Journal of Geophysical Research Earth Surface. Supporting Information for. A mechanistic model of waterfall plunge pool erosion into bedrock

Similar documents
Using sea bed roughness as a wave energy dissipater

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018

Culvert Design for Low and High Gradient Streams in the Midwest. Dale Higgins, Hydrologist Chequamegon-Nicolet National Forest

Experimental Investigation of Clear-Water Local Scour at Pile Groups

PROPERTIES OF NEARSHORE CURRENTS

Exercise (3): Open Channel Flow Rapidly Varied Flow

Plan B Dam Breach Assessment

WMS 8.4 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS

Experiment (13): Flow channel

Fish Passage Culvert Assessment for Cahilty Creek Watershed FIA Project #

Structure and discharge test cases

NOVEMBER 2006 FLOOD DOWNSTREAM OF THE KATSE DAM STRUCTURE

Summary of HEC 18, Evaluating Scour at Bridges FHWA NHI Should really follow HEC 18, but this summary will get you the main points.

Youngs Creek Hydroelectric Project (FERC No. P 10359)

Assessment of Baseline Geomorphic Features at. Proposed Stream Crossings On The Proposed County Road 595. Marquette County, Michigan

CROSS-SHORE SEDIMENT PROCESSES

Fish Migration Barrier Severity and Steelhead Habitat Quality in the Malibu Creek Watershed

Annex E Bridge Pier Protection Plan

HOW FAST/FAR DOES FLY LINE FALL? N. Perkins of the University of Michigan, March 2003

FREE OVERFALL IN A HORIZONTAL SMOOTH RECTANGULAR CHANNEL

19.1 Problem: Maximum Discharge

2. RAPIDLY-VARIED FLOW (RVF) AUTUMN 2018

Nearshore Placed Mound Physical Model Experiment

Undertow - Zonation of Flow in Broken Wave Bores

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2018

A simplified design method for plunge pools scour control downstream of large dam spillways, and its applications

CEE 345, Part 2, Winter 2012, Final Exam Solutions (Open Channel Flow)

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012

AIR-WATER FLOW STRUCTURES AT AN ABRUPT DROP WITH SUPERCRITICAL FLOW

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Large-scale Field Test

Among the numerous reasons to develop an understanding of LST are:

MONROE BROTHERS LTD Customer Sigmaphi Project JLab Dipole Safety Relief MB / Description Chimney Vent Capacity & Pressure Drop 301 Issue 1

Analysis of dilatometer test in calibration chamber

Gas Gathering System Modeling The Pipeline Pressure Loss Match

PENNDRAIN.rep. HEC-RAS Version May 2005 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Experimental Investigation on Changes of Water Surface Profile with Gaussian Shaped Bottom and Side Roughness

TOP:001.3 U.S. Fish and Wildlife Service TECHNICAL OPERATING PROCEDURE

Stream Assessment Cut-block: For: Island Timberlands Limited Partnership, Cameron Operation

OFFICE OF STRUCTURES MANUAL FOR HYDROLOGIC AND HYDRAULIC DESIGN CHAPTER 11 APPENDIX B TIDEROUT 2 USERS MANUAL

HEC 26 Aquatic Organism Passage Design Manual Evolution & Application

Summer Steelhead Surveys North Fork Trinity River Trinity County, California

Assessing Mechanisms and Rates of Levee Erosion in the Sacramento-San Joaquin Delta

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

RBC flume. All it takes for environmental research. Contents. 1. Introduction. 2. The flumes of Eijkelkamp Agrisearch Equipment

Wind Regimes 1. 1 Wind Regimes

CONSTRUCTION OF LNG RECEIVING TERMINAL ON THE SAINT LAWRENCE TIDAL CURRENT CONDITIONS IN THE LEVIS AREA

STUDY PERFORMANCE REPORT

Stress and deformation of offshore piles under structural and wave loading

Modeling Turbulent Entrainment of Air at a Free Surface C.W. Hirt 5/24/12 Flow Science, Inc.

Packwood Hydroelectric Project Barrier Analysis December 12, 2006

IMPACT OF MAKING THE CREST OF WEIR MULTIFACETED ON DISCHARGE COEFFICIENT OF MORNING GLORY SPILLWAY

HISTORY OF CONSTRUCTION

1. In most economical rectangular section of a channel, depth is kept equal to

HYDRAULIC JUMP AND WEIR FLOW

Rock Ramp Design Guidelines. David Mooney MS Chris Holmquist-Johnson MS Drew Baird Ph.D. P.E. Kent Collins P.E.

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

HYDRODYNAMIC REGIMES AND STRUCTURES IN SLOPED WEIR BAFFLED CULVERTS AND THEIR INFLUENCE ON JUVENILE SALMON PASSAGE

WALL BOILING MODELING EXTENSION TOWARDS CRITICAL HEAT FLUX. ABSTRACT

Hydraulic Modeling to Aid TDG Abatement at Boundary and Cabinet Gorge Dams

Indiana LTAP Road Scholar Core Course #10 Culvert Drainage. Presented by Thomas T. Burke, Jr., PhD, PE Christopher B. Burke Engineering, Ltd.

How coriolis forces influence turbidity currents.

Design and Optimization of Weld Neck Flange for Pressure Vessel

ASSESMENT of ESTIMATION MODELS for SCOUR AROUND PIPELINES under IRREGULAR WAVES

EFFECT OF GEOMETRIC DISTORTION ON THE FLOW FIELD AND PERFORMANCE OF AN AXISYMMETRIC SUPERSONIC INTAKE

Khosla's theory. After studying a lot of dam failure constructed based on Bligh s theory, Khosla came out with the following;

Laser-Induced Bubbles in Glycerol-Water Mixtures

BC Ministry of Forests. March Fish Stream Crossing Guidebook. Forest Practices Code of British Columbia.

Youngs Creek Hydroelectric Project

Water surface slope extending up to 20 channel widths up and downstream of crossing.

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher

Aquatic Organism Passage at Road-Stream Crossings CHUCK KEEPORTS FOREST HYDROLOGIST ALLEGHENY NATIONAL FOREST WARREN, PENNSYLVANIA

UNIT-I SOIL EXPLORATION

Incompressible Flow over Airfoils

Pool Plunge: Linear Relationship between Depth and Pressure

1 PIPESYS Application

PROFILE OF SACRAMENTO RIVER, FREEPORT TO VERONA, CALIFORNIA,

Atmosphere, Ocean and Climate Dynamics Fall 2008

Signature redacted. Signature redacted. SPH Modeling of the Vertical Flow Structure and Turbulence in the Swash

Plane Turbulent Wall Jets in Limited Tailwater Depth

SELBY CREEK SILVERADO TRAIL CULVERT FISH PASSAGE ASSESSMENT

Plane Turbulent Wall Jets in Limited Tailwater Depth

Stream Assessment. Date. Data Collected by. Location. Name of Stream and River Basin. Stream Order. Streambank Materials. Streambank Vegetation

Laboratory studies of water column separation

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering

Undertow - Zonation of Flow in Broken Wave Bores

Habitat Conditions, Design Strategies,

Transactions on Ecology and the Environment vol 12, 1996 WIT Press, ISSN

STREAM SURVEY File form No..

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class

Chinook Salmon Spawning Study Russian River Fall 2005

Notes On Ice Pro and Basic Ice Climbing Technique. Jerry Heilman. 2015

Longshore sediment transport

A Review of the Bed Roughness Variable in MIKE 21 FLOW MODEL FM, Hydrodynamic (HD) and Sediment Transport (ST) modules

INF.41/Add.1/Rev.1. Economic Commission for Europe Inland Transport Committee

E. Agu, M. Kasperski Ruhr-University Bochum Department of Civil and Environmental Engineering Sciences

LARGE-SCALE MODEL TESTS ON SCOUR AROUND SLENDER MONOPILE UNDER LIVE-BED CONDITIONS

Démocratisation des modèles hydrauliques CFD 3D : plusieurs exemples réalisés avec ANSYS CFX

Transcription:

Journal of Geophysical Research Earth Surface Supporting Information for A mechanistic model of waterfall plunge pool erosion into bedrock Joel S. Scheingross 1 * and Michael P. Lamb 1 1 ivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA Now at Helmholtz Centre Potsdam, German Research Center for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany * To whom correspondence should be addressed (joel.scheingross@gfz-potsdam.de) Contents of this file Tables S1 and S2 Additional MATLAB codes to calculate plunge-pool erosion attached separately example_pool_erosion.m: Example script to run plunge-pool erosion codes pool_erosion_simple_fct.m: Main script to calculate plunge-pool erosion pool_erosion_fct_public.m: Sub-script embedded within the plungepool erosion code Qsc_pool_public.m: Sub-script embedded within the plunge-pool erosion code c_from_qs_fct.m: Sub-script embedded within the plunge-pool erosion code readme.txt: Additional information and disclaimer for codes Introduction: This supporting information contains two tables and MATLAB codes. Table S1 contains data for natural waterfall plunge pools surveyed by Scheingross and Lamb [2016], including data from the Fox Creek reference site, which we use to estimate maximum possible plunge-pool radii and to evaluate assumptions that particles can detach from fluid flow to impact exposed bedrock in plunge pools. Table S2 contains parameters used in the Scheingross et al. [2017] plunge-pool erosion experiments which we use to calculate model predictions of plunge pool erosion. The MATLAB codes can be used to calculate plunge-pool vertical and lateral erosion following the theory developed here. Table S1. Compilation of natural plunge pools (attached) Table S2. Summary of parameters for waterfall plunge-pool erosion experiments (attached) References Scheingross, J. S., and M. P. Lamb (2016), Sediment transport through waterfall plunge pools, J. Geophys. Res. Earth Surf., 121. Scheingross, J. S.,. Y. Lo, and M. P. Lamb (2017), Self-formed waterfall plunge pools in homogeneous rock, Geophysical Research Letters, 44(1), 200-208, doi:10.1002/2016gl071730. 1

Table S1. Compilation of natural plunge pools a / b lat ( ) / Colby Canyon 2.3 0.9 2.5 0.15 1.03 0.09 9.8 2.6 0.06 0.15 395326 3792758 sed Colby Canyon 0.9 0.65 2 0.15 0.64 0.06 11.3 7.1 0.07 0.06 395467 3792855 sed Colby Canyon 1.9 0.4 0.6 0.15 0.64 0.06 6.9 3.2 0.13 0.24 395467 3792855 sed Colby Canyon 1.8 0.5 1.2 0.15 0.64 0.06 8.7 3.3 0.09 0.17 395463 3792879 sed Colby Canyon 1.5 1 3.2 0.15 0.63 0.06 17.6 4.0 0.06 0.09 395568 3792957 sed Colby Canyon 2.3 1 1.9 0.15 0.63 0.06 17.6 2.6 0.07 0.17 395568 3792957 sed Little Santa Anita 1.0 0.1 8.5 0.1 1.43 0.13 0.8 4.0 0.18 0.03 403678 3782944 sed Little Santa Anita 2.9 0.5 4 0.1 1.43 0.13 3.9 1.4 0.19 0.14 403681 3782993? Little Santa Anita 0.7 0.3 3.5 0.1 1.44 0.13 2.3 5.8 0.18 0.03 403700 3782879 br Little Santa Anita 2.0 1.5 8 0.1 1.45 0.13 11.5 2.0 0.19 0.07 403707 3782848? Little Santa Anita 0.8 1.5 5.5 0.1 1.45 0.13 11.5 5.3 0.19 0.03 403704 3782825? Little Santa Anita 1.3 1.5 1.25 0.1 1.45 0.13 11.5 3.2 0.08 0.10 403704 3782825? Little Santa Anita 0.6 0.24 1 0.1 1.46 0.13 1.8 7.0 0.09 0.05 403707 3782759 br Little Santa Anita 0.7 0.1 4 0.1 1.46 0.13 0.8 6.2 0.19 0.03 403707 3782759 sed Little Santa Anita 1.9 2 5.2 0.1 1.46 0.13 15.2 2.1 0.20 0.08 403719 3782712? Little Santa Anita 1.0 0.3 4.5 0.1 1.46 0.13 2.3 4.1 0.20 0.04 403675 3782679 sed Little Santa Anita 1.5 1.5 0.75 0.1 1.46 0.13 11.4 2.7 0.11 0.17 403675 3782679? Little Santa Anita 2.1 0.1 1.5 0.1 1.48 0.13 0.7 1.9 0.08 0.16 403693 3782583 sed Little Santa Anita 2.0 0.1 4.5 0.1 1.49 0.13 0.7 2.0 0.19 0.09 403699 3782457 sed Little Santa Anita 2.0 2 2.7 0.1 1.50 0.14 14.8 2.0 0.19 0.11 403722 3782369? Little Santa Anita 1.5 1 3 0.1 1.51 0.14 7.4 2.7 0.18 0.08 403870 3782433? Little Santa Anita 2.3 4 4.7 0.1 1.52 0.14 29.3 1.8 0.18 0.09 403910 3782489? Rubio Canyon 1.9 0.25 23 0.1 0.88 0.08 3.1 2.1 0.12 0.03 397227 3785825 sed Rubio Canyon 1.6 0.2 6.5 0.1 0.88 0.08 2.5 2.6 0.13 0.05 397226 3785809 sed Rubio Canyon 1.5 0.1 4.6 0.1 0.89 0.08 1.3 2.7 0.14 0.06 397223 3787590 sed Rubio Canyon 2.3 0.1 6.2 0.1 0.89 0.08 1.3 1.8 0.13 0.08 397178 3785777 sed Rubio Canyon 2.0 0.1 7.5 0.1 0.89 0.08 1.3 2.0 0.13 0.06 397172 3785769 sed Rubio Canyon 1.4 0.1 8.5 0.1 0.89 0.08 1.2 3.0 0.13 0.04 397152 3785725 sed aisy Canyon 0.8 0.3 1.5 0.11 0.29 0.03 11.4 5.5 0.08 0.06 395633 3792897 sed aisy Canyon 1.3 0.65 2.3 0.11 0.29 0.03 24.6 3.3 0.07 0.09 395615 3792880 sed

Table S1. Compilation of natural plunge pools (continued) / b lat ( ) / aisy Canyon 1.0 0.5 1.1 0.11 0.30 0.03 18.7 4.6 0.09 0.09 395604 3792828 sed aisy Canyon 1.0 0.1 1.5 0.11 0.31 0.03 3.5 4.4 0.08 0.08 395581 3792807 sed aisy Canyon 1.0 0.1 4 0.11 0.33 0.03 3.3 4.4 0.07 0.05 395508 3792735 sed Arroyo Seco 7.3 0.5 12 0.21 4.73 0.43 1.2 1.2 0.19 0.20 393659 3791349 sed Arroyo Seco 4.0 3 3 0.21 4.81 0.43 6.9 2.1 0.06 0.22 393855 3791207? Arroyo Seco 4.4 2 5 0.21 4.81 0.43 4.6 1.9 0.04 0.19 393855 3791207? Arroyo Seco 3.0 0.3 1.21 0.21 4.90 0.44 0.7 2.8 0.10 0.29 394148 3790733 sed Arroyo Seco 3.0 0.5 1.45 0.21 4.90 0.44 1.1 2.8 0.07 0.22 394085 3790816 sed Arroyo Seco 3.0 0.3 2.18 0.21 4.89 0.44 0.7 2.8 0.06 0.19 394042 3790846 sed Arroyo Seco 3.0 3 2.32 0.21 4.89 0.44 6.8 2.8 0.06 0.19 394048 3790853? Arroyo Seco 3.0 0.1 1.23 0.21 4.88 0.44 0.2 2.8 0.09 0.28 394066 3790866 sed Fall Creek 1.9 2 10.5 0.025 0.26 0.02 83.9 0.5 0.20 0.06 392877 3796770? Fall Creek 3.7 0.7 12 0.025 0.26 0.02 29.4 0.3 0.20 0.12 392885 3796758 sed Fall Creek 3.9 0.55 7 0.025 0.26 0.02 23.1 0.3 0.23 0.16 392890 3796746 sed Fall Creek 3.9 0.5 23 0.025 0.26 0.02 21.0 0.3 0.16 0.09 392895 3796728 sed Classic Canyon 1.5 0.4 1.5 0.05 0.07 0.01 67.1 1.3 0.09 0.13 392893 3796323 sed Classic Canyon 2.3 0.8 6.5 0.05 0.07 0.01 127.9 0.9 0.07 0.10 392684 3796459 sed Classic Canyon 2.3 0.5 9 0.05 0.07 0.01 80.0 0.9 0.07 0.08 392675 3796474 sed Classic Canyon 1.4 1.3 2 0.05 0.07 0.01 207.9 1.5 0.07 0.10 392675 3796474 br Classic Canyon 1.6 0.3 2 0.05 0.07 0.01 48.0 1.2 0.07 0.12 392675 3796474 sed Fox Creek 2.3 1 3 0.03 7.27 0.65 1.5 0.5 0.94 0.10 391431 3797425 br Fox Creek 3.5 0.75 13 0.03 7.27 0.65 1.1 0.3 0.83 0.09 391467 3797391 sed Fox Creek 3.5 1 3.5 0.03 7.27 0.65 1.5 0.3 1.00 0.16 391482 3797388 sed Fox Creek 3.4 0.85 7.5 0.03 7.27 0.65 1.3 0.4 0.89 0.11 391495 3797399 sed Fox Creek 2.8 0.7 3.5 0.03 7.27 0.65 1.1 0.4 1.07 0.13 391501 3797420 sed Fox Creek 2.0 0.5 27 0.03 7.27 0.65 0.8 0.6 0.71 0.04 391565 3797461 sed Fox Creek 3.0 2 6 0.03 7.27 0.65 3.1 0.4 0.95 0.11 391582 3797472? Fox Creek 3.5 0.7 3.5 0.03 7.27 0.65 1.1 0.3 1.07 0.16 391611 3797487 sed Fox Creek b 3.5 0.5 16 0.03 7.86 0.71 0.7 0.3 0.81 0.08 391524 3796514 sed Millard Canyon 2.9 0.3 17 0.05 2.00 0.18 1.7 0.7 0.30 0.07 394833 3787038 sed

Table S1. Compilation of natural plunge pools (continued) / b lat ( ) / Wolfskill Canyon 5.0 1.2 9 0.17 0.55 0.05 24.5 1.4 0.07 0.17 430738 3781897 sed ry Meadow Ck 6.2 3.9 2.66 0.1 3.66 0.33 11.8 0.6 0.06 0.38 366139 3984275? ry Meadow Ck 4.8 2 3.74 0.1 3.66 0.33 6.1 0.8 0.32 0.25 366143 3984266? ry Meadow Ck 9.2 5 5.34 0.1 3.66 0.33 15.2 0.4 0.34 0.40 366146 3984250 sed ry Meadow Ck 5.9 4.62 3.89 0.1 3.66 0.33 14.0 0.7 0.32 0.30 366155 3984237 sed ry Meadow Ck 4.9 2.21 1.24 0.1 3.66 0.33 6.7 0.8 0.09 0.44 366159 3984225 br ry Meadow Ck 7.4 2.53 2.85 0.1 3.66 0.33 7.7 0.5 0.20 0.44 366166 3984219? ry Meadow Ck 4.5 2.55 2.36 0.1 3.66 0.33 7.7 0.9 0.07 0.29 366175 3984206 sed ry Meadow Ck 4.4 1.35 11 0.1 3.66 0.33 4.1 0.9 0.32 0.13 366191 3984207? ry Meadow Ck 6.4 3.57 13.99 0.1 3.66 0.33 10.8 0.6 0.32 0.17 366246 3984191? Kapaa Stream 4.0 3 6 0.15 111.73 10.06 0.3 1.5 1.40 0.15 464537 2444738? SF Wailua 40.0 10 49 0.1 412.33 37.11 0.3 0.1 2.34 0.46 460951 2436662? Huleia Stream 22.3 7.5 5.6 0.2 177.76 16.00 0.5 0.4 1.22 0.81 456876 2427414? Kaulaula Valley 3.7 0.2 39 0.3 2.31 0.21 1.0 3.3 0.08 0.05 425986 2442220? Hanakapiai Stream 22.0 4.7 120 0.3 27.19 2.45 1.9 0.5 0.11 0.08 438743 2453474? a ata for natural plunge pools compiled by Scheingross and Lamb [2016]. depth ( ) refers to the vertical distance from the downstream plunge-pool lip to the pool (i.e., = z lip - z sed ) which was typically sediment but for some pools the bedrock was exposed (as indicated in the "pool " column where "sed" and "br" indicate a sediment versus bedrock, respectively, and "?" indicates no distinction was made). Waterfalls were surveyed at low flow when pools were often partially filled with sediment, and pool depths should be greater when the bedrock is exposed and vertical erosion occurs. The radial jet half width at b lat (δ ) was calculated with Eq. (29), and we interpret the generally large values of /b lat (δ ) to suggest our assumption that falling grains impact the pool without significant deflection from radial jets likely holds in natural pools. Similarly, b lat ( ) represents the ability of particles within the radial wall jet to detach from the flow and impact the pool wall, and was calculated assuming a drag coefficient of 1, where l e_fold is an e- folding length scale for particles slowing due to drag. is the ratio of maximum plunge-pool radius (r max, set by the sediment transport capacity of the pool) relative to the critical radius needed for caprock failure via undercutting ( ). Additional variables: - estimated median grain size in the river reach adjacent to the plunge pool, - field-measured plunge-pool radius, - field-measured waterfall drop height, - two-year recurrence interval water discharge. b This waterfall occurs downstream of the Fox Creek knickzone and was not included in the Fox Creek reference site calculations.

Table S2. Summary of parameters for waterfall plunge-pool erosion experiments a Experiment I Water discharge (l/s) Waterfall drop height Grain diameter (mm) Sediment flux (g/s) Flow depth at brink (cm) Upstream flume slope (deg) ownstream flume slope (deg) Total run time (hr) Exp1 0.58 0.42 2.4 9 1.3 2 10 113 Exp2 0.58 0.53 7 9-45 1.3 2 14.5 51 a All experiments used a commercially available, closed-cell polyurethane foam bedrock simulant (http://www.precisionboard.com), with 0.32 MPa tensile strength. In both experiments the upstream flume is 9.6 cm wide, 2.06 m long, is tilted to ~2 degrees, and has a fixed bed of 2.4 mm sub-rounded quartz grains. The downstream flume is 24 cm wide and 80 cm long, and in which we fixed a polyurethane foam block (~18 cm wide by 27 cm long).