Supporting Information. Highly simple and rapid synthesis of ultrathin gold nanowires with

Similar documents
Supporting Information

Supplementary Material

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Supporting Information

Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Supporting Information

Supplementary Information

noble-metal-free hetero-structural photocatalyst for efficient H 2

Supporting information

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Supporting Information

state asymmetric supercapacitors

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Electronic Supplementary Information (ESI)

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Electronic Supplementary Information

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Supporting Information

Supporting Information for

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Supplementary Information

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Supporting Information for

Supporting Information

Electronic Supplementary Information (ESI)

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Electronic Supplementary Information

Electronic Supplementary Information

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supporting Information

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Supporting Information

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Supplementary Information

Supplementary Information

Supporting Information

Supporting information

Supporting Information

Electronic Supplementary Information

Supporting Information

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Supporting Information

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Supporting Information

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Electronic Supplementary Information

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Electronic Supplementary Information (ESI)

Supporting Information

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Electronic Supporting Information (ESI)

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Supporting Information

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Supporting Information

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Supporting Information

Highly enhanced performance of spongy graphene as oil sorbent

Supporting Information

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

Supplementary Information

Supporting information

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

Electronic Supplementary Information for

Electronic Supplementary Information

Curriculum Vitae. Yu (Will) Wang

3D CNTs/Graphene-S-Al 3 Ni 2 Cathodes for High-Sulfur-Loading and Long-Life Lithium Sulfur Batteries

Imaging Spectrometer. Technologies and Applications PROCEEDINGS OF SPIE. International Symposium. Detection and Imaging on Photoelectronic

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

Zhaohuai Li, Qiu He, Xu Xu,* Yan Zhao, Xiaowei Liu, Cheng Zhou, Dong Ai, Lixue Xia, and Liqiang Mai*

Supporting Information

Applied Medical Parasitology By LI CHAO PIN, ZHANG JIN SHUN ZHU BIAN SUN XIN

small

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Supporting Information. High-performance nonfullerene polymer solar cells based on fluorinated wide

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Electronic Supplementary Information (ESI)

2012 International Conference on Future Energy, Environment, and Materials

Complex Systems and Applications

RSC Advances.

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Highly simple and rapid synthesis of ultrathin gold nanowires with (111)-dominant facets and enhanced electrocatalytic properties Xian Jiang, a,b Xiaoyu Qiu, a Gengtao Fu, a Jingze Sun, a Zhenna Huang, a Dongmei Sun, a Lin Xu,* a Jiancheng Zhou * b and Yawen Tang * a a Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. Email: xulin001@njnu.edu.cn; njuxulin@gmail.com and tangyawen@njnu.edu.cn b School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China. E-mail: jczhou@seu.edu.cn

Experimental Materials and reagents α-naphthol (C 10 H 8 O) was purchased from Aladdin (Shanghai, China). Chloroauric acid (HAuCl 4 ) was supplied by Shanghai Dibo Chemical Technology Co., Ltd. (Shanghai, China). Ethanol (C 2 H 5 OH) was provided by Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Deionized water was used throughout the experiments. All chemicals were of analytical reagent grade and used as received without further purification. Characterizations Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were performed on a JEOL JEM-2100F transmission electron microscopy operated at an accelerating voltage of 200 kv. Scanning electron microscopy (SEM) images and energy-dispersive X-ray (EDX) spectrum were acquired on a Hitachi S5500 SEM. X-ray diffraction (XRD) patterns of the samples were determined by a Model D/max-rC X- ray diffractometer using Cu Kα radiation source (λ=1.5406 Å) and operating at 40 kv and 100 ma. X-ray photoelectron spectroscopy (XPS) measurements were carried out with a Thermo VG Scientific ESCALAB 250 spectrometer with a monochromatic Al Kα X-ray source. The binding energy was calibrated by means of the C1s peak energy of 284.6 ev. Thermogravimetric analyses (TGA) of the samples were conducted on a Perkin-Elmer thermal analysis system at a heating rate of 10 C min -1 under oxygen atmosphere.

Fig. S1 EDX spectrum of the resultant Au nanowires. Fig. S2 XPS spectrum of Au 4f region for the obtained Au nanowires.

Fig. S3 (a and b) Digital photos showing the large-scale synthesis of Au nanowires from a single batch, and (c and d) TEM images of the Au nanowires from large-scale synthesis. Fig. S4 XRD pattern of the product collected upon the mixing of HAuCl 4 and α-naphthol solutions, suggesting the rapid formation of metallic Au.

Fig. S5 SEM images of the obtained Au nanowire-arrayed microspheres synthesized at different reaction temperatures. (a) 20 o C, (b) 40 o C, (c) 20 o C, and (d) magnified SEM image showing the arrayed structure of the Au microsphere. Fig. S6 TGA curves of the as-prepared Au nanowire-arrayed microspheres and Au nanowires.

Fig. S7 XPS spectra of the Au nanowire-arrayed microspheres and final Au nanowires. (a) survey spectra of the two samples and (b) Au 4f region for the Au nanowire-arrayed microspheres. Fig. S8 SEM images of the re-assembled Au nanowire arrays obtained by dispersing disordered Au nanowires in α-naphthol ethanol solution.

Fig. S9 (a) TEM image, (b) corresponding size distribution and (c) XRD pattern of the Au nanoparticles synthesized according to the literature. 1,2 Fig. S10 Chronoamperometric measurements of four catalysts at 0.5 V in O 2 -saturated 0.1 M KOH.

Fig. S11 ORR LSV curves of the catalysts recorded in O 2 -saturated 0.1 M HClO 4 solution.

Table S1 Comparison of the synthetic method of the Au nanowires in this work with other Au nanowires reported before. Number Solvent T (a) / o C t (b) l (c) / nm d (d) / nm Ref 1 water + ethanol 60 ~1 min >1000 4.6 this work 2 hexane R.T. (e) >48 h - ~1.0 3-1100 30 min 280-740 80-125 4 triisopropylsilane R.T. 4-5 h >1000 1.6 5 oleylamine + trichloromethane 35 >5 days 10-3500 1.6 6 water + toluene R.T. >1 h >1000 5 7 toluene 55 8 h >1000 2 8 water 37 48 h >1000 13.1 9 water R.T. 24 h 100000 15 10 water R.T. >12 h 10000 31.5 11 oleylamine + oleic acid 80 5 h >1000 3 or 9 12 hexane 60 24-100 h 2000 1.8 13 water 30 1-72 h >1000 45.3 14 water + dichloromethane R.T. 72 h ~500 ~20 15 water + toluene R.T. >24 h <500 <5.0 16 water 25 - <1000 30 17 water + toluene R.T. 1 h <1000 5 18 water 180 & 25 8 h >1000 22 19 n-hexane 30 >3 h - 2 20 hexane + oleylamine R.T. >36 h 500 2 21 water R.T. 30 min 650 15 22 water R.T. 1 h 1000 40-65 23 water + ethanol R.T. >2 h >1000 6 24 water R.T. >52 h >1000 28-47 25 toluene or benzene 55 8 h >1000 1.8 26 n-butanol + water R.T. 10 day >1000 13 27 hexane R.T. 4-5 h 2000 1.8 28 water 90 30 min >1000 200 29 oleylamine H 2 O 4 days ~4000 1.6 30 toluene R.T. a few days ~1000 2 31 water R.T. >2 h 1000 50 32 tetrahydrofuran R.T. 24 h 3000-6000 50 33 water 30 20 h - 10 34 water 30 >12 h >1000 30-80 (a) T = Temperature, (b) t = time, (c) l = length; (d) d = diameter; (e) R.T. = Room Temperature. 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Table S2 Comparison of the ORR activity of the as-prepared Au nanowires with other Au-based catalysts reported before. Num ber Catalysts E onset /V E 1/2 /V Electrolyte Loadings (mg cm 2 ) 1 Au nanowires 1.06 0.881 0.1 M KOH 0.1019 2 AuPd NCs/rGO 0.92 0.86 0.1 M KOH 0.0849 36 3 PtAu SLAs 0.903 0.801 0.1 M KOH 0.0708 37 4 AuIr/C - 0.774 0.1 M NaOH 0.2548 38 5 AuPt NDs 0.98 0.87 0.1 M KOH 0.0849 39 6 Au-Ni(OH) 2 -NC/GCE 0.907 ~0.65 0.1 M KOH - 40 7 AuPd@PdAu-PEI 0.982 0.869 0.1 M NaOH 0.1019 41 8 AuPC-1 0.95 0.83 0.1 M KOH 0.0808 42 9 Au@TiO 2 0.92 ~0.80 0.1 M NaOH - 43 10 AuNDs-GO ~0.85 0.61 0.1 M KOH 0.04 44 11 Au-aerogel-CN x ~0.92 ~0.855 0.5 M KOH 0.13 45 12 AuCNS-30% 0.96 0.85 0.1 M KOH 0.0808 46 13 Au(51k-18k)/rGO ~0.714-0.1 M KOH - 47 14 PO 4 -CDs-6/Au 0.998 ~0.80 0.1 M KOH 0.01414 48 15 Au/rGO 0.864 ~0.764 0.1 M KOH 0.1 49 16 RGO/AuNPs 0.8413-0.1 M KOH - 50 17 s-graphene/pypbi/au 1.6 0.874 ~0.664 0.1 M KOH 0.0053 51 Ref. this work

References 1. J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan and P. Mulvaney, Adv. Funct. Mater., 2004, 14, 571-579. 2. C. M. Sánchez-Sánchez, F. J. Vidal-Iglesias, J. Solla-Gullón, V. Montiel, A. Aldaz, J. M. Feliu and E. Herrero, Electrochim. Acta, 2010, 55, 8252-8257. 3. H. Cui, C. Hong, A. Ying, X. Yang and S. Ren, ACS Nano, 2013, 7, 7805-7811. 4. M. Jung, H. Noh, Y. J. Doh, W. Song, Y. Chong, M. S. Choi, Y. Yoo, K. Seo, N. Kim and B. C. Woo, ACS Nano, 2011, 5, 2271-2276. 5. A. Sanchez-Iglesias, B. Rivas-Murias, M. Grzelczak, J. Perez-Juste, L. M. Liz-Marzan, F. Rivadulla and M. A. Correa-Duarte, Nano Lett., 2012, 12, 6066-6070. 6. N. Pazospérez, D. Baranov, S. Irsen, M. Hilgendorff, L. M. Lizmarzán and M. Giersig, Langmuir, 2008, 24, 9855-9860. 7. G. Ramanath, J. D'ArcyGall, T. Maddanimath, A. V. Ellis, P. G. Ganesan, R. Goswami, A. Kumar and K. Vijayamohanan, Langmuir, 2004, 20, 5583-5587. 8. C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura and T. Kawai, Langmuir, 2013, 29, 1669-1675. 9. H. Yang, M. Du, T. Odoom-Wubah, J. Wang, D. Sun, J. Huang and Q. Li, J. Chem. Technol. Biotechnol., 2014, 89, 1410-1418. 10. C. Zhu, H. C. Peng, J. Zeng, J. Liu, Z. Gu and Y. Xia, J. Am. Chem. Soc., 2012, 134, 20234-20237. 11. F. Kim, K. Sohn, J. Wu and J. Huang, J. Am. Chem. Soc., 2008, 130, 14442-14443. 12. C. Wang, Y. Hu, C. M. Lieber and S. Sun, J. Am. Chem. Soc., 2008, 130, 8902-8903. 13. X. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel and Y. Xia, J. Am. Chem. Soc., 2008, 130, 8900-8901. 14. M. Wang, T. Kong, X. Jing, Y.-K. Hung, D. Sun, L. Lin, Y. Zheng, J. Huang and Q. Li, Ind. Eng. Chem. Res., 2012, 51, 16651-16659. 15. G. Lu, C. Li and G. Shi, Chem. Mater., 2007, 19, 3433-3440. 16. B. Li, B. Jiang, H. Tang and Z. Lin, Chem. Sci., 2015, 6, 6349-6354. 17. X. Gao, F. Lu, B. Dong, Y. Liu, Y. Gao and L. Zheng, Chem. Commun., 2015, 51, 843-846. 18. T. Maddanimath, A. Kumar, J. D'Arcy-Gall, P. G. Ganesan, K. Vijayamohanan and G. Ramanath, Chem. Commun., 2005, 1435-1437. 19. T. Guo, G. Yu, Y. Zhang, H. Xiang, F. Chang and C.-J. Zhong, J. Phys. Chem. C, 2017, 121, 3108-3116. 20. A. Roy, S. Kundu, K. Muller, A. Rosenauer, S. Singh, P. Pant, M. P. Gururajan, P. Kumar, J. Weissmuller, A. K. Singh and N. Ravishankar, Nano Lett., 2014, 14, 4859-4866. 21. W. Zhu, Y. J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson and S. Sun, J. Am. Chem. Soc., 2014, 136, 16132-16135. 22. S. Kundu, J. Mater. Chem. C, 2013, 1, 831-842. 23. H. Li, Y.-J. Li, L.-L. Sun and X.-L. Zhao, Electrochim. Acta, 2013, 108, 74-78. 24. J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, S. T. Wei, C. L. Gan, H. Zhang and H. Chen, ACS Nano, 2013, 7, 2733-2740.

25. G. D. Sulka, A. Brzózka and L. Liu, Electrochim. Acta, 2011, 56, 4972-4979. 26. Y. Imura, H. Tanuma, H. Sugimoto, R. Ito, S. Hojo, H. Endo, C. Morita and T. Kawai, Chem. Commun., 2011, 47, 6380-6382. 27. M.-H. Wang, Y.-J. Li, Z.-X. Xie, C. Liu and E. S. Yeung, Mater. Chem. Phys., 2010, 119, 153-157. 28. H. Feng, Y. Yang, Y. You, G. Li, J. Guo, T. Yu, Z. Shen, T. Wu and B. Xing, Chem. Commun., 2009, 1984-1986. 29. T. Wang, X. Hu, J. Wang and S. Dong, Talanta, 2008, 75, 455-460. 30. Z. Huo, C. K. Tsung, W. Huang, X. Zhang and P. Yang, Nano Lett., 2008, 8, 2041-2044. 31. A. Halder and N. Ravishankar, Adv. Mater., 2007, 19, 1854-1858. 32. C.-L. Xu, L. Zhang, H.-L. Zhang and H.-L. Li, Appl. Surf. Sci., 2005, 252, 1182-1186. 33. J. U. Kim, S. H. Cha, K. Shin, J. Y. Jho and J. C. Lee, Adv. Mater., 2004, 16, 459-464. 34. S. K. Das, A. R. Das and A. K. Guha, Small, 2010, 6, 1012-1021. 35. R. Dou and B. Derby, Scr. Mater., 2008, 59, 151-154. 36. X. X. Lin, X. F. Zhang, A. J. Wang, K. M. Fang, J. Yuan and J. J. Feng, J. Colloid Interface Sci., 2017, 499, 128-137. 37. J.-J. Feng, L.-L. He, R. Fang, Q.-L. Wang, J. Yuan and A.-J. Wang, J. Power Sources, 2016, 330, 140-148. 38. L. Yuan, Z. Yan, L. Jiang, E. Wang, S. Wang and G. Sun, J. Energy Chem., 2016, 25, 805-810. 39. X. Weng, Y. Liu, K.-K. Wang, J.-J. Feng, J. Yuan, A.-J. Wang and Q.-Q. Xu, Int. J. Hydrogen Energy, 2016, 41, 18193-18202. 40. P. Kanagavalli, R. Sudha, S. Boopathi and S. S. Kumar, Electrochem. Commun., 2017, 82, 61-65. 41. Q. Xue, G. Xu, R. Mao, H. Liu, J. Zeng, J. Jiang and Y. Chen, J. Energ. Chem., 2017, 25, 805-810. 42. L. Wang, Z. Tang, W. Yan, H. Yang, Q. Wang and S. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 20635-20641. 43. L. Guo, K. Liang, K. Marcus, Z. Li, L. Zhou, P. D. Mani, H. Chen, C. Shen, Y. Dong, L. Zhai, K. R. Coffey, N. Orlovskaya, Y. H. Sohn and Y. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 34970-34977. 44. X.-R. Li, X.-L. Li, M.-C. Xu, J.-J. Xu and H.-Y. Chen, J. Mater. Chem. A, 2014, 2, 1697-1703. 45. M. K. Kundu, T. Bhowmik and S. Barman, J. Mater. Chem. A, 2015, 3, 23120-23135. 46. Q. Wang, L. Wang, Z. Tang, F. Wang, W. Yan, H. Yang, W. Zhou, L. Li, X. Kang and S. Chen, Nanoscale, 2016, 8, 6629-6635. 47. S.-S. Kim, Y.-R. Kim, T. D. Chung and B.-H. Sohn, Adv. Funct. Mater., 2014, 24, 2764-2771. 48. J. Liu, S. Zhao, C. Li, M. Yang, Y. Yang, Y. Liu, Y. Lifshitz, S.-T. Lee and Z. Kang, Adv. Energy Mater., 2016, 6, 1502039-1502048. 49. H. Yin, H. Tang, D. Wang, Y. Gao and Z. Tang, ACS Nano, 2012, 6, 8288-8297. 50. X. Qiu, W. Zhou, C. Qi, D. Cheng and Y. Ouchi, ChemElectroChem, 2017, 4, 992-996.

51. T. Fujigaya, C. Kim, Y. Hamasaki and N. Nakashima, Sci. Rep., 2016, 6, 21314-21323.