Available online at ScienceDirect. Procedia Engineering 112 (2015 )

Similar documents
Swing profiles in sport: An accelerometer analysis

Towards determining absolute velocity of freestyle swimming using 3-axis accelerometers

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

The validity of a rigid body model of a cricket ball-bat impact

Friction properties of the face of a hand-held tennis racket

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

A Feedback System for the Motor Learning of Skills in Golf

Characteristics of ball impact on curve shot in soccer

Kinematic Differences between Set- and Jump-Shot Motions in Basketball

Basketball free-throw rebound motions

ScienceDirect. Relating baseball seam height to carry distance

ScienceDirect. Rebounding strategies in basketball

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

Available online at ScienceDirect. The 2014 Conference of the International Sports Engineering Association

Kick precision and spin rate in drop and torpedo punts

Dynamic analysis and motion measurement of ski turns using inertial and force sensors

Development of an end-effector to simulate the foot to ball interaction of an instep kick in soccer

Procedia Engineering 00 2 (2010) (2009) Properties of friction during the impact between tennis racket surface and ball

Impact Points and Their Effect on Trajectory in Soccer

Available online at Procedia Engineering 00 (2011) Field Measurements of Softball Player Swing Speed

The purpose of this experiment is to find this acceleration for a puck moving on an inclined air table.

Available online at Procedia Engineering 200 (2010) (2009) In situ drag measurements of sports balls

Walking with coffee: when and why coffee spills

Inertial sensor, 3D and 2D assessment of stroke phases in freestyle swimming

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

Non-invasive, spatio-temporal gait analysis for sprint running using a single camera

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion

Ball impact dynamics of knuckling shot in soccer

Biomechanics and Models of Locomotion

ScienceDirect. Aerodynamic body position of the brakeman of a 2-man bobsleigh

Chapter 16. Waves-I Types of Waves

An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system

Estimating energy expenditure during front crawl swimming using accelerometers

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

A NEW GOLF-SWING ROBOT MODEL UTILIZING SHAFT ELASTICITY

Effects of seam and surface texture on tennis balls aerodynamics

by Michael Young Human Performance Consulting

Measuring the inertial properties of a tennis racket

Inter-analyst variability in swimming competition analysis

Effect of the Grip Angle on Off-Spin Bowling Performance Parameters, Analysed with a Smart Cricket Ball

Motion is a function of both direction and speed. The direction may

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

Available online at ScienceDirect. Brendan Kays a, Lloyd Smith a *

Simulation analysis of the influence of breathing on the performance in breaststroke

Accelerometers: An Underutilized Resource in Sports Monitoring

APPLICATION OF FILMING AND MOTION ANALYSIS IN MOVEMENT STUDIES. Xie Wei Sports Medicine and Research Center, Singapore Sports Council, Singapore

+ t1 t2 moment-time curves

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model

Measurement of court speed and bounce. Rod Cross, Physics Department, Sydney University 2nd July 2006

Instrumentation of a kayak paddle to investigate blade/water interactions

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.

Development of Fish type Robot based on the Analysis of Swimming Motion of Bluefin Tuna Comparison between Tuna-type Fin and Rectangular Fin -

Available online at Procedia Engineering 00 2 (2010) (2009)

Biomechanics Sample Problems

Load dynamics of joints in Nordic walking

The Effect of Driver Mass and Shaft Length on Initial Golf Ball Launch Conditions: A Designed Experimental Study

Artifacts Due to Filtering Mismatch in Drop Landing Moment Data

Measurement of dynamic comfort in cycling using wireless acceleration sensors

Available online at ScienceDirect. The 2014 Conference of the International Sports Engineering Association

Available online at Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models

KINEMATIC ANALYSIS OF SHOT PUT IN ELITE ATHLETES A CASE STUDY

Biomechanical Analysis of Body Movement During Skiing Over Bumps

Development of a Simulation Model for Swimming with Diving Fins

Available online at ScienceDirect. Procedia Engineering 112 (2015 ) 40 45

Putting Report Details: Key and Diagrams: This section provides a visual diagram of the. information is saved in the client s database

Project 1 Those amazing Red Sox!

The Kinematics Analysis of Wu Yibing's Tennis Forehand Technique Xin WEN, Ji-he ZHOU and Chuan-jia DU

ScienceDirect. Analysis of climbing postures and movements in sport climbing for realistic 3D climbing animations

Procedia Engineering Procedia Engineering 2 (2010)

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

Aerodynamic behavior of a discus

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

Biomechanics Every Golf Instructor Should Know

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS

A portable roller ski rolling resistance measurement system

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007

Sample Solution for Problem 1.a

*Author for Correspondence

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Humanoid Robots and biped locomotion. Contact: Egidio Falotico

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer:

Analysis of stroke technique using acceleration sensor IC in freestyle swimming

Available online at ScienceDirect. Energy Procedia 53 (2014 )

Modeling Pitch Trajectories in Fastpitch Softball

ABSTRACT PATTERNS USING 3D-DYNAMIC MODELING. Kaustav Nandy, Master of Science, Department of Electrical And Computer Engineering

Numerical study on the wrist action during the golf downswing

Available online at ScienceDirect. Procedia Engineering 126 (2015 )

Optimization of an off-road bicycle with four-bar linkage rear suspension


-Elastic strain energy (duty factor decreases at higher speeds). Higher forces act on feet. More tendon stretch. More energy stored in tendon.

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor.

GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF

INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING

Influence of Toe-Hang vs. Face-Balanced Putter Design on Golfer Applied Kinetics

ScienceDirect. Influence of clay properties on shoe-kinematics and friction during tennis movements

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Three Dimensional Biomechanical Analysis of the Drag in Penalty Corner Drag Flick Performance

Transcription:

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 11 (015 ) 13 18 7th Asia-Pacific Congress on Sports Technology, APCST 015 Determination of Spatiotemporal Parameters in Straight Drive Cricket Bat Swing using Accelerometer Sensors Ajay K. Sarkar a, David V. Thiel b, * a Rajshahi University of Engineering and Technology, Rajshahi 604,Bangladesh b Griffith University, Nathan, Qld 4111, Australia Abstract The position, velocity and timing of a cricket bat swing measured in practice and during a match can provide a coach with details of batting skill. A straight drive was analyzed using data from two triaxial accelerometers mounted on the rear face of a bat and a video. The spatiotemporal details from the video were used to match the accelerometer data using rigid body dynamics in the plane of the swing. Discriminating the drive from the backlift and the return, the key issues of the swing motion and bat posture was investigated. The start and the end of the drive can be readily determined from the accelerometer data, and from this, the maximum bat swing velocity was determined. The accelerometer technology can be deployed during practice and match batting for skill assessment. Crown 015 Copyright The Authors. 015 Published Published by Elsevier by Elsevier Ltd. This Ltd. is an open access article under the CC BY-NC-ND license Peer-review (http://creativecommons.org/licenses/by-nc-nd/4.0/). under responsibility of the School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University. Peer-review under responsibility of the the School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University Keywords:cricket; bat swing; accelerometer; video analysis; bat velocity; straight drive 1. Introduction Cricket batting, a striking sport, is a typical dynamic interceptive action composed of interactions between perception and execution [1]. A high level of accuracy in spatial and temporal motion of the bat and batter limbs before and at the instant of ball contact is critical []. Some researchers [3-6] have focused on the coordination and control, skill acquisition, the importance of vision and cue utilization. Few papers on bat swing analysis discus show swing kinetics influence shot power, shot direction, and the angle of elevation of the bat and what key signatures in * Corresponding author. Tel.: +617 3735719. E-mail address: d.thiel@griffith.edu.au 1877-7058 Crown Copyright 015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the the School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University doi:10.1016/j.proeng.015.07.0

14 Ajay K. Sarkar and David V. Thiel / Procedia Engineering 11 ( 015 ) 13 18 the bat swing for a particular shot (i. e. Block, Drive, Pull, Cut, Hook etc.) that might be used as an ideal batting template. This work endeavored to fill this gap beginning with the straight drive shot. Two issues addressed in this work were, firstly to judge whether tiny inertial sensors could identify the spatio-temporal parameters (validated by video). Secondly was to check the ability to document a straight drive shot. Because of the complex threedimensional acceleration profile, a decision matrix was formulated together with the video frames to match the video data and sensor data so that an ideal movement template might be formulated. At the start of an innings and often between strokes, batters commonly practice an ideal bat swing in the air (ball-free) for a particular stroke as imprinted in their sub conscious.. Experimental.1. Accelerometer procedure Two PCB inertial sensors [7] were taped to the middle part of the back of the bat blade as shown in [8]. The sensor axes, the bat axes, the drive direction and the plane of swing were the same as that shown in [9]. Thus the +X-axis refers to acceleration along the length of the bat, the +Y-axis is across the face of the bat and the +Z-axis is perpendicular to the face of the bat, that is, in the direction of a typical swing. The sensor axes +a z and +a y do not coincide with bat s +Z- and +Y-axes, rather they tilted by an angle, say δ (similar to θ as shown in [9]). This is because of the angle δ between the hitting surface of the bat face and back of the bat where the sensors was placed. The real bat acceleration along +Z-axis and +Y-axis is related to the sensor recorded acceleration (+a z and +a y ) by a factor of cosine (δ). For the X-axis accelerations, the real bat acceleration and sensor recorded acceleration (+a x ) is the same. The sensor data in the form of a x, a y and a z were collected during straight ball-free bat swings in the vertical plane (referred as ZX-plane with respect to bat s axes in the world reference frame as shown in [9]) by an amateur batter. Ethics approval ENG/16/10/HREC was obtained from Griffith University Ethics Committee... Video procedure The bat motion was simultaneously filmed using a video camera placed 5 m away from the batting arc at a height of 1.4 m from the ground so that the full trajectory of the bat swing was recorded. The camera was operated at frame rate of 100 f/s to minimize blurring. Each frame consists of two interlaced images which were separated by HD converter software to having a frame rate of 00 f/s in the swing. Image pixels were converted into two dimensional distance co-ordinates using software. The top left most corner of the video footage window was taken as reference for measurement. A scale factor was used to convert the coordinates of the two ends of the bat image at its different positions during the swing. This scale factor was calculated from the physical length of bat and the number of pixels forming the image bat in that particular direction. For instance, the total number of pixels forming the image bat length along one dimension (horizontal or vertical) were counted, then the scale factors (SF V for vertical and SF H for horizontal) for pixel-to-millimeter were calculated using the linear scaling factor: SF V Bat length ( mm), SF Pixels V H Bat length ( mm) Pixels H (1) Here Pixels V and Pixels H are the total number of pixels forming the bat length in the vertical and horizontal direction in the video footage. The real bat length was 850 mm. The bat length in pixels in the vertical and horizontal direction of a typical video frame was 83 and 98 respectively. The values of SF V and SF H were 3.00 mm and.85 mm respectively. Once the coordinates of two points in the video footage are known in terms of pixels, the length between those two points and the slope with respect to the vertical reference in the video was calculated by converting the pixels to millimeters using the scale factors. A LED (Light Emitting Diode) at the end of the bat and a point formed by reflective tape at the top of the bat were connected by a straight line to identify two points on the bat image. Using the equation for a rigid body the total acceleration ā for rotation was calculated as in [10]. In

Ajay K. Sarkar and David V. Thiel / Procedia Engineering 11 ( 015 ) 13 18 15 this study r' was taken from the top of the handle of the bat from the reference point for the video image measurements. The magnitude of l' was the length of the bat. In equation the last two parts are the tangential (a t ) and centripetal acceleration (a r ) of the bat due to rotation having magnitudes of αl' and ω l' respectively, where α was the magnitude of angular acceleration and ω was the magnitude of angular velocity. To estimate the overall total acceleration (A TX for X-axis, A TZ for Z-axis), the translational acceleration (τ x for X-axis, τ z for Z-axis) was taken into account along with the acceleration components stated in equation. d r d a g l ( l ) dt dt () Where g is the gravitational acceleration and t is the time. 3. Results 3.1. Video The two ends of the bat in each video frame were plotted beginning from the start of the back-lift. This provided the full bat trajectory in the entire swing range (see Fig. 1(a)). The temporal events of different phases of the swing, i.e. the back-lift, the drive (equivalent to downswing plus follow-through as in [11]) and the return (reverse drive till the bat touches the ground after the entire swing) were extracted at 0.05 s intervals using the video footage. The angle θ (Fig. 1(b)) and the angular velocity were calculated. The θ was measured from the direction of negative X- axis. Table 1 shows a decision chart used to categorize the acceleration components according to the bat position during the swing. X B and X T represent the abscissa (along Z-axis direction as shown in [9]) and Y B and Y T are the ordinates (along opposite to X-axis direction as in [9]) of two points ( B for bottom and T for top handle of the bat). The variables DX B, DY B, DX T and DY T indicate the differences between the adjacent abscissas and ordinates. 180 X position (m).6.4. 1.8 1.6 1.4 (degree) 160 140 10 100 80 60 40 0 1. 0.5 1 1.5.5 Z position (m) (a) 0 0 0.5 1 1.5.5 3 Time(s) Fig. 1. (a) Trajectories of the bat during entire swing. The upper red circles indicated the top and the lower blue circles indicate the bottom of the bat. The large green and two red circles at the bottom of the bat represent start of back-lift, drive (left red circle), and return (right red circle) respectively; (b)angle of rotation of the bat during entire swing derived from the video data. In Table 1 the zero for these variables (say DX B =0) means no change and one (say DX B =1) means there is a change from one frame to the next frame. A batter was instructed to swing the bat straight in the ZX-plane without twisting the bat or any bat movement in the Y-direction. The X-axis and Z- axis acceleration and their constituents shown in Fig. (a) and Fig. (b) were estimated using equation and the decision chart in Table 1 (the sign differed from that in equation is due to sensor s axis orientation and swing direction). In Fig. the drive phase is highlighted and discriminated from other phases by the colored shaded bar. (b)

16 Ajay K. Sarkar and David V. Thiel / Procedia Engineering 11 ( 015 ) 13 18 The rotational components of the acceleration (centripetal, a xr for X- and tangential, a zr for Z-axis) were calculated using the angular velocity ω and the angular acceleration α in Equation, where l' is the instantaneous radius of rotation for all the cases in Table 1 except for the last one (when DX B, DY B, DX T and DY T all equal 1) for which the physical length of the bat was used for l'. The translational accelerations (τ x, τ z ) for all cases except the last in the Table 1 were calculated as the second derivative of X B and Y B for A TZ and A TX respectively. The instantaneous radius of rotation was calculated from the data points from the bottom of the bat (X B, Y B ) using the geometry (Cross [1]). To improve the match between video and accelerometer data, the value of the instantaneous radius, R (used for l' in calculating a zr and a xr ) was adjusted to achieve the best fit to the data. Table 1.Decision codes and total acceleration according to the bat location and orientation from the video. DX B DY B DX T DY T A T 0 0 0 0 A TX=g x, A TZ=g z 0 0 0 1 * 0 0 1 0 * 0 0 1 1 A TX=g x-a xr, A TZ=g z-a zr 0 1 0 0 * 0 1 0 1 A TX=g x-τ x, A TZ=g z 0 1 1 0 * 0 1 1 1 A TX=g x-a xr- τ x, A TZ=g z-a zr- τ z 1 0 0 0 * 1 0 0 1 * 1 0 1 0 A TX=g x, A TZ=g z- τ z 1 0 1 1 A TX=g x-a xr- τ x, A TZ=g z-a zr- τ z 1 1 0 0 A TX=g x-a xr, A TZ=g z-a zr 1 1 0 1 A TX=g x-a xr- τ x, A TZ=g z-a zr- τ z 1 1 1 0 A TX=g x-a xr- τ x, A TZ=g z-a zr- τ z 1 1 1 1 A TX=g x-a xr- τ x, A TZ=g z-a zr- τ z *the situation is not possible or race inhabitants 3.. Accelerometer with Video The accelerometer data was converted to gravity units (g) after the sensors were manually calibrated. The data are shown in Fig. 3(a) and 3(b) together with video data for comparison. Using the Matlab toolbox named ADAT [13] a low pass filter with a cut off frequency of 5 Hz was used to smooth the curves. The X-axis acceleration was calculated from video data and obtained during the swing duration as shown in Fig. 3(a). The equivalent Z-axis data are shown in Fig. 3(b). It is evident from Fig. 3(a) and 3(b) that the video data matches the sensor data in magnitude and time with minor variations. Correlation coefficients 0.9 and 0.87 were found for Z-axis and X-axis accelerations respectively between video and sensor data. 4. Discussion The drive started at 1.0s (large single red dot at the bottom of the bat in the left part of Fig. 1(a) and at 1.0s in Fig. ) and ended at 1.5s (larger single red dot at the bottom of the bat trajectory in the right part of Fig. 1(a) or at 1.5s in Fig. ) with duration of 0.5s (shown by the shaded region in Fig. ). The back-lift started at 0.575s (large single green dot at the bottom of the bat trajectory in Fig. 1 and at 0.575s in Fig. ) and the duration was 0.45s.The duration of the drive is identified between the start of the linear negative slope of a x before going to a deep minimum to the end of the trough (shaded region in Fig. (a)). To match the video data, the radius of rotation (R) was varied manually to obtain the best match. The value of R determined for the entire swing was plotted together with a x, a z and gravity in X-axis (g x ) in Fig. 4.

Ajay K. Sarkar and David V. Thiel / Procedia Engineering 11 ( 015 ) 13 18 17 (a) (b) Fig..Components and total profiles obtained from video data: (a) X-axis acceleration; (b) Z-axis acceleration. The forward motion is shaded. 1 0 sensor video 3.5 3 sensor video -1.5 a x (g) - -3 a z (g) 1.5 1 0.5-4 0-5 -0.5-6 0 0.5 1 1.5.5 3 Time (s) -1-1.5 0 0.5 1 1.5.5 3 Time (s) Fig. 3. Acceleration profiles obtained from sensor and video data (a) X-axis accelerations; (b) Z-axis accelerations. The maximum peak of a z occurred at the maximum value of R in the drive and a x while the magnitude of g x was maximum and R was close to minimum as shown by the three dots in Fig. 4. These observations suggest that the maximum drive velocity in the swing direction occurs when the radius of rotation is maximum [14]. The batter has more control over the bat (by having more centripetal acceleration) when the bat is very close to batter (smaller R), and aligned vertically to take advantage of full gravity. Inspection of the static, rotational and translation components of the X-axis acceleration (g x, a xr, τ x ) and Z-axis acceleration (g z, a zr, τ z ) shown in Figs (a) and (b) revealed that during the drive and return phase the rotational component was dominant for both a x and a z. This finding validates the literature of swinging an implement [15]. The analytical model presented in that study assumed pure rotation of the batter/bat system about a vertical axis. The assumption proved acceptable as there was reasonable agreement between the model and the measured speeds. The pure rotation of the bat in the drive and return phase in Fig. is evident because the translational components (τ x, τ z ) are almost zero. In this case the a z rotational component (a zr ) was dominant, whereas before the drive a x translational component (τ x ) was dominant. The dominant τ x indicated the on guard posture of the bat. At the start of the drive both a z and a x have a translation component.

18 Ajay K. Sarkar and David V. Thiel / Procedia Engineering 11 ( 015 ) 13 18 5. Conclusion The feasibility of using a small, bat-mounted accelerometer was investigated to replace the bulky, expensive motion capture system. Work on ball free straight drives by an amateur batter and a 3-axis accelerometer was validated with video analysis by adjusting the radius of rotation. A good match was obtained (0.9 and 0.87 correlation coefficients). These acceleration components (rotational, translational and gravity) showed that the rotational component was dominant during the drive. The drive time duration, the posture of the bat at maximum gravity, and the instant of maximum swing velocity and its magnitude with respect to radius of rotation can easily be determined from accelerometer profiles. Further investigation is required on a larger number of subjects with different skill levels to generate concrete decisions on the effect of the radius of rotation on swing velocity and temporal events of straight drives. Future work is planned for other strokes by professional batters. References Fig. 4.Instantaneous radius of rotation R during swing plotted with the X- and Z-axis acceleration and the X-axis gravity acceleration. [1] R.A.Pinder, I.Renshaw, K. Davids, Information movement coupling in developing cricketers under changing ecological practice constraints, Human Movement Science8 (009) 468 479. [] D.L. Mann, N.Y. Ho, N.J.D. Souza, D.R. Watson, and S.J. Taylor, Is optimal vision required for the successful execution of an interceptive task?,human Movement Science6 (007) 343 356. [3] M.C. Stuelcken, M.R. Portus, B.R. Mason, Off-side front foot drives in men's high performance cricket, Sports Biomechanics4 (005) 17 35. [4] M.S. Taliep, U. Galal, C.L. Vaughan, The position of the head and centre of mass during the front foot off-drive in skilled and less-skilled cricket batsmen, Sports Biomechanics 6 (007) 345 360. [5] I. Renshaw, A.R.H. Oldham, K. Davids, T. Golds, Changing ecological constraints of practice alters coordination of dynamic interceptive actions, European Journal of Sport Science7 (007) 157 167. [6] D.L. Mann, B. Abernethy, D. Farrow, The resilience of natural interceptive actions to refractive blur, Human Movement Science9 (010)386 400. [7] D.A. James, N.P. Davey, L. Gourdeas, A modular integrated platform for microsensor applications, Proceedings of SPIE (003) 371-378. [8] A.K. Sarkar, D.A. James, A.W. Busch, D.V. Thiel, Cricket Bat Acceleration Profile from Sweet-Spot Impacts. Procedia Engineering 34 (01) 467 47. [9] A.K. Sarkar,D.A. James, A.W. Busch, D.V. Thiel,Triaxial accelerometer sensor trials for bat swing interpretation in cricket. Procedia Engineering 13 (011) 3 37. [10] K. Ohta, K. Umegaki, K. Murofushi, A. Komine, C. Miyaji, Dynamics-based force sensor using accelerometers-application of hammer throw training aid- (P37), The Engineering of Sport 7 (008) 07 13. [11] M.S. Taliep, U. Galal, C.L. Vaughan, The position of the head and centre of mass during the front foot off-drive in skilled and less-skilled cricket batsmen, Sports Biomechanics 6 (007) 345 360. [1] R. Cross, Mechanics of swinging a bat, American Journal of Physics 77 (009) 36 43. [13] D.A. James and A. Wixted, ADAT: A Matlab toolbox for handling time series athlete performance data, Procedia Engineering 13 (011) 451 456. [14] R. Stretch, F. Buys, E.D. Toit, G. Viljoen, Kinematics and kinetics of the drive off the front foot in cricket batting, Journal of Sports Sciences 16 (1998) 711 70. [15] K. Koenig, N.D. Mitchell, T.E. Hannigan, J.K. Clutter, The influence of moment of inertia on baseball/softball bat swing speed, Sports Engineering 7 (004) 105-117.