Electronic Supporting Information (ESI)

Similar documents
Fabrication of Novel Lamellar Alternating Nitrogen-Doped

state asymmetric supercapacitors

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Supporting Information

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Supporting Information for

Supporting Information

Supplementary Material

Supporting Information

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Supporting information

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Electronic Supplementary Information (ESI)

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supplementary Information

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Supplementary Information

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

Supporting Information

Supplementary Information

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Supporting Information

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Supporting Information for

Supporting Information

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Electronic Supplementary Information

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Electronic Supplementary Information

Supporting Information

Electronic Supplementary Information

Supporting Information

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supporting Information

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

noble-metal-free hetero-structural photocatalyst for efficient H 2

Supporting Information

Supporting Information

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Supporting information

Supporting Information

Supporting Information

Supplementary Information

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Supporting Information

Supporting Information

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Highly enhanced performance of spongy graphene as oil sorbent

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Supporting Information

Curriculum Vitae. Yu (Will) Wang

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Electronic Supplementary Information

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

Supporting Information

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

Electronic Supplementary Information

Supplementary Information

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Flexible Nb 4 N 5 /rgo Electrode for High-Performance Solid State Supercapacitors. Huazhong University of Science and Technology Wuhan , China

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Supporting Information

Electronic Supplementary Information (ESI) for. MnOOH/Nitrogen-Doped Graphene Hybrid Nanowires. Sandwiched by Annealing Graphene Oxide Sheets for

Supporting information. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation

3D CNTs/Graphene-S-Al 3 Ni 2 Cathodes for High-Sulfur-Loading and Long-Life Lithium Sulfur Batteries

Complex Systems and Applications

Electronic Supplementary Information (ESI)

Supporting information

Electronic Supplementary Information for

Zhaohuai Li, Qiu He, Xu Xu,* Yan Zhao, Xiaowei Liu, Cheng Zhou, Dong Ai, Lixue Xia, and Liqiang Mai*

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

Applied Medical Parasitology By LI CHAO PIN, ZHANG JIN SHUN ZHU BIAN SUN XIN

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

2012 International Conference on Future Energy, Environment, and Materials

Supporting Information

Preliminary Audition

Hydrophilic/Hydrophobic Interphase-Mediated. Bubble-Like Stretchable Janus Ultrathin Films. Towards Self-Adaptive and Pneumatic

Ph.D., Industrial and Systems Engineering, 2009

Zhao Bao Tai Chi Kung Fu (English/Chinese Edition) (English And Chinese Edition) By Wayne Peng

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information (ESI) Designing a Carbon Nanotubes Interconnected ZIF-derived Cobalt Sulfide Hybrid Nanocage for Supercapacitors Siou-Ling Jian, a, Li-Yin Hsiao, a, Min-Hsin Yeh, b * and Kuo-Chuan Ho a,c,d * a Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan b Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan c Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan d Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan The authors contributed equally to this work. 1

Table S1 A list of a MOF-derived cobalt sulfide and b carbon/cobalt sulfide materials in the application of supercapacitors, compared to that obtained in this work. c Co 9 S 8 embedded in carbon co-doped with N and S. d Co 9 S 8 @S, N-doped carbon cuboid. e CoS-nanoparticle-assembled nanoboxes surrounded by outer CoS-nanosheetconstructed shells. f Co x S@porous carbon/rgo. g conductive polymer/rgo/co 9 S 8. Materials Electrolyte Gravimetric capacitance (F g -1 ) (Potential range vs. Hg/HgO) Capacitance retention Ref. Co 9 S 8 -nanosheet array a 1.0 M KOH 1,098.8 (0.15 0.55 V, 0.5 A g -1 ) 1,000 (87.4%) 1 CoS nanocages a 1.0 M KOH 1,475 (-0.15 0.35 V, 1 A g -1 ) 3,000 (70.3%) 2 Co 9 S 8 /NS-C a, b, c 6.0 M KOH 734.09 (0 0.5 V, 1 A g -1 ) 140,000 (99.8%) 3 Co 9 S 8 @SNCC a, b, d 6 M KOH 429 (-1.1-0.6V, 1 A g -1 ) 2,000 (98%) 4 Zn-Co-S a 1,266 (0.15 0.65 V, 1 A g -1 ) 10,000 (91%) 5 CoS-NP/CoS-NS a, e 980 (0.15 0.70 V, 1 A g -1 ) 10,000 (89%) 6 CoS-N-doped carbon a, b 360.1 (0.1 0.7 V, 1.5 A g -1 ) 2,000 (90%) 7 Co x S@PC/RGO f a, b, 1.0 M KOH 455 (0.15 0.65 V, 2 A g -1 ) 4,000 (99.7%) 8 CoS x /FMWCNTs b 334 (-0.15 0.60 V, 0.4 A g -1 ) 1,000 (95%) 9 CNT/CoS b 1.0 M KOH 1,332.8 (0.15 0.65 V, 217.4 A g -1 ) 1,500 (91%) 10 CoS/CNT b 804 (0.15 0.65 V, 0.5 A g -1 ) 1,000 (93.4%) 11 2

rgo 100 -CNT 50 - Co 3 S 4 b 977 (0.15 0.65 V, 1 A g -1 ) 3,000 (90%) 12 RGO/CoS b 1,130 (0.15 0.65 V, 0.5 A g -1 ) 1,000 (92.1%) 13 cp/rgo/co 9 S 8 b, g 788.9 (0.1 0.55 V, 1 A g -1 ) 10,000 (over 100%) 14 CoS@rGO b 849 (0 0.55 V, 5 ma cm -2 ) 3,000 (90.5%) 15 Co 3 S 4 /rgo b 675.9 (0 0.5 V, 0.5 A g -1 ) 1,000 (over 100%) 16 CoS/rGO b 550 (0.15 0.55 V, 1A g -1 ) 5,000 (95%) 17 Co 3 S 4 -rgo b 2314 (-0.15 0.75 V, 2 mv/s) 1,000 (92.6%) 18 Co 9 S 8 /reduced graphene b 728 (0.15 1.15 V, 2 A g -1 ) 1,000 (97%) 19 Co 9 S 8 /RGO b 616 (0 0.8 V, 4.4 A g -1 ) 1,000 (98%) 20 PANI-rGO-CoS b 1.0 M H 2 SO 4 431 (0.15 0.95 V, 0.5A g -1 ) 1,000 (90.1%) 21 CoS/graphene b 3,386 (0.05 0.55 V, 1 A g -1 ) 2,500 (31.1%) 22 CoS/graphene b 564 (0.1 0.55 V, 1 A g -1 ) 2,000 (94.8%) 23 CoS/graphene b 2,423.3 (-0.7 0.1 V, 5 mv/s) - 24 Co 9 S 8 /3D graphene b 1.0 M KOH 2,317 (0.1 0.55 V, 1 A g -1 ) 6,000 (90%) 25 3D graphene/cos x b 1.0 M KOH 443 (0 0.6 V, 1 A g -1 ) 5,000 (86%) 26 3

Co 3 S 4 -N-doped graphene b 2,245 (0.05 0.3 V, 3 A g -1 ) - 27 g-c 3 N 4 /CoS b 3.0 M KOH 668 (0.15 0.55 V, 2 A g -1 ) 1,000 (98%) 28 Hybrid CNT/CoS nanocage a, b 2,173.1 (0.08 0.48 V, 5 A g -1 ) 1,000 (91.1%) This work Table S2 A list of asymmetric supercapacitor a and symmetric supercapacitor b composed of cobalt sulfide as the electrode (AC=Activated carbon; rgo=reduced graphene oxide). Electrodes Electrolyte Energy density (Wh kg -1 )/ Power density (W kg -1 ) Capacitance retention Ref. Co 3 S 4 //Co 3 S 4 -rgo a PVA/KOH 1.09/398 & 0.31/750 (0 1.5 V) 5,000 (89.56%) 18 CoS@eRG//AC a 2 M KOH 29/800 & 11/4,000 (0 1.6 V) 3,000 (70.3%) 22 Co 9 S 8 nanoflakes//ac a 6 M KOH 31.4/2,000 & 26.3/4,000 (0 1.6 V) 5,000 (89.5%) 29 Co 9 S 8 //rgo a 6 M KOH 68.6/1,319 (0 1.2 V) 1,000 (96%) 30 CNT/CoS nanocage b 6 M KOH 62.4/674.6 & 23.3/3,382.2 (0 1.35 V) 5,000 (96.6%) This work 4

Figure S1 CNT dispersed in methanol with (left) and without (right) PVP. Figure S2 FE-SEM images of ZIF-67 nanoparticles synthesized with PVP. 5

Figure S3 Particle size distributions of (a) CNT/ZIF-67 1:1, (b) CNT/ZIF-67 1:2, and (c) CNT/ZIF-67 1:8. Figure S4 FE-SEM images of CNT/ZIF-67 composites with unfunctionalized CNTs. 6

Figure S5 FE-SEM images of (a) ZIF-67 nanoparticles, and (b) CoS nanocages. Figure S6 Particle size distributions of (a) CoS, (b) CNT/CoS 1:2 and (c) CNT/CoS 1:8. 7

Figure S7 FE-SEM images of CNT/ZIF-67 1:1, CNT/CoS 1:1 and the schematic illustration of the collapsed CoS via sulfurization. CoS Intensity (a.u.) CNT/CoS 1:1 CNT/CoS 1:2 CNT/CoS 1:8 20 30 40 50 60 70 80 2 Theta (degree) Figure S8 XRD patterns of CoS cage and hybrid CNT/CoS nanocages with various sizes of ZIF-67 as templates. 8

Figure S9 CVs of (a) CoS nanocage, (b) CNT/CoS 1:1 nanocage, (c) CNT/CoS 1:8 nanocage, and (d) CNT/CoS mixture electrodes at different scan rates. 9

Figure S10 GCD curves of (a) CoS nanocage, (b) CNT/CoS 1:1 nanocage, (c) CNT/CoS 1:8 nanocage, and (d) CNT/CoS mixture electrodes at different current densities. 10

Figure S11 Electrochemical active surface area using CVs recorded in non-faradic region at different scan rates. (a) Linear fits of anodic current density measured at 0.95 V (vs. RHE) versus scan rate plots. (b) CNT/CoS 1:1 nanocage, (c) CNT/CoS 1:2 nanocage and (d) CNT/CoS 1:8 nanocage. 11

Figure S12 (a) Cycling performance of hybrid CNT/CoS nanocage and CNT/CoS mixture, and (b) Ragone plot of CoS nanocage, hybrid CNT/CoS nanocage and CNT/CoS mixture under various current densities in three-electrode system. Figure S13 A photograph of the symmetric supercapacitor of hybrid CNT/CoS nanocage as electrodes. 12

References 1. X. Han, K. Tao, D. Wang and L. Han, Nanoscale, 2018, 10, 2735-2741. 2. Z. Jiang, W. Lu, Z. Li, K. H. Ho, X. Li, X. Jiao and D. Chen, J. Mater. Chem. A, 2014, 2, 8603-8606. 3. S. Zhang, D. Li, S. Chen, X. Yang, X. Zhao, Q. Zhao, S. Komarneni and D. Yang, J. Mater. Chem. A, 2017, 5, 12453-12461. 4. S. Liu, M. Tong, G. Liu, X. Zhang, Z. Wang, G. Wang, W. Cai, H. Zhang and H. Zhao, Inorg. Chem. Front., 2017, 4, 491-498. 5. P. Zhang, B. Y. Guan, L. Yu and X. W. D. Lou, Angew. Chem. Int. Ed., 2017, 56, 7141-7145. 6. H. Hu, B. Y. Guan and X. W. D. Lou, Chem, 2016, 1, 102-113. 7. F. Cao, M. Zhao, Y. Yu, B. Chen, Y. Huang, J. Yang, X. Cao, Q. Lu, X. Zhang and Z. Zhang, J. Am. Chem. Soc., 2016, 138, 6924-6927. 8. Y. Wang, B. Chen, Z. Chang, X. Wang, F. Wang, L. Zhang, Y. Zhu, L. Fu and Y. Wu, J. Mater. Chem. A, 2017, 5, 8981-8988. 9. C. Yuan, L. Shen, F. Zhang, X. Lu, D. Li and X. Zhang, J. Colloid Interface Sci., 2010, 349, 181-185. 10. C. Y. Chen, Z. Y. Shih, Z. Yang and H. T. Chang, J. Power Sources, 2012, 215, 43-47. 11. K. Dai, L. Lu, C. Liang, L. Geng and G. Zhu, Mater. Lett., 2016, 176, 42-45. 12. A. Mohammadi, N. Arsalani, A. G. Tabrizi, S. E. Moosavifard, Z. Naqshbandi and L. S. Ghadimi, Chem. Eng. J., 2018, 334, 66-80. 13. K. Dai, D. Li, L. Lu, Q. Liu, J. Lv and G. Zhu, RSC Adv., 2014, 4, 29216-29222. 14. T. Yao, Y. Li, D. Liu, Y. Gu, S. Qin, X. Guo, H. Guo, Y. Ding, Q. Liu and Q. Chen, J. Power Sources, 2018, 379, 167-173. 15. X. Song, L. Tan, X. Wang, L. Zhu, X. Yi and Q. Dong, J. Electroanal. Chem., 2017, 794, 132-138. 16. Q. Wang, L. Jiao, H. Du, Y. Si, Y. Wang and H. Yuan, J. Mater. Chem., 2012, 22, 21387-21391. 17. L. Xu and Y. Lu, RSC Adv., 2015, 5, 67518-67523. 18. S. J. Patil, J. H. Kim and D. W. Lee, J. Power Sources, 2017, 342, 652-665. 19. M. Jana, P. Samanta, N. C. Murmu, N. H. Kim, T. Kuila and J. H. Lee, Compos. Res., 2016, 29, 167-172. 20. M. Jana, S. Saha, P. Samanta, N. C. Murmu, N. H. Kim, T. Kuila and J. H. Lee, Nanotechnology, 2015, 26, 75402-75415. 21. H. Heydari and M. B. Gholivand, J. Mater. Sci.: Mater. Electron., 2017, 28, 3607-3615. 13

22. J. Shi, X. Li, G. He, L. Zhang and M. Li, J. Mater. Chem. A, 2015, 3, 20619-20626. 23. X. Meng, J. Deng, J. Zhu, H. Bi, E. Kan and X. Wang, Sci. Rep., 2016, 6, 21717-21725. 24. R. Ramachandran, S. Felix, M. Saranya, C. Santhosh, V. Velmurugan, B. P. C. Ragupathy, S. K. Jeong and A. N. Grace, IEEE Trans. Nanotechnol., 2013, 12, 985-990. 25. G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin and L. Wang, 2015, 9, 1592-1599. 26. Y. Wang, J. Tang, B. Kong, D. Jia, Y. Wang, T. An, L. Zhang and G. Zheng, RSC Adv., 2015, 5, 6886-6891. 27. A. N. Grace, R. Ramachandran, M. Vinoba, S. Y. Choi, D. H. Chu, Y. Yoon, S. C. Nam and S. K. Jeong, Electroanalysis, 2014, 26, 199-208. 28. D. Jiang, Q. Xu, S. Meng, C. Xia and M. Chen, J. Alloys Compd., 2017, 706, 41-47. 29. R. B. Rakhi, N. A. Alhebshi, D. H. Anjum and H. N. Alshareef, J. Mater. Chem. A, 2014, 2, 16190-16198. 30. M. Jana, S. Saha, P. Samanta, N. C. Murmu, N. H. Kim, T. Kuila and J. H. Lee, Nanotechnology, 2015, 26. 14