自動レーン変更と自動駐車のためのシミュレーション環境の構築

Similar documents
2011 年東北地方太平洋沖地震の強震動生成のための震源モデル (2011 年 8 月 17 日修正版 )

Collision Avoidance based on Camera and Radar Fusion. Jitendra Shah interactive Summer School 4-6 July, 2012

AutonoVi-Sim: Modular Autonomous Vehicle Simulation Platform Supporting Diverse Vehicle Models, Sensor Configuration, and Traffic Conditions

発育発達と Scammon の発育曲線. Scammon s Growth Curve & Growth and Development. Abstract. Katsunori FUJII

川のながれ River Flows. Outline

Rapid Estimation of Water Content of Sour Natural Gases

v.s. (GW) USD ( 07)/Wp 0.6 USD/Wp 1.8 MW

平成 29 年度金沢学院大学入学試験問題 3 月 17 日 ( 金 ) Ⅰ 注意事項解答用紙に 英語 と記入 マークしてから解答してください 問題は1ページから8ページまであります 問題は持ち帰ってもよいですが コピーして配布 使用するのは法律で禁じられています

1 前提となる背景的事実や出来事について答えることが難しい 2 前提となる背景的事実や出来事について答えることができる 2 前提 発問 3 中心の命題 ( イイタイコト ) について答えることができる 3 命題 発問 4 背後の理由や詳細情報などの展開について答えることができる 4 展開 発問

Sensing and Modeling of Terrain Features using Crawling Robots

BHATNAGAR. Reducing Delay in V2V-AEB System by Optimizing Messages in the System

自動運転に関するいくつかの論点 ー SAE J3016(2016 年版 ) を中心にー 筑波大学副学長 理事 稲垣敏之.

Development of Sirocco Fan Featuring Dragonfly Wing Characteristics

Situations that a B2/ALKS highway system may encounter

Pedestrian Behaviour Modelling

if all agents follow RSS s interpretation then there will be zero accidents.

Certificate of Accreditation

人の認知 判断の特性と限界を考慮した 自動走行システムと法制度の設計

A Novel Approach to Evaluate Pedestrian Safety at Unsignalized Crossings using Trajectory Data

Traffic Safety in Japan

Impact of Building Layouts on Wind Turbine Power Output in the Built Environment: A Case Study of Tsu City

Summary Pacific Consultants Co., Ltd.

Survey on Professional Baseball

National Diet Library 2011

Evaluation of the ACC Vehicles in Mixed Traffic: Lane Change Effects and Sensitivity Analysis

Self-Driving Vehicles That (Fore) See

Preliminary report on west-to-south movement rate of juvenile southern bluefin tuna determined by acoustic tagging in Western Australia

Intelligent Decision Making Framework for Ship Collision Avoidance based on COLREGs

OBJECTIFICATION TECHNOLOGY OF PERCEIVED SAFETY & COMFORT DURING ASSISTED DRIVING

Traffic Management using Moving Light Guide System. Hiroyuki Oneyama Tokyo Metropolitan University July 8, 2017

Traffic circles. February 9, 2009

Development and Evaluations of Advanced Emergency Braking System Algorithm for the Commercial Vehicle

Company Profile カルソニックカンセイ 会社案内 カルソニックカンセイ株式会社. Calsonic Kansei Corporation 研究開発センター 本社

Ruby for one day game programming camp for beginners

Introduction to Transportation Engineering. Discussion of Stopping and Passing Distances

A Decision Making Method using Wants Chain Analysis for Business-model Design

Proposal for amendments to Regulation No. 79 to include ACSF > 10 km/h

Development of Electric Fan Propeller Featuring Chestnut Tiger Butterfly Wing Characteristics

蒲地政文 Masa Kamachi. 海洋漂流物のモデルシミュレーション Model Simulation of Japan Tsunami Marine Debris (JTMD) ( 海洋研究開発機構 / 地球情報基盤センター JAMSTEC/CEIST)

Characteristics of. Entering & Exiting High Speed Considerations

The Potential Effects of the Tokyo 2020 Olympic and Paralympic Games on Physical Activity Participation at the Population Level

Rollover Warning/Control for Sports Utility Vehicles

国際スポーツクライミング協会 INTERNATIONAL FEDERATION OF SPORT CLIMBING IFSC

SKIS& BOOTS COLLECTION 16/17

Distributions of Road Spaces in Tokyo Ward Area While Focusing on Pedestrian Spaces

#19 MONITORING AND PREDICTING PEDESTRIAN BEHAVIOR USING TRAFFIC CAMERAS

Assessing the Traffic and Energy Impacts of Connected and Automated Vehicles (CAVs)

( 工 経営情報 国際関係 人文 応用生物 生命健康科 現代教育学部 )

Challenge! Open Governance 2017 Application Form for Citizens & Students

Missing no Interaction Using STPA for Identifying Hazardous Interactions of Automated Driving Systems

Lane Management System Team 1 Adam Pruim - Project Manager Curtis Notarantonio - Security/Safety Engineer Jake Heisey - Domain Expert/Customer

Ishibashi Soundscape

Traffic flow optimization at sags by controlling the acceleration of some vehicles

この英語の試験は 文法 / 語彙 / 長文読解と聞き取りの 2 つの部分からなり 時間は全部で 100 分です ( 説明を含む ) 試験開始から 70 分で文法 / 語彙 / 長文読解 そして残りの約 30 分で聞き取りテストを行います 受験番号氏名

Shohei Juku Aikido Canada

Introduction to Transportation Engineering. Discussion of Stopping and Passing Distances

Ensuring the Safety and Health of Technical Intern Trainees Involved in Cultivation Agriculture

Baseball-science meets practice

Global Leadership Training Programme in Africa 2016

自動車車体技術発展の系統化調査 6. A Systematic Survey of Technical Development of Vehicle Bodies. Setsuji Yamaguchi

Driving in Traffic: Short-Range Sensing for Urban Collision Avoidance

Pedestrian Dynamics: Models of Pedestrian Behaviour

Global Journal of Engineering Science and Research Management

始まりのブザーが鳴るまで問題冊子 解答用紙に手を触れずに

Civil Engineering Research Institute for Cold Region Hirotaka Takechi, Masaru Matsuzawa, Yasuhiko Ito and Tetsuya Kokubu. Hokkaido.

Driver Training School Instructor Curriculum Requirements for Student Learning & Performance Goals

OBSERVATION OF GAP ACCEPTANCE DURING INTERSECTION APPROACH

Obtain a Simulation Model of a Pedestrian Collision Imminent Braking System Based on the Vehicle Testing Data

電気通信大学脳科学ライフサポート研究センター特別講演会 平成 25 年 5 月 14 日 脳血流のバイオメカニクス 谷下一夫 早稲田大学ナノ理工学研究機構

スマイルフォトブック : S サイズ 24 ページの見本です この見本は データ量を抑えるために低画質にて保存しています 入稿の際は画質を圧縮無しの高画質で保存してください

常葉大学短期大学部一般入学試験前期日程 1. 試験開始の合図があるまで 問題用紙 解答用紙の中を見てはいけません

THe rip currents are very fast moving narrow channels,

F A C U L T Y JOURNAL OF INTERDISCIPLINARY RESEARCH IN HUMAN AND SOCIAL SCIENCES UNIVERSITY OF TSUKUBA (JAPAN)

コミュニケーション英語 Ⅲ 英語表現 Ⅰ 英語表現 Ⅱ) 試験時間 120 分 文学部, 教育学部, 法学部, 理学部, 医学部, 工学部 3. 試験開始後, この冊子又は解答紙に落丁 乱丁及び印刷の不鮮明な箇所などがあれば, 手を挙げて監督者に知らせなさい

Longitudinal Control of a Platoon of Road Vehicles Equipped with Adaptive Cruise Control System

THE EFFECTS OF LEAD-VEHICLE SIZE ON DRIVER FOLLOWING BEHAVIOR: IS IGNORANCE TRULY BLISS?

Development and Assessment of CACC for Cars and Trucks

Title: Modeling Crossing Behavior of Drivers and Pedestrians at Uncontrolled Intersections and Mid-block Crossings

A STUDY OF SIMULATION MODEL FOR PEDESTRIAN MOVEMENT WITH EVACUATION AND QUEUING

CHALLENGE CLUB 2Gr.Time Attack 2 回目 Sector Time Chart


History of Traffic Safety Measures: Relevant Legislation, Organization and Policy

Coast Riders Motorcycle Club. Group Ride Guidelines

Module 3 Developing Timing Plans for Efficient Intersection Operations During Moderate Traffic Volume Conditions


蒲地政文 Masa Kamachi. 海洋漂流物のモデルシミュレーション Model Simulation of Japan Tsunami Marine Debris (JTMD) ( 海洋研究開発機構 / 地球情報基盤センター JAMSTEC/CEIST)

Contnts 操作方法 3 オフェンス操作 ムーブメント 戦術 6 ディフェンス操作 7 ゴールキーパー 8 セットプレー 9 スキルムーブ 13 ゲームの始め方 17 メインメニュー 18 試合の進め方 19 オフラインゲームモード 23 オンラインプレイ 28

ANIMANIA FESTIVAL WORLD COSPLAY SUMMIT AUSTRALIAN TEAM PRE-SELECTION 2008 PORTFOLIO Please submit your portfolio to:

BURAsl Ultegra Fulcrum Racing 5 LG. NAZARÉsl Ultegra 8000

リオ オリンピック参加資格取得 ( ロード男子 ) < 個人ロード > ワールド国別ランキング国別あたり選手数計 1-5 位 5 名 25 名 6-15 位 4 名 40 名

Road inventory database system using road image and geo-coordinates. Kazuya AOKI. ERPUG Forum 2016

Proposal for amendments to Regulation No. 79 to include ACSF > 10 km/h

Aerodynamic Shape Design of the Bow Network Monitoring Equipment of High-speed Train

Designing a Traffic Circle By David Bosworth For MATH 714


REVISED TECHNICAL INTERPRETATION OF ANNEX 1 TO PIC/S GMP GUIDE

70 % ITARDA. Nighttime fatal accidents involving senior pedestrians. 65 yrs old and over. of pedestrians killed are seniors (65 and over) 1.

Simulation of the Hybtor Robot

Colorado Division of Fire Prevention & Control Driver Operator JPRs (NFPA 1002, 2014 Edition)

The Quality of Behavioral and Environmental Indicators Used to Infer the Intention to Change Lanes

Transcription:

自動レーン変更と自動駐車のためのシミュレーション環境の構築 豊田工業大学スマートビークル研究センター三田誠一 2016 年 10 月 19 日 1

Titles of Contents Introduction Automated Parking Automated Lane Change Platooning Application 2

シミュレーション活用の利点 まれにしか発生しない状況の再現ができる データを再現性良く処理できる 環境 パラメータやセンサ種類を自由に設定できる シミュレーション環境から 実環境への適応が簡単にできる 開発アルゴリズムの初期段階での短時間性能検証ができる Application Examples Ontology Car Platooning Car Control Path Planning( Narrow Passage, Parking Model) Stereo Vision System Lane Change Modeling etc. 3

Application Examples Grand Truth Generated Depth Ontology Stereo Vision System Narrow Passage Path Planning Maze Path Planning Lane Change Path Planning 4

Narrow Passage and Automated Parking Path Planning Application 5

Level of Automated Parking General Parking Place Highly Structured Parking Place for Automated Driving Lower Speed Public Road Driving White Line Detection Pedestrian Detection Car Detection etc. Following Indications No Pedestrians, No Cars 6

Valet Parking 実環境 Predefined Routes Vehicle with 3D Dynamic Model 7

Simple Perception for Environment 視点変化 Driver View Top View 8

Subjects for Automated Parking 仮想環境構築 Narrow Passage Passing Obstacle Avoidance 9

General Parking Place 10

New appear obstacle Local path Intended parking position is occupied New empty space found New paths generated 11

Automated Parking Scheme Without pre-determined goal With pre-determined goal Parking area map Generate path from entrance to exit Follow planned path No Found parking position Yes Generate path to parking position Parking area map Update map Sensors data (laser, GPS, odometer ) Real time data Global path planner No Path No Yes Local path planner Path Yes Path follower Stop and Wait 12

Automated Parking Planner s Objectives The safety distance of the path from the obstacles The total travel distance of the path. The number of times that the vehicle has to switch the gear from forward to backward and vice versa. The curvature of the path to satisfy the kinematic constraints. N N 1 C( p ) w d( p ) w g( p ) g( p ) i 1 i 2 i i 1 i 1 i 1 N N 1 w p w ( p ) 3 i 4 i 1 i 1 i Closeness to Obstacles Gear Change g = 1: forward g = -1: backward Distance between Path Points Curvature 13

Application of Proposed Method for Automated Parking Proposed Parking Path Planning Method: 14

Fast Marching Method Introduced by Sethian in 1995* A numerical method for solving boundary value problems of the Eikonal equation: U F = 1 F > 0 :the front moving speed U : the travel time 1/F can also be known as objective cost Starting with an initial position for the front, the method systematically marches the front outwards one grid point at a time. *http://math.berkeley.edu/~sethian/2006/level_set.html 15

Apply FMM on 2D Grid Map 1 st step: To find: - guiding path - distance from each cell to the goal Left side data Start 2D FMM path Right side data Goal 16

Apply SVM to Find Hyperplane and Safety Field 2 nd step: To find: distance to the hyperplane 17

Apply FMM to Continuous Search Space 3 rd step: continuous search space (x, y,, g) (x, y) : 2D coordination : vehicle heading angle (g {1,-1} ): driving maneuver (forward or backward) 2D neighbors The neighbors of a node in search space Start 3D continuous search space A path generated after applying FMM 18

Experimental Result for Complicated Path Case A Unstructured map with complicated obstacles shapes Hybrid A*and Risk Potential Proposed Method Method H-A*+RP Proposed Method Safety Margin for Obtained Paths (cell) 4.783 5.9611 Number of Gear Change 3 1 Average Curvature 0.218145 0.17069 Average Computation Time (ms) 561 234 19

Experimental Result for Real Environment Case B Slam Map of real cluttered environment Hybrid A* and Risk Potential Proposed method Method H-A*+RP Proposed method Safety Margin for Obtained Paths (cell) 17.3708 19.1896 Number of gear change 4 2 Average curvature 0.218145 0.17069 Average computation time (ms) 145 317 20

Highly Structured Parking Place 21

Automated Parking Simulation 22

Another View for Parking 23

Conventional Camera View 24

Fisheye Camera View 25

Simulink Block from Parking Experiment

Ego Car Sensor Setting Fisheye cameras Ultrasonic sensors

Ego Car Simulink Blocks Predifined Path Car dynamic model Car State Trajectory follower Fisheye Cameras Input Data from Ultra Sonic Sensors Path planning and Control

Continue ---Ultrasonic sensors Output: Detected Obstacle Corresponding Range and Angle from Sensor Position

Ego Car Information Output : Ego Car State: Position in North West Direction, GPS position, Velocity, Yaw-angle

Trajectory Follower Input :Pre-defined Path, Car State, Desired Velocity Output: Steering angle, Throttle and Brake Control

Longitudinal Controller Trajectory Follower Block Lateral Controller

Car Controller Dynamic Model Input :Control Command Output :Simulated Ego Car State

Inside Car Dynamic Model

Path Planning and Control - Sensors Data Processing - Path planning - Car Control (Steering Wheel Angle, Velocity, Gear )

Distance Constraint Model for Automated Lane Change to Merge and Exit 36

Titles of Contents Why Automated Lane Change Related Work Lane Change Model Two Segments Lane Change Modeling Behavior Generation Model and Selection Motion Generation Model Simulation Results Comparison with Human Driver 37

Why Automated Lane Change? ADAS/Semi Automated Driving/ Automated Driving Overtake Obstacles of Low Speed Moving Objects Fast Vehicle Distance Keeping Lane Departure Warning RADAR Sensor Merge or Exits to Highway Lane Change Assistant 38

Related Works State Transition Model Bayesian Network [D. Kasper et al., 2012] Hidden Markov Model [Y. Nishiwaki et al., 2010] Risk Assessment [D. Althoff, et al., 2012] Collision Estimation Based on Trajectories 39

Lane Change Model- Learn from Human Driver Human Lane Change Data Lane Change Experiment Two Segments Lane Change Model host vehicle Two Segments Model: 1- Segment 1 (Behavior Segment) Make Safe Space and Time Gap Deceleration to make free space/time for lane change Lane change and accelerate to adjust speed turning the steering wheel 2- Segment 2 (Motion Segment ) Smooth and Comfort Lane Change Segment 1 Segment 2 40

Situation Modelling & Estimation Lane change situation is modelled into a state occupancy grid with different size. 5 3 0 Most Critical Cell 6 1 7 4 2 Occupied Estimation of Neighboring Vehicle Trajectory dback dfront dfront d min max{ v dback d' min max{ v ego back v v front ego,0} Time,0} Time Merge in and Exit Lane LC LC 41

Alternative Behaviors for Segment 1 (Behavior) Available Behaviors for Lane Change 1- Accelerate 2- Wait 3- Lane Change 1- Accelerate 2- Decelerate 3- Lane Change 4- Wait 1- accelerate 2- decelerate 3- lane change 4- wait 1- accelerate 2- lane change 3- wait 1- accelerate 2- wait 3- lane change 1- accelerate 2- wait 3- lane change 1- accelerate 2- decelerate 3- lane change 4- wait 1- decelerate 2- lane change 1- decelerate 2- lane change 3- wait 1- decelerate 2- lane change 3- wait 1-decelerate 2- wait 3- lane change 1-decelerate 2- wait 3- lane change 42

Alternative Behavior for Lane Change Behavior A : Lane change with current speed Velocity Lateral acc (m/s 2 ) T A T C Behavior C Behavior A Behavior B Time T B Time Behavior B: Lane change with deceleration Behavior C: Lane change with acceleration Behavior D: Wait Behavior A Behavior C Behavior B 43

Category Classification for Lane Change 1- accelerate 2- decelerate 3- wait 1- accelerate 2- wait 1- accelerate 2- decelerate 3- wait 1- accelerate 2- wait 1- accelerate 2- decelerate 3- lane change 4- wait Category A 1- accelerate 2- decelerate 3- lane change 4- wait Lane change 1- accelerate 2- lane change 3- wait 1- accelerate 2- decelerate 3- lane change 4- wait 1- decelerate 2- wait 1- decelerate 2- wait 1- accelerate 2- decelerate 3- wait 1- accelerate 2- wait 1- accelerate 2- wait 3- lane change 1- accelerate 2- wait 3- lane change 1- accelerate 2- wait 3- lane change 1- decelerate 2- lane change 1- decelerate 2- wait 1- accelerate 2- wait 1- decelerate 2- wait 1- decelerate 2- wait Category C 1- decelerate 2- lane change 3- wait 1- decelerate 2- lane change 3- wait 1-decelerate 2- wait 3- lane change 1-decelerate 2- wait 3- lane change Category B Category D Wait 44

Behavior Selection for Segment 1 Velocity Alternative 1: Accelerate and Lane Change Alternative 1: Accelerate and Lane Change dexit t min (meter) dexit t max (meter) Alternative 2: Decelerate and Lane Change Alternative 2: Decelerate and Lane Change T 1 T 2 Time For situation that has more than one behavior option Evaluation function for different action a = {acc, decc, wait} T J(a) = w jerk න ഺx 2 t + w safety (a) + w operationtime T(a) 0 Longitudinal Jerk Safety Time 45

Velocity Planning Acceleration Case : t 0 v(t 0 ) T Safety reserve v(t) r x(t 0 ) x lead (t 0 ) v lead (t 0 ) v lead (T) x(t) X Acceleration: x ሷ = f(x(t 0 ), v(t 0 ), x lead (t 0 ), v lead (t 0 ), T, r) Safety reserve: r = d min + TTR v lead (T) TTR: Time To React Error of the safety distance: Cost function: d t = x lead (t) r + t v lead t x(t) t 0 +T J = න (ω dist d t 2 + ω acc [ x(t)] ሷ 2 )dt Constraint: t 0 x T < L; x(t) ሷ < xሷ max Distance Constraint 46

Flowchart for Lateral Motion Generation-Segment 2 Lane Change is OK Making Alternative Trajectories v 1 v 2 Lane information Estimate Trajectory Position and speed of surrounding vehicle Cost Function Generate Alternative lateral trajectories Check collisions and find collision free Select Minimum cost function Send to path follower For execution Select Minimum Cost v 3 v 5 0 v h d t 1 time t 2 v 1 v 2 v 3 v 5 Minimum Cost Path t i C = න ഺy 2 t. dt + Δt i + κ t i k 2 d + න t i 1 lateral jerk heading error t i t i 1 κƴ 2 t dt smoothness 47

Automated Lane Change Flow Chart Image Sensor Laser Scanner / Radar Estimate Speed/Position of Neighboring Vehicles Estimate the Behavior of Neighboring Vehicles Lane Information Behavior A Segment 1: Do Lane Change Behavior B Segment 1: Wait Segment 2: Lane Change Generate Lateral/Longitudinal Trajectory for Neighboring Vehicles Make Grid Map Evaluation of Different Behaviors Set of Alternative Behaviors Behavior Selection Criteria's Generate Acceleration/ Deceleration/ Wait Patterns for Segment 1 Real Time Control & Execution Time buffer for re-evaluation (every timestamp: t milliseconds) Execution and Control Behavior C Segment 1: Accelerate Segment 2: Lane Change Behavior D Segment 1: Decelerate Segment 2: Lane Change Behavior A is Selected? yes no Generate Motion for Segment 2 Real time Environment Assessment 48

Automated Lane Change Simulation Design and Implement Automated lane Change Simulation and Evaluation Environment Designed Modules 1- Adaptive Grid Generation 2- Estimate Surrounding Vehicles Trajectory 3- Check the Collision Avoidance 4- Automated Behavior Generation 5- Automated Lateral/Longitudinal Motion Generation 6- Lane Detection Module 7- Automated Lane Change Scenario Generation PreScan Simulation Platform 8- Control Steering and Acceleration 9-3D Graphic Simulator Simulink Model Flow diagram 49

Exiting with Acceleration Behavior Observation Grid Velocity Profile Clip 50

Exiting with Deceleration Behavior t=0, start Observation Grid Segment 1: decelerate Segment 2: lane change Exit Velocity Profile Clip 51

Merging in with Acceleration Behavior Merging in with Acceleration Behavior Observation Grid t=0, start Segment 1: accelerate Segment 2: lane change Velocity Profile Merge Clip 52

Merging with Deceleration Behavior t=0, start Observation Grid Segment 1: decelerate Segment 2: lane change Merge Velocity Profile Clip 53

Evaluation and Comparison with Expert Driver Lane Change Experiments Expert Driver Data Extraction - Lateral & Longitudinal Motion - x, ሶ x, ሷ y, ሶ yሷ - Lane information - Surrounding vehicle dx, dx, ሶ y Simulation(PreScan) Algorithms Behavior Model Simulation(PreScan) Comparison and Evaluation Motion Plan Feedback Human Computer 54

Expert Driver - Data Extraction Velodyne Laser Map (18.798, -2.949) V=67[km/h] Surrounding Vehicle Driving Lane Tracker y 3.5[m] x (-5.89, -6.86) V=96[km/h] Host vehicle V=54[km/h] 2.0[m] 1.5[m] (-21.3, -3.931) V=70[km/h] 55

Experiment Results Make Environment In PreScan Expert Driver Experiment Data Behavior and Motion Generation Generate Alternative Lateral Trajectories Check Collisions and Find Collision-free Select Minimum Cost Function Simulation of Real Traffic 56

Trajectory Evaluation 57

Platooning Application 58

Self-Defensive Maneuvering 59

Simulations Simulator PreScan Control strategy Longitudinal: PID Lateral: Steering angle 60

Result Rows: longitudinal, lateral, heading angle Columns: 1 st, 2 nd, 3 rd, 4 th platoon cars and the interfering car. 61

Simulation Result 62

Thank You for Your Attention! 63