller for a Wind Powered Generator

A review of best practices for Selection, Installation, Operation and Maintenance of Gas meters for Flare Applications used for Managing facility

The Effects of Design and Operating Parameters on The Flooding of a Gas-Liquid Mechanically Agitated, Compartmented Column

DEVELOPMENT OF FAST CRAFT SEAKEEPING DESIGN METHODOLOGY NURULNATIS YA BTNTI AHMAD

The Effect of a Seven Week Exercise Program on Golf Swing Performance and Musculoskeletal Screening Scores

LABORATORY STUDY ON TSUNAMI REDUCTION EFFECT OF TEIZAN CANAL

Oceanographic Research With The LiquID Station

Sistem Tempahan Kompleks Sukan Universiti Teknologi Malaysia

Safety Manual. Process pressure transmitter IPT-1* 4 20 ma/hart. Process pressure transmitter IPT-1*

Water Treatment: Fundamentals and Practical Implications of Bubble Formation

The ATLAS Tile Calorimeter LVPS hardware upgrade and testing.

Chapter 10 Mr. Davis, M.Ed.

LFE OEM TCD - Thermal Conductivity Detector

Technical Data Sheet MF010-O-LC

Engineering World Health Youth EWH Design Projects That Matter

Flow in a shock tube

ACCIDENT ANALYSIS OF SOUTHERN EXPRESSWAY

Wave and particle models of physical phenomena

A i r c r a f t E l e c t r i c a l S y s t e m s ( 1 2 B )

APPLICATION OF SOUND PROPAGATION (IN THE PERSIAN GULF AND OMAN SEA)

Pressure Sensitive Paint (PSP) / Temperature Sensitive Paint (TSP) Part 1

Evaluation of linear and step gradient performance and retention time precision of the Agilent 1200 Series Rapid Resolution LC

Online DGA-monitoring of power transformers

AC : MEASUREMENT OF HYDROGEN IN HELIUM FLOW

Air Sensor. FCS Ex. Manual. AQ Elteknik AB

Mid-IR Lasers Market Review and Forecast 2010

Bonding Reliability Testing for Wafer Level Packaged MEMS Devices

Laser Spectrometers for Online Moisture Measurement in Natural Gas. Ken Soleyn GE M&C

SomnoSuite FAQ. Setup. Calibration 4. What are the calibration requirements for the SomnoSuite? Settings

Safety Manual VEGAVIB series 60

STOCK RETURN VOLATILITY AND COINTEGRATION OF U.S. AND ASIAN MARKETS IN ACCORDANCE WITH THE FINANCIAL CRISIS ( ) THESIS

Algorithm for Line Follower Robots to Follow Critical Paths with Minimum Number of Sensors

Transcription:

OPTICAL TOMOGRAPHY SYSTEM FOR BUBBLES DETECTION IN LIQUID MEDIUM JULIZA BINTI JAMALUDIN A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical Mechatronics and Automatic Control) Faculty of Electrical Engineering Universiti Teknologi Malaysia JANUARY 2013

iii Dedicated, in thankful appreciation for support, encouragement and understandings to my beloved mother, Noriah Binti Hj. Maamor, my husband Jemmy @ Mohd Jemmy Bin Mohd Rohani, siblings and in memory of my late father Haji Jamaludin Bin Zakaria.

iv ACKNOWLEDGEMENT First and. foremost, I would like to express my heartily gratitude to my supervisor, Prof. Dr. Ruzairi Bin Haji Abdul Rahim for the guidance and enthusiasm given throughout the progress of this projectmy appreciation also goes to my husband and my family who has been so tolerant and supports me all these years. Thanks for their encouragement, love and emotional supports that they had given to me.i would also like to thank our PROTOM members for their co-operations, guidance and helps in this project. Nevertheless, my great appreciation dedicated to my friends and those whom involved directly or indirectly with this project.

v ABSTRACT Process tomography is widely used in industrial, medical diagnostic, chemical engineering and many more because this method is suitable for multiphase flow imaging and measurement system. Optical tomography is one of the most popular methods that had been used in tomography area because it has high resolution compare to other methods of tomography system. The main goal of this project is to build a new design of optical tomography system for bubbles detector using couple charge device linear sensor and laser diode. In this report it describes the objectives, problems encountered, and scopes of the project. Detail s discussion about research, methodology and result for this project also carried out in this report. This project present a new orientation of sensor and detectors compared to the previous research in a way to obtain more precise and concise of image reconstruction. The characteristics and the advantages of sensor and detectors that had been used in optical tomography system for bubbles detection also discussed in detail based on the literature review.

vi ABSTRAK Tomografi adalah satu kaedah mendapatkan imej sesuatu bahagian dan ia sangat banyak digunakan dalam dunia industri, perubatan, kimia, dan dalam kaedah sains yang lain. Tomografi ini sesuai dalam melakukan pengukuran dan pengambilan imej bendalir yang mengalir dalam bentuk pelbagai fasa. Tomografi optik sangat sesuai digunakan dalam pengkajian imej kerana tomografi optik mempunyai resolusi yang tinggi berbanding dengan kaedah tomografi yang lain.tujuan utama projek ini adalah untuk mereka dan membina sistem tomografi optik bagi pengesan kehadiran buih-buih udara di dalam aliran bendalir yang berbeza-beza. Sistem ini menggunakan Couple Charge Device Linear Sensor dan diod laser. Di dalam tesis ini juga menerangkan tentang objektif, penemuan masalah, skop projek, metodologi dan keputusan akhir. Penerangan yang lebih mendalam dalam thesis ini akan turut dibincangkan. Projek ini juga akan memperkenalkan penyusunan bahagian sensor secara selari d imana sensor yang disusun secara selari dapat membantu dalam mendapatkan imej lebih menyeluruh. Ciri-ciri serta kelebihan penggunaan sensor ini turut dibincangkan.

vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES ii iii iv v vi vii x xi 1 INTRODUCTION 1 1.1 Background of The Project 1 1.2 Objectives of the Project 3 1.3 Problems Statement 4 1.4 Scope of the Project 4 1.5 Summary of Works 6 1.6 Expected Result 8 2 LITERATURE REVIEW 9 2.1 Tomography 9 2.2 Type of Tomography System 13

viii 2.2.1 Electrical Capacitance Tomography 13 2.2.2 Optical Tomography 14 2.2.2.1 Optical Coherence Tomography 14 2.2.2.2 Optical Projection Tomography 15 2.2.3 Ultrasonic Tomography System 16 2.3 Application of Tomography System 18 2.3.1 Magnetic Resonance in Medical Application 18 2.3.2 Doppler Ultrasonic Bubble Sensing 19 2.3.3 Optical Micro Bubble Sensor 20 2.3.4 Optical Micro Bubble Sensing Methods 22 2.3.5 Total Internal Reflectance (TIR) Methods 23 2.4 Infrared Laser Diode Sensor 24 2.5 Couple Charge Device Linear Sensor 25 3 METHODOLOGY 26 3.1 Introduction 26 3.2 Hardware Implementation 29 3.2.1 Infrared Laser Diode Sensor 30 3.2.2 Couple Charge Device Linear Sensor 31 3.2.3 Pipeline 34 3.2.4 Microcontroller PIC 16F877A 36 3.2.4.1 Comparing Clock Signal from Proteus Simulation versus Oscilloscope 43 4 RESULT AND DISCUSSIONS 47 4.1. Result for Hardware Development 47

ix 4.2. Total Cost for Hardware Development 48 4.3. Observation from Components Alignment 50 4.4. Experiments 51 4.4.1 Introduction 51 4.4.2 Experiment 1 52 4.4.2.1 Procedure 52 4.4.2.2 Result Experiment 1 55 4.4.2.3 Discussion Experiment 1 56 4.4.3 Experiment 2 60 4.4.3.1 Procedure 60 4.4.3.2 Result Experiment 2 62 4.4.3.3 Discussion Experiment 2 62 5 CONCLUSION AND FUTURE WORKS 64 5.1 Conclusion 64 5.2 Recommendation 65 REFERENCES 67

x LIST OF TABLES TABLE NO. TITLE PAGE 1.1 Gantt Chart for Semester 1 7 1.2 Gantt Chart for Semester 2 7 2.1 Table of Tomogram 12 4.1 Table above show the price for each unit components 49 that had been used 4.2 Table that listed the type of liquid medium 54 4.4 Analysis for the result when laser diodes off 57 4.5 Analysis for the result when laser diodes on 58 4.6 This table show the list of sizes of bubble that will be 61 measured its existence 4.7 This table show the result that Couple Charge Device Linear sensor that can sense the existence of bubble base on volumetric sizes. 62

xi LIST OF FIGURES FIGURE NO. TITLE PAGE 1.1 Flow Chart of Project 6 2.1 Basic block diagram for Process tomography system 10 2.2 Image Reconstruction 11 2.3 Basic Electrical Capacitance Tomography System 13 2.4 Component blocks of an OCT system 15 2.5 A sample is excited using light of an appropriate wavelength 16 2.6 Layout design of ultrasonic tomography 17 2.7 Path modeling of ultrasonic wave 17 2.8 Intermountain Medical Imaging 19 2.9 Ultrasound Transmitter and Receiver 19 2.10 Typical Ultrasound Bubble Sensing Setup 20 2.11 The Principle Design Of Optical Sensor 21 2.12 Image Processing 21 2.13 Optical Bubbles Sensing Schemes 22 2.14 Total Internal Reflectance Method 23 2.15 Infrared Region of the Electromagnetic Spectrum 24 3.1 Basic Block Diagram for Process Tomography 27

xii 3.2 Block Diagram for Optical Process Tomography for Bubbles 27 Detection in Liquid 3.3 The orientation of transmitter and receiver 28 3.4 Image Reconstruction 29 3.5 Coordination for laser diode at top view of pipeline 30 3.6 The coordination for laser diode and concave lens. 30 3.7 Laser Diode with battery 31 3.8 Variety Type of Lenses 31 3.9 Couple Charge Device (CCD) Linear Sensor 32 3.10 Dimension of Charge Couple Device 32 3.11 Pin Configuration 33 3.12 Schematic Diagram for CCD Linear Sensor 33 3.13 Couple Charge Device Circuit Board 34 3.14 Orientation of pipeline 35 3.15 Acrylic Pipeline 35 3.16 Clock Timing Chart for CCD 36 3.17 Schematic Diagram for CCD Linear Sensor 37 3.18 Real image for SK40C microcontroller board 37 3.19 Clock signal for θ1, θ 2, and RS 38 3.20 Flow chart for microcontroller main programming 39 3.21 SK40C Circuit Board connected with CCD Linear sensor 42 circuit board 3.22 Result get for phase 1 clock signal using (a) Proteus simulation 43 and (b) oscilloscope 3.23 Result get for phase 2 clock signal using (a) Proteus simulation 44 and (b) oscilloscope 3.24 Result get for RS clock signal using (a) Proteus simulation and 44 (b) oscilloscope 3.25 Result get for ROG clock signal using (a) Proteus simulation and (b) oscilloscope 45

xiii 3.26 Complete Circuit for receiver 46 4.1 Show the top view of final hardware 47 4.2 Show the side view of final hardware 47 4.3 The orientation of transmitter and receiver 50 4.4 Block Diagram of the System 52 4.5 Histogram graph for voltage measurement of different liquid 57 medium when laser diode off 4.6 Histogram graph for voltage measurement of different liquid 58 medium when laser diode on 4.7 This picture show the fluctuated signal when air pump filter 59 was switch on and produce continues bubbles 4.8 Block Diagram of System 60

CHAPTER 1 INTRODUCTION 1.1. Background of The Project Process tomography system is widely known in industrial and in medical area. The method that been used is the same but the particle that want to measured make the different of the system. Process tomography means obtaining the cross sectional image of process from either transmission or reflection data collected by illuminating the process from many different direction. Various method had been used in industry to measured objects in pipeline but nowadays industry more demand for system that can described the characteristic of component flow using methods that are non invasive, fast response, and high resolution and process tomography full fill all the criteria needed. There are varieties of process tomography such as capacitance tomography, resistance tomography, terahertz tomography, ultrasonic tomography and the most popular is optical tomography system.

2 This project is entitled Optical Process Tomography System for Bubbler Detector in Liquid Medium. The main objective of this project is to build a hardware that can detect the flow of gas bubble in liquid medium. Bubble detectors already invented and sell in market at high price. Most of the bubble detector that sold in market implement video camera as their receiver and transmitter and have complexity data transfer and data captured. This situation result for the high cost and high maintenance for this product. This project will represent a new invention of bubble detector using Couple Charge Device as receiver and laser diode as transmitter. The different in this project compare to the previous researchers is the orientation of sensor and detector. Usually, the concept of tomography system placed the sensor and detector at one straight line. But in this project it will introduce the new orientation of detectors and sensor. This project used principle of laser beam back projection and linear back projection algorithm for image reconstruction. This prototype also will be used for two different experiments which are to detect gas bubbles in transparent liquid (plain water) and gas bubbles or water droplet in opaque liquid (oil). Infrared laser diode will be used as a transmitter base on it high intensity source of light to detect gas bubbles or water droplet in opaque liquid. As a conclusion, this project will discuss more details on the objectives, scopes, and its methodology.this project also will prove the capability of infrared laser diode to detect movement of particle in opaque liquid and provide a low cost of bubble detectors with new design and orientation of sensor and detectors which can give more range of image captured.

3 1.2. Objective of The Project There are five objectives that this project needs to will achieve. The main objective for this project is to develop an optical tomography system for bubbles detection in liquid medium using couple charge device linear sensor as receiver and infrared laser diode as transmitter. The second objective for this project is to do an experiment using transparent liquid to detect air bubbles flowing up in the pipeline. Gas bubble will be inject at the bottom of the pipeline that having a flow of transparent liquid (plain water).this second objective also want to prove that air bubbles in transparent liquid is easily can be detected using optical tomography system. If the hardware success in experiment one, the second experiment will be carried out is to check air bubbles or water droplet in an opaque liquid such as oil. From previous study mention that particles moving inside opaque liquid is difficult to detect using optical tomography system unless the transmitter is infrared laser diode. The third objective here is to prove that infrared laser diode has high intensity of source of light.

4 1.3. Problems Statements According to the previous study, bubble detectors already being developed using couple charge device linear sensor as receiver and infrared used variety type of source of light as transmitter. Unfortunately from the study show that this bubbles detector only effective to detect gas bubbles in transparent liquid rather than opaque liquid. Optical process tomography easily can detect gas bubbles flow in transparent liquid but hard to detect gas bubbles or water droplets in opaque liquid such as oil. Oil considered too opaque for visible radiation. The range for visible light wavelength is in between 350 nanometres to 740 nanometres. This range is visible light range for human eyes. Some research show that infrared spectrum have the capability to detect water droplet or gas bubbles in oil. It is because it has high intensity of source of light. This project wants to prove that infrared spectrum is the best choice to apply as transmitter for bubble detector. There are many types of bubbles detector in today s market. Unfortunately the price for bubbles detector can reach until RM 20 000.00.This price including data acquisition system and its software. Most of the bubbles detector use video camera and complex circuit for data capture and data transfer signal. This project also aims to produce low cost bubble detector and the performance still can be accepted for industrial stage. 1.4. Scope of the Project This project consist of six man stage which are literature review, analyze and design hardware, build hardware, test hardware and start the experiments, analyze data for image reconstruction, and demonstration. All this stage is very important to achieve to make sure this project is success.

5 The main scope for this project is to analyze and design the hardware. Process tomography consists of four main parts where there are sensor, detector, and circuit for data transfer and computer software for image reconstruction. The design for this prototype is based on the basic block diagram for tomography system. The specification of each component also needs to analyze before implement to avoid any problems occurred in the future. After the design stage completed, the hardware will be developed based on the idea and the analysis of the design stage. The hardware is developing according to the schematic diagram that had been produce. In this stage all the criteria for all components must be full fill to make sure it can work properly. The orientation of the sensor is the most important part to check because this is the part for detects gas bubbles flow in the pipeline. Once the hardware is ready to be tested, first experiment will be take place to check the performance of the hardware. The first experiment is to check gas bubbles in plain water. Plain water will be flow through glass pipeline and gas bubbles will be injected at the bottom of the pipeline. The second experiment is to check the capability of infrared laser diode to detect gas bubbles in opaque liquid. In this case oil will be used for the experiment. Each of the data will be analyze for image reconstruction. Linear back projection algorithm is being chosen to apply for image reconstruction part because it is simple and easy to implement. The result will be display in the range of colour gradient to represent concentration of profile.

6 1.5. Summary of Works Implementation and works of the project are summarized into the flow chart as shown in the Figure 1.1 below. Figure 1.1: Flow Chart for Project

7 The Gantt Chart in Table 1.1 and Table 1.2 show the detail of the works of project that had been schedule for the first semester and incoming this second semester. Table 1.1: Gantt chart for semester 1 Table 1.2: Gantt chart for semester 2

8 1.6 Expected Result An optical tomography system based on couple charge device linear sensor and fan beam projection will be design to measure and detect the gas bubbles flow inside a cylindrical pipeline. This new prototype will present a unique orientation of sensors and detector compare to the currently available solid air system. The new design also expected to be more precise and have high sensitivity by implement infrared laser diode to detect particles flow in opaque liquid. This project hope can produce low cost of bubbles detectors.

67 REFERENCES 1. http://en.wikipedia.org/wiki/tomography 2. Abdul Rahim, R and K.S Chan. Optical Process Tomography System for Process Measurement Using Light Emitting Diode as a Light Source. Optical Engineering Vol. 43 No.5 : 2004 3. http://en.wikipedia.org/wiki/computed_tomography 4. http://en.wikipedia.org/wiki/spect 5. http://en.wikipedia.org/wiki/mri 6. http://en.wikipedia.org/wiki/electron_tomography 7. http://en.wikipedia.org/wiki/atom_probe 8. Adie bin Mohd Kafei, Sallehuddin Ibrahim, Mohd Amri Bin Mohd Yunus.Imaging Concentration Profile Using Laser Based Tomography. International Conference on Control, Instrumentation and Mechatronic s Engineering :2007 9. http://www.tomography.com/pdf/ecttechov.pdf 10. http://en.wikipedia.org/wiki/optical_coherence_tomography 11. J.M. Schmitt. Optical Coherence Tomography. IEEE Journal of Selected Topic In Quantum Electronic :1999 12. http://www.biophotonics.uni-hannover.com 13. http://spie.org 14. Ruzairi Abdul Rahim, Ng Wei Nyap, Mohd. Hafiz Fazalul Rahiman. Hardware Development of Ultrasonic Tomography for Composition Determination of Water and Oil Flow. Sensors & Transducers Journal, Vol.75, Issue 1:January 2007 15. http://www.webmd.com/a-to-z-guides/magnetic-resonance-imaging-mri 16. www.nelsonresearchinc.com/work-bubbles 17. http://www.hzdr.de

68 18. Y.MD Yunos, Abdul Rahim R, and R.G Green.2008. Initial Result on Measurement of Gas Volumetric Flow Rate in Gas /Liquid Mixtures Using Linear CCD Sensors. Jurnal Teknologi 19. http://science.hq.nasa.gov/kids/imagers/ems/infrared.html 20. http://patentstorm.us/patents 21. Mariani Idroas, Robert Garnett Green and M.Nasir Ibrahim. Optical Tomography System Using Couple Charge Device Linear Sensor. Journal of Electrical Engineering University Technology Malaysia: June 2006. 22. Williams,R.A and M.S Beck.. Process Tomography, Principles,Techniques and Application. Butterworth-Heinemam 23. W.Earnst.Creating A System to Analyze Air Bubbles in Liquid. Joanneum Research,National Instrument. 24. http://patentstorm.us/patents 25. Juliza Binti Jamaludin. Hardware Development Using Couple Charge Device and Linear Sensor Laser Beam Projection. Thesis for Bachelor Degree, Universiti Teknologi Malaysia, Skudai:2008 26. Iovine John. PIC Microcontroller Project Book. 2 nd Edition Mc Graw- Hill: 2000. 27. Mohd. Sazli Saad1 & Sallehuddin Ibrahim. Concentration and Velocity Measurement of Flowing Object Using Optical and Ultrasonic Tomography. International Conference on Control, Instrumentation and Mechatronics Engineering:2007