Supporting Information

Similar documents
Supporting Information

Supporting Information

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Electronic Supplementary Information

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Electronic Supplementary Information (ESI)

Supporting Information

Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Supplementary Material

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Electronic Supplementary Information

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Supporting Information

Supplementary Information

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supporting Information

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supporting information

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Supplementary Information

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Electronic Supplementary Information (ESI)

noble-metal-free hetero-structural photocatalyst for efficient H 2

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supporting information

Supporting Information

Supporting Information

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Supporting Information

Supporting Information for

Supporting Information

Supporting Information

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Supporting Information for

state asymmetric supercapacitors

Supporting Information

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

Supporting Information

Electronic Supplementary Information

Electronic Supplementary Information

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Supporting Information

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Supplementary Information

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Electronic Supplementary Information (ESI)

Supporting Information

Electronic Supporting Information (ESI)

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supplementary Information

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Electronic Supplementary Information

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Supporting Information

Supporting Information

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Curriculum Vitae. Yu (Will) Wang

Highly enhanced performance of spongy graphene as oil sorbent

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Supporting Information

Electronic Supplementary Information for

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Electronic Supplementary Information (ESI)

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Supporting Information. Highly simple and rapid synthesis of ultrathin gold nanowires with

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

Supporting information

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Zhaohuai Li, Qiu He, Xu Xu,* Yan Zhao, Xiaowei Liu, Cheng Zhou, Dong Ai, Lixue Xia, and Liqiang Mai*

Complex Systems and Applications

3D CNTs/Graphene-S-Al 3 Ni 2 Cathodes for High-Sulfur-Loading and Long-Life Lithium Sulfur Batteries

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

A tribute to Guosen Yan

Supplementary Information

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

Flexible Nb 4 N 5 /rgo Electrode for High-Performance Solid State Supercapacitors. Huazhong University of Science and Technology Wuhan , China

Identification of a Large Amount of Excess Fe in Superconducting Single- Layer FeSe/SrTiO 3 Films

Imaging Spectrometer. Technologies and Applications PROCEEDINGS OF SPIE. International Symposium. Detection and Imaging on Photoelectronic

An Ultrathin Flexible 2D Membrane Based on Single-Walled Nanotube MoS 2 Hybrid Film for High-Performance Solar Steam Generation

Supporting information. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation

Supporting Information. High-performance nonfullerene polymer solar cells based on fluorinated wide

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

Transcription:

Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Supporting Information Phytic acid-derivative transition metal phosphides encapsulated in N,P-codoped carbon: an efficicent and durabale hydrogen evolution electrocatalyst in a wide ph range Zonghua Pu, Ibrahim Saana Amiinu, Chengtian Zhang, Min Wang, Zongkui Kou, and Shichun Mu, * State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China * E-mail: msc@whut.edu.cn Fig. S1. Molecular structure of PA. 1

Fig. S2. TEM images of N,P-codoped carbon. 2

Fig. S3. (a-c) The high-resolution XPS spectra of the NPC. (d) Raman spectrum of NPC. 3

Fig. S4. (a) Low- and (b) high-magnification SEM images of FeP NPs. (c) XRD pattern of FeP NPs. 4

Fig. S5. (a) XRD pattern of CoP NPs@NPC. (b) Low- and (c) high-magnification TEM images of CoP NPs@NPC. (d) HRTEM image of CoP NPs@NPC. 5

Fig. S6. (a) XRD pattern of Ni 2 P NPs@NPC. (b) Low- and (c) high-magnification TEM images of Ni 2 P NPs@NPC. (d) HRTEM image of Ni 2 P NPs@NPC. 6

Fig. S7. (a) XPS survey spectrum of CoP NPs@NPC. (b-e) The high-resolution XPS spectra of the CoP NPs@NPC. (f) Raman spectrum of CoP NPs@NPC. 7

Fig. S8. (a) XPS survey spectrum of Ni 2 P NPs@NPC. (b-e) The high-resolution XPS spectra of the Ni 2 P NPs@NPC. (f) Raman spectrum of Ni 2 P NPs@NPC. 8

Fig. S9. Polarization curves for FeP NPs and FeP NPs-900. 9

Fig. S10. Size distribution of (a) FeP in FeP NPs@NPC and (b) FeP NPs. 10

Fig. S11. Calculation of exchange current density of FeP NPs@NPC by applying extrapolation method to the Tafel plot. 11

Fig. S12. XRD pattern of FeP NPs@NPC after durability test. 12

Fig. S13 Time-dependent current density curve for FeP NPs@NPC under static overpotentials of (a) 400 mv in 1.0 M PBS and (b) 220 mv in 1.0 M PBS (without ir-correction). 13

Fig. S14. Nyquist plots of FeP NPs@NPC and FeP NPs in 0.5 M H 2 SO 4. 14

Fig. S15. Time-dependent current density curve for FeP NPs@NPC and FeP NPs. 15

Table S1. Comparison of HER performance in acidic media for FeP NPs@NPC with TMPs-based HER electrocatalyst. Catalyst Electrolyte Loading amount (mg cm -2 ) Current density (j, ma cm -2 ) η at the corresponding j (mv) Exchange current density (ma cm -2 ) Ref. FeP NPs@NC 0.5 M H 2 SO 4 1.4 2 83 10 130 20 153 0.126 This work FeP nanosheets 0.5 M H 2 SO 4 0.28 10 250-1 FeP GS 0.5 M H 2 SO 4 0.28 10 123 0.12 2 FeP NWs/rGO 0.5 M H 2 SO 4 0.204 10 107-3 FeP NPs/Ti 0.5 M H 2 SO 4 1.5 10 116-4 FeP NRs 0.5 M H 2 SO 4 0.2 10 120 0.062 5 FeP 2 /C NPs 0.5 M H 2 SO 4 0.425 10 220 1.75*10-3 6 Fe x Co 1 x P 0.5 M H 2 SO 4 2.2 10 37-7 Fe-CoP/Ti 0.5 M H 2 SO 4 1.03 10 78-8 Ni 2 P hollow NPs 0.5 M H 2 SO 4 1.0 10 117 0.033 9 Ni 12 P 5 0.5 M H 2 SO 4 1.0 10 137-10 Ni 2 P NPs 1.0 MH 2 SO 4 0.38 20 140-11 CoP/CNT 0.5 M H 2 SO 4 0.285 10 122 0.288 12 CoP hollow NPs 0.5 M H 2 SO 4 2.0 20 80 0.14 13 CoP nanotubes 0.5 M H 2 SO 4 0.2 10 129-14 Cu 3 P NWs/Cu 0.5 M H 2 SO 4 15.2 10 143-15 MoP NPs 0.5 M H 2 SO 4 0.36 10 125 0.086 16 Bulk MoP 0.5 M H 2 SO 4 0.86 10 135 0.034 17 WP NPs@NC 0.5 M H 2 SO 4 2.0 10 102 0.25 18 WP 2 submicroparticles 0.5 M H 2 SO 4 0.5 10 161 0.017 19 WP 2 nanorods 0.5 M H 2 SO 4 0.285 10 148 0.013 20 WP NAs/CC 0.5 M H 2 SO 4 2.0 10 130 0.29 21 16

Table S2. Comparison of HER performance in basic media for FeP NPs@NPC with other non-precious metal HER electrocatalyst. Catalyst Electrolyte Current density (j, ma cm -2 ) Overpotential at the corresponding j (mv) FeP NPs@NPC 1.0 M KOH 10 214 This work FeP NPs/CC 1.0 M KOH 10 218 22 FeP/Fe foil 1.0 M KOH 10 194 23 FeP 2 /Fe foil 1.0 M KOH 10 189 24 FeP NTs/CC 1.0 M KOH 10 120 24 CoP/CC 1.0 M KOH 10 209 25 Co@NC 1.0 M KOH 10 210 26 Co@NG 1.0 M KOH 10 337 27 Co-NRCNTs 1.0 M KOH 10 370 28 Co-S/FTO 1.0 M KOH 1 480 29 WP 2 submicroparticles 1.0 M KOH 10 153 19 WP 2 nanorods 1.0 M KOH 10 225 30 WP NAs/CC 1.0 M KOH 10 150 21 bulk Mo 2 B 1.0 M KOH 1 250 31 Ni 1.0 M KOH 10 400 31 Ni wire 1.0 M NaOH 10 350 32 Ni-Mo alloy/ti foil 1.0 M NaOH 10 80 32 Ni 3 S 2 /Ni 1.0 M KOH 10 123 33 Ni-Co-S nanosheets 1.0 M KOH 10 140 34 Zn 0.76 Co 0.24 S/CoS 2 1.0 M KOH 20 238 35 Amorphous Ni-B 1.0 M KOH 20 125 36 Ref. 17

Table S3. Comparison of HER performance in neutral media for FeP NPs@NPC with other non-precious metal HER electrocatalyst. Catalyst Electrolyte/pH Current density (j, ma cm -2 ) Overpotential at the corresponding j (mv) 2 163 FeP NPs@NPC 1.0 M PBS This work 10 386 FeP/Ti 1.0 M PBS 10 200 4 FeP/CC 1.0 M PBS 10 202 22 FeP NPs/CC 1.0 M PBS 20 230 36 WP 2 nanorods 1.0 M PBS 2 172 30 Co-NRCNTs 0.1 M PBS 2 380 28 bulk Mo 2 C ph=7 1 200 31 bulk Mo 2 B ph=7 1 250 31 H 2 -CoCat/FTO 0.5 M KPi 2 385 38 Co-S/FTO 1.0 M PBS 2 83 29 CuMoS 4 crystals ph=7 2 210 39 Ni 3 S 2 /Ni 1.0 M PBS 10 220 33 Ref. 18

References 1 Y. Xu, R. Wu, J. Zhang, Y. Shi and B. Zhang, Chem. Commun., 2013, 49, 6656 6658. 2 Z. Zhang, B. Lu, J. Hao, W. Yang and J. Tang, Chem. Commun., 2014, 50, 11554 11557. 3 Y. Yan, L. Thia, B. Xia, X. Ge, Z. Liu, A. Fisher and X. Wang, Adv. Sci., 2015, 2, 1500120. 4 Z. Pu, C. Tang and Y. Luo, Int. J. Hydrogen Energy, 2015, 40, 5092 5098. 5 H. Du, S. Gu, R. Liu and C. Li, Int. J. Hydrogen Energy, 2015, 40 14272 14278. 6 J. Jiang, C. Wang, J. Zhang, W. Wang, X. Zhou, B. Pan, K. Tang, J. Zuo and Q.Yang, J. Mater. Chem. A, 2015, 3, 499 503. 7 C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A. M. Asiri, X. Sun, J. Wang and L. Chen, Nano Lett., 2016, 16, 6617 6621. 8 C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri and X. Sun, Adv. Mater., 2017, DOI: 10.1002/adma.201602441. 9 E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, J. Am. Chem. Soc., 2013, 135, 9267 9270. 10 Z. Huang, Z. Chen, Z. Chen, C. Lv, H. Meng and C. Zhang, ACS Nano, 2014, 8, 8121 8129. 11 L. Feng, H. Vrubel, M. Bensimon and X. Hu, Phys. Chem. Chem. Phys., 2014, 16, 5917 5921. 12 Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri and X. Sun, Angew. Chem. Inter. Ed., 2014, 53, 6828 6832. 13 E. Popczun, C. Read, C.Roske, N. Lewis and R. Schaak, Angew. Chem. Int. Ed., 2014, 53 5531 5534. 14 H. Du, Q. Liu, N. Cheng, A. M. Asiri, X. Sun and C. Li, J. Mater. Chem. A, 2014, 2, 14812 14816. 15 J. Tian, Q. Liu, N. Cheng, A. M. Asiri and X. Sun, Angew. Chem. Int. Ed., 2014, 53, 9577 9581. 16 Z. Xing, Q. Liu, A. M. Asiri and X. Sun, Adv. Mater., 2014, 27, 5702 5707. 17 P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J. Y. Wang, K. H. Lim and X. Wang, Energy Environ. Sci., 2014, 7, 2624 2631. 18 Z. Pu, Y. Xue, I. S. Amiinu, Z. Tu, X. Liu, W. Li and S. Mu, J. Mater. Chem. A 2016, 4, 15327 19

15332. 19 Z. Xing, Q. Liu, A. M. Asiri and X. Sun, ACS Catal., 2015, 5, 145 149. 20 H. Du, S. Gu, R. Liu and C. Li, J. Power. Sources, 2015, 278, 540 545. 21 Z. Pu, Q. Liu, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 21874 21879. 22 Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Catal., 2014, 4, 4065 4069. 23 C. Y. Son, I. H. Kwak, Y. R. Lim and J. Park, Chem. Commun., 2016, 52, 2819-2822. 24 Y. Yan, B. Xia, X. Ge, Z. Liu, A. Fisher and X. Wang, Chem. Eur. J., 2015, 21, 18062-18067. 25 J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587 7590. 26 J. Wang, D. Gao, G. Wang, S. Miao, H. Wu, J. Li and X. Bao, J Mater Chem A, 2014, 2, 20067 20074. 27 H. Fei, Y. Yang, Z. Peng, G. Ruan, Q. Zhong, L. Li, E. L. G. Samue and J. M. Tour, ACS Appl. Mater. Interfaces, 2015, 7, 8083 8087. 28 X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova and T. Asefa, Angew. Chem. Int. Ed., 2014, 126, 4461 4465. 29 Y. Sun, L. Chong, D. Grauer, J. Yano, J. Long, P. Yang, C. Chang, J. Am. Chem. Soc., 2013, 135, 17699 17702. 30 H. Du, S. Gu, R. Liu and C. Li, J. Power. Sources, 2015, 278, 540 545. 31 H. Vrubel and X. Hu, Angew. Chem. Int. Ed., 2012, 124, 12875 12878. 32 J. McKone, B. Sadtler, C. Werlang, N. S. Lewis and H. Gray, ACS Catal., 2013, 3, 166 169. 33 C. Tang, Z Pu, Q. Liu, A. M. Asiri, Y. Luo and X. Sun, Int. J. Hydrogen Energy, 2015, 40, 4727 4732. 34 T. Liu, X. Sun, A. M. Asiri and Y. He, Int. J. Hydrogen Energy, 2016, 41, 7264 7629. 35 Y. Liang, Q. Liu, Y. Luo, X. Sun, Y. He and A. M. Asiri, Electrochim. Acta, 2016, 190, 360 364. 36 Y. Liang, X. Sun, A. M. Asiri and Y. He, Nanotechnol., 2016, 27, 12LT01. 37 J. Tian, Q. Liu, Y. Liang, Z. Xing, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 20579 20584. 20

38 S. Cobo, J. Heidkamp, P. A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave and V. Artero, Nat. Mater., 2012, 11, 802 807. 39 P. Tran, M. Nguyen, S. Pramana, A. Bhattacharjee, S. Chiam, J. Fize, M. Field, V. Artero, L. Wong, J. Loo and J. Barber, Energy Environ. Sci., 2012, 5, 8912 8916. 21