Primorye Upwelling System in the northwestern Japan Sea

Similar documents
Mechanisms of Fast Changes in Physical and Biological Fields along Primorye Coast in the Japan Sea

Cascading of Dense Water along the Peter the Great Bay Slope in the northwestern Japan Sea

Seasonal and interannual variation of currents in the western Japan Sea: numerical simulation in comparison with infrared satellite imagery

SST anomalies related to wind stress curl patterns in the Japan/East Sea

IX. Upper Ocean Circulation

The Ocean is a Geophysical Fluid Like the Atmosphere. The Physical Ocean. Yet Not Like the Atmosphere. ATS 760 Global Carbon Cycle The Physical Ocean

(20 points) 1. ENSO is a coupled climate phenomenon in the tropical Pacific that has both regional and global impacts.

Alongshore wind stress (out of the page) Kawase/Ocean 420/Winter 2006 Upwelling 1. Coastal upwelling circulation

Introduction to Oceanography OCE 1001

Regional and seasonal inhomogeneity of climatic variability in the Far-Eastern Seas

Variability modes and typical patterns of surface wind over the Japan/East Sea and adjacent land

Applications of Collected Data from Argos Drifter, NOAA Satellite Tracked Buoy in the East Sea

ATMS 310 Tropical Dynamics

Advection of deep-sea and coastal water into the HNLC region of the northeast Pacific Ocean

ATS150: Global Climate Change. Oceans and Climate. Icebergs. Scott Denning CSU 1

SIO 210 Final examination Wednesday, December 11, PM Sumner auditorium Name:

The Surface Currents OCEA 101

Frontal Processes in the Columbia River Plume Area

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña -

Current mooring observations in the area of the South Kuril Islands

Pathways and Effects of Indonesian Throughflow water in the Indian Ocean using Trajectory and Tracer experiments in an OGCM

The Coriolis force, geostrophy, Rossby waves and the westward intensification

SIO 210 Introduction to Physical Oceanography Mid-term examination November 4, 2013; 50 minutes

Impact of the tides, wind and shelf circulation on the Gironde river plume dynamics

CHAPTER 7 Ocean Circulation

BERING SEA POLLOCK RECRUITMENT. ABUNDANCE DISTRIBUTION AND APPROACH TO FISHERY MANAGEMENT UNDER CHANGING ENVIRONMENT TINRO-CENTER, VLADIVOSTOK

Modification of the Stratification and Velocity Profile within the Straits and Seas of the Indonesian Archipelago

Ebenezer Nyadjro NRL/UNO. Collaborators: Dr. George Wiafe University of Ghana Dr. Subrahmanyam Bulusu University of South Carolina 1

Winds and Ocean Circulations

The structure of the Persian Gulf outflow subjected to density variations

Procedures for correcting in situ CTD data and results obtained during the NEAR-GOOS Cross-Basin Climate Monitoring Section project

Geophysical Fluid Dynamics of the Earth. Jeffrey B. Weiss University of Colorado, Boulder

Ocean Circulation. Si Hui Lee and Frances Wen. You can access ME at

State Estimation of the California Current System Using 4DVar Ocean Data Assimilation

10% water in the world is tied up in the surface ocean currents. (above the pycnocline) Primary source is wind: Westerlies, Trades, Polar Easterlies

Upstream environment for SBI - Modeled and observed biophysical conditions in the northern Bering Sea

Комплексное использование спутниковых данных для изучения региональных процессов и явлений в морской среде. Станичный С.В.

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture!

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams

Wind Driven Circulation Indian Ocean and Southern Ocean

Thermohaline Front at the Mouth of Ise Bay

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG)

Outline. 1 Background Introduction. 3 SST Amphidrome 4 Niño Pipe 5. SST in China Seas. Seasonality Spiral. Eddy Tracking. Concluding Remarks

9/25/2014. Scales of Atmospheric Motion. Scales of Atmospheric Motion. Chapter 7: Circulation of the Atmosphere

Kathleen Dohan. Wind-Driven Surface Currents. Earth and Space Research, Seattle, WA

PRELIMINARY CRUISE REPORT, W9909C R/V WECOMA, September 1999 GLOBEC/ENSO Long-Term Observations off Oregon

Midterm Exam III November 25, 2:10

AOS 103. Week 4 Discussion

Chapter 8 Air Masses

Role of the oceans in the climate system

Eddy induced coastal plankton community changes in a coupled numerical model of the Gulf of Lion (NW Mediterranean Sea)

Mesoscale air-sea interaction and feedback in the western Arabian Sea

An Atlas of Oceanic Internal Solitary Waves (February 2004) by Global Ocean Associates Prepared for Office of Naval Research Code 322 PO

Impact of Typhoons on the Western Pacific: Temporal and horizontal variability of SST cooling Annual Report, 2011 James F. Price

SIO 210 Problem Set 3 November 4, 2011 Due Nov. 14, 2011

HYDROSPHERE, OCEANS AND TIDES

Lesson: Ocean Circulation

Chapter. The Dynamic Ocean

Chapter 10. Adjacent seas of the Pacific Ocean

Sailing the Seas: Wind Driven Ocean Circulation Ocean Gyres

Figure 8.8. Figure Oceanography 10 Ocean Circulation. Gulf Stream flows at 55 million cubic meters/sec, 500 times the flow of the Amazon River

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

Ocean Currents Unit (4 pts)

Climate variability and changes in the marginal Far-Eastern Seas

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012

Wind-driven driven Response of the Northern Indian Ocean to Climate Extremes

OCEANOGRAPHY STUDY GUIDE

Scales of Atmospheric Motion. The atmosphere features a wide range of circulation types, with a wide variety of different behaviors

Yellow Sea with contributions by John R. Apel

Serial No. N4503 NAFO SCR Doc. 01/115. SCIENTIFIC COUNCIL MEETING SEPTEMBER 2001 (Deep-sea Fisheries Symposium Poster)

Vertical in situ profiles of nitrate and oxygen in the northern Japan Sea

Week 6-7: Wind-driven ocean circulation. Tally s book, chapter 7

Some basic aspects of internal waves in the ocean & (Tidally driven internal wave generation at the edge of a continental shelf)

Factors that determine water movement. Morphometry Structure of stratification Wind patterns

The Air-Sea Interaction. Masanori Konda Kyoto University

Observations and Modeling of Coupled Ocean-Atmosphere Interaction over the California Current System

Mode - 2 internal waves: observations in the non-tidal sea. Elizaveta Khimchenko 1, Andrey Serebryany 1,2.

Temperature, Salinity, Dissolved Oxygen and Water Masses of Vietnamese Waters

NOTE ->->-> DUE THURSDAY APRIL 20 TH 2006 THAT IS CORRECT I FORGOT THIS IS EASTER WEEKEND SO I HAVE EXTENDED THE DUE DATE TO THE ABOVE

Ocean Motion Notes. Chapter 13 & 14

INFLUENCE OF ENVIRONMENTAL PARAMETERS ON FISHERY

Currents & Gyres Notes

Monitoring and prediction of El Niño and La Niña

For Class Today How does ocean water circulate? Ocean currents, surface currents, gyres, currents & climate, upwelling, deep ocean circulation

El Niño / Southern Oscillation (ENSO) and inter-annual climate variability

Recruitment processes of jack mackerel (Trachurus

Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models

3 The monsoon currents in an OGCM

Agronomy 406 World Climates

SURFACE CURRENTS AND TIDES

5. El Niño Southern Oscillation

Lecture 14. Heat lows and the TCZ

Earth s oceans covers 71 % _ of the planet s surface. In reality, Earth s ocean waters are all. interconnected as part of a single large global ocean.

Chapter 6. Atmospheric and Oceanic. Circulations. Circulations

Imprints of Coastal Mountains on Ocean Circulation and Variability

Wind: Small Scale and Local Systems Chapter 9 Part 1

Chapter 10 Lecture Outline. The Restless Oceans

A CYCLONIC EDDY NORTH OF LOMBOK *)

Conditions for Offshore Wind Energy Use

Transcription:

1 st WESTPAC Workshop on Upwelling and its Dynamics in the South China Sea and Adjacent Areas, May 7-8, 2018, Putrajaya, Malaysia Primorye Upwelling System in the northwestern Japan Sea Vyacheslav Lobanov V.I.Il ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia

Content 1. Introduction: geography of the Japan Sea 2. Seasonal wind induced upwelling along the northwestern coast 3. Mesoscale structure, role of the eddies 4. Slope and coastal mesoscale eddies 5. Changes of oceanographic structure and primary production 6. Ventilation of shelf area by upwelling intrusion 7. Conclusion

Main geographic features of the area Primorye coast Japan Sea -Deep semi-isolated basin (>3500 m), narrow shelf -Strong seasonal variation of SST, SSS and stratification -Along slope current, shear, shelf waves Владивосток

Primorye (Liman) Current south westward boundary current of the Japan Sea (Primorye Current, North Korean Current) Danchenkov et al., 2003

Seasonal wind induced upwelling

Main geographic features of the area Winter monsoon Primorye coast Transition period Japan Sea -Deep semi-isolated basin (>3500 m), narrow shelf -Strong seasonal variation of SST, SSS and stratification -Along slope current, shear, shelf waves -Monsoon winds, coastal upwelling Summer monsoon Владивосток

Upwelling along Primorye Coast (seasonal phenomenon, Sept-Oct) NOAA-IR-2016-10-20 (Ladychenko, 2016) L8-IR-2016-10-21 (Dubina, 2016)

Surface distribution of T, S, Sigma 0 and DO

Upwelling index: Seasonal favorable winds 4 2 5 1 3 Monthly mean upwelling index (based on geostrophic wind) Positive values upwelling favorable Zhabin et al., 2017) Рисунок 4.4 - Карта, показывающая положение районов и узлов расчетной сетки (а) и среднемесячные значения индекса апвеллинга у побережья южного (б, в), восточного (г, д) и северо-восточного (е) Приморья. Крестиками отмечены точки, для которых был рассчитан накопленный индекс апвеллинга. Положительные значения индекса соответствуют ветровым условиям, благоприятным для развития апвеллинга

Mesoscale Structure of Primorye Upwelling System: Local upwellings and short-term variability caused by mesoscale eddies

Primorye Upwelling System : simultaneous wind induced upwelling along Primorye and short term fluctuations caused by mesoscale eddies Резкие колебания температуры воды в осенний период с амплитудой сравнимой с годовым ходом - 5-10 C температура Изменение МВАТ с 26 августа по 23 октября (суточное осреднение) 10.00 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 26.8 27.8 28.8 29.8 30.8 31.8 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 10.9 11.9 12.9 13.9 14.9 15.9 16.9 17.9 18.9 19.9 20.9 21.9 22.9 23.9 24.9 25.9 26.9 27.9 28.9 29.9 30.9 1.10 2.10 3.10 4.10 5.10 6.10 7.10 8.10 9.10 10.10 11.10 12.10 13.10 14.10 15.10 16.10 17.10 18.10 19.10 20.10 21.10 22.10 23.10 дата Изменение у м. Крас с 22 августа по 25 октября (суточное осреднение) 16 Vladivostok Nakhodka теспература 14 12 10 8 6 4 2 0 22.8 23.8 24.8 25.8 26.8 27.8 28.8 29.8 30.8 31.8 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 10.9 11.9 12.9 13.9 14.9 15.9 16.9 17.9 18.9 19.9 20.9 21.9 22.9 23.9 24.9 25.9 26.9 27.9 28.9 29.9 30.9 1.10 2.10 3.10 4.10 5.10 6.10 7.10 8.10 9.10 10.10 11.10 12.10 13.10 14.10 15.10 16.10 17.10 18.10 19.10 20.10 21.10 22.10 23.10 24.10 25.10 дата Изменнение БК с 22 августа по 30 октября (суточное осреднение) 18 16 14 Оказывает влияние : - морской промысел (развитие морских ежей, ламинарии и др. в период нереста) - биоразнообразие прибрежной зоны - эффективная вентиляция прибрежной зоны температура 12 10 8 6 4 2 0 22.8 23.8 24.8 25.8 26.8 27.8 28.8 29.8 30.8 31.8 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 10.9 11.9 12.9 13.9 14.9 15.9 16.9 17.9 18.9 19.9 20.9 21.9 22.9 23.9 24.9 25.9 26.9 27.9 28.9 29.9 30.9 1.10 2.10 3.10 4.10 5.10 6.10 7.10 8.10 дата 9.10 10.10 11.10 12.10 13.10 14.10 15.10 16.10 17.10 18.10 19.10 20.10 21.10 22.10 23.10 24.10 25.10 26.10 27.10 28.10 29.10 30.10 30.08 18.10 POI and TINRO moorings in Aug-Oct 2003

Mesoscale Eddies along Primorye 0 50 100 km

Mesoscale Eddies along Primorye Lobanov et al., 2001; Ladychenko et al. 2011; Ladychenko, Lobanov, 2013 z H - H = f H n r z º k Ñ v n H - Hn changes of depth across the slope; f Coriolis parameter; - vorticity component; Belonenko et al., 2016; off- and on- shelf motion changes vorticity and forms a wave along the slope

Modelled Primorye Slope Eddies Current velocity (top) and vorticity (bottom) in the upper mixed layer by quasi-isopycnal layered model in z-coordinate system (Shapiro and Mikhailova, 2001) 2,5 km, 10 layers Ponomarev et al., 2011 Lagrangian simulations, Prants et al. 2011

Vertical structure of Primorye Eddy

Reverse flow in the NW Japan Sea on satellite infrared images, October 7, 2011 Coastal upwelling area Reverse northeastward flow Mesoscale anticyclonic eddies

Reverse flow- surface drifters trajectories October 4 November 4, 2011 - P 172 - P 174

Changes of oceanographic structure and primary production during upwelling

SST Structure Changes on Satellite Images 05.10 12.10 15.10 Eddies 18.10 21.10 27.10 Upwelling 30.10 02.11 Gamov direction wind speed 360 270 180 90 0 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031 10 October 2000 8 6 4 2 0 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031 October 2000

SST Changes in Fall Season 16.10.2000 - Atmospheric cooling, convection - Wind induced upwelling 12.10 27.10 27.10.2000 1.5 o C 5.0 o C Formation of coastal eddies and upwelling event off Primorye on NOAA AVHRR infrared images Slow decrease of SST on the shelf 12-21 and fast drop 21-27.10

Hydrographic sections: different changes at bottom layers in the eastern and western coastal stations 12-13.10 3.11.2000 15-16.10 30.10.2000 16.10.2000 S1 S2 S3 27.10.2000 L1 S3: Upwelling and convective mixing off Preobrazhenie (134E) S1 S2 S3 L2 Formation of coastal eddies and upwelling event off Primorye on NOAA AVHRR infrared images Changes in T, S, density and nutrients along the sections S1 and S3 over 2-3 weeks period T, o C 10 m 50 m S1 3.5 9.6 S3 5.2 0.5 S1: Intrusion of deep sea water onto the shelf of Peter the Great Bay

Chl-a, pco2, Nutrients 0 20 40 60 0 20 40 60 Before 0 4 8 12 16 Т/NO3 0 10 20 30 NO 3 SiO 4 pco 2 Chl Станция 8 Z=70 SiO4 300 350 400 450 500 pco2 0 0.2 0.4 0.6 Chl 0 4 8 12 16 Т/NO3 0 10 20 30 SiO 4 NO 3 pco 2 T SiO4 300 350 400 450 500 pco2 0 0.2 0.4 0.6 Chl T Станция 9 Z=106 Chl 0 20 40 60 0 40 60 After 0 4 8 12 16 Т/NO3 0 10 20 30 Станция 58 Z=88 T SiO 4 pco 2 Chl NO 3 SiO4 300 350 400 450 500 pco2 0 0.4 0.8 1.2 Chl 0 4 8 12 16 Т/NO3 0 10 20 30 SiO 4 Chl NO 20 3 T pco 2 Станция 63 Z=26 SiO4 300 350 400 450 500 pco2 0 0.4 0.8 1.2 Chl Nutrients: Before: PP was limited by low nutrients, esp. Nitrates After: Gradual increase of nutrients caused by weakened stratification and uplift of picnocline pco2 profiles: - increased production in upper layer and destruction in lower layer after upwelling Vertical profiles of T, pco2, NO3, SiO4 and Chl a for some stations before (L1) and after (L2) upwelling

Chl-a and Primary Production Хлорофилл, мг/м 2 44 43 42 30 20 10 19-23 8-11(52-58) Vladivostok 2-7 (59-63) I Before 0 0 20 40 60 80 100 Расстояние от берега, км 63 2 3 4 61 5 58 8 7 59 6 11 54 52 Preobrazhenie 37 38 18 15 41 12 43 Olga 30-34 12-18(37-43) Хлорофилл, мг/м 2 30 20 10 59-63(2-7) II 52-58(8-11) S1 37-43(12-18) S3 0 0 40 80 120 Расстояние, км Chl a content in a photic layer along the sections in situ (more increasing in the west, more increasing at the coast) Daily Primary Production in a photic layer 15.10 17.10 28.10 31.10.2000 44-51 After S2 43.4 43.2 43 42.8 42.6 42.4 42.2 ПП (мгс/м2/день)_i 42 132 132.2 132.4 132.6 132.8 133 133.2 133.4 133.6 133.8 134 43.4 43.2 43 42.8 42.6 42.4 42.2 ПП (мгс/м2/день)_ii_a 42 132 132.2 132.4 132.6 132.8 133 133.2 133.4 133.6 133.8 134 Before After before Chl a SeaWiFS data (O.Kopelevich, S.Zakharkov, E.Streikhert) after

Changes in water mass structure and stratification S1 S3 T, o C S1 S3 10 m 3.5 5.2 50 m 9.6 0.5 MLD, m S1 S3 before 55 30 after 35 35 before after before after Intrusion area, wide shelf: -Initially: well mixed -Nutrients supply -Uplift of picnocline -Convective mixing - upper lr. -Decrease MLD Upwelling area, narrow shelf: - Initially: stratified - Nutrients supply - Vertical mixing - Weakening of stratification - Increase MLD On shore intrusion wide shelf S1 Eddy Upwelling, divergence narrow shelf S3

Ventilation of Peter the Great Bay by advection of deep sea water onto the shelf

Advection of deep sea water onto the shelf of PGB Water temperature in the Amursky Bay at 5 m and 26 m from July 12 to October 5, 2005 T surf 1 2 3 T btm Проведенные в 2005-2007 гг. измерения течений показали, что вторжения морских вод в придонном слое достигают полуостровава Песчаный и эффективно вентилируют воды Амурского залива в осенне-зимний период 18 Sept

Ecological problems of Primorye shelf area: Severe hypoxia of near-bottom layer in the Amurskiy Bay Lowest oxygen concentration was 4 µmol/kg. (1.5%) N 43.40 43.35 43.30 43.25 surface bottom 2007 2007 300 270 240 210 2007 43.20 43.15 43.10 43.05 180 150 120 90 60 First finding! 43.00 30 0 42.95 43.40 43.35 43.30 surface bottom 2008 2008 2008 43.25 43.20 43.15 43.10 43.05 43.00 42.95 131.50 131.55 131.60 131.65 131.70 131.75 131.80 131.85 131.90 131.95 131.50 131.55 131.60 131.65 131.70 131.75 131.80 131.85 131.90 131.95 E Distribution of oxygen concentration (umol/kg) in Amurskiy Bay, in surface and bottom layers. August, 2007 (upper panel). August, 2008 (bottom panel). 27

Ecological problems of Primorye shelf area: seasonal hypoxia of Amurskiy Bay Razdolnaya River Inputs Vladivostok City Inputs Stable ice New ice formation area Winter TS convection Deep Water Intrusion Drifting ice Amurskiy Bay is semiclosed basin. It is located in the northwestern part of Peter the Great Bay. Its length is about 70 km and depth varies from 0 up to 53 m (average depth is about 15 m). Square of the bay is about 1000 km 2. Annual river-runoff is 2.5 km 3. Population around Amurskiy Bay is 300,000. Northern part of the Bay is covered by ice in winter time. 28

Ecological problems of Primorye shelf area: seasonal hypoxia of Amurskiy Bay Razdolnaya River Inputs Winter TS convection Vladivostok City Inputs AOU, µmol/kg 300 250 200 150 100 50 0-50 a 0 1 2 3 4 5 6 7 8 9 10 11 12 Deep Water Intrusion O2, µmol/kg -100 450 400 350 300 250 200 150 100 50 0 b 0 1 2 3 4 5 6 7 8 9 10 11 12 months Amurskiy Bay is semiclosed basin. It is located in the northwestern part of Peter the Great Bay. Its length is about 70 km and depth varies from 0 up to 53 m (average depth is about 15 m). Square of the bay is about 1000 km 2. Annual river-runoff is 2.5 km 3. Population around Amurskiy Bay is 300,000. Northern part of the Bay is covered by ice in winter time. 29

Bosfor Vostohchniy Strait Mooring 23.07-14.09. 2009 seasonal formation and abrupt destruction of hypoxia 22-25.08 1 Amurskiy Bay Vladivostok T Ussuriyskiy Bay Ventilation of bottom layer DO H=48 m RDCP-600 Max of hypoxia

Ventilation of hypoxia in the Amurskiy Bay Abrupt changes of T, S и DO along the section crossing Amurskiy and Ussuriyskiy Bays 1-7 October Hypoxic zone T S DO

Ventilation of hypoxia in the Amurskiy Bay Abrupt changes of T, S и DO along the section crossing Amurskiy and Ussuriyskiy Bays 1-7 October and 27-30 October, 2011 Hypoxic zone T S DO T S DO

Abrupt decrease of water temperature in Ussuriysky Bay, caused by advection stream, Sept 24-25 2008 43.3 43.2 43.1 43.0 42.9 12 11 10 9 8 7 6 5 4 3 2 1 42.8 T, o C 42.7 131.5 131.6 131.7 131.8 131.9 132.0 132.1 132.2 132.3 132.4 132.5 18 2 10 o C in 6 hours, 16 o C in 1 day!

T, o C 22 20 18 16 14 12 10 8 6 2008 Inter-annual Variability of the Upwelling 09.25 4 2 0 22 20 18 16 2009 T, o C 18 а 08.24 14 12 10 8 6 2 4 2 0 22 14 07.30 б 20 18 16 14 12 52010 10 8 6 4 2 0 4.06 15.06 25.06 5.07 15.07 25.07 6.08 16.08 26.08 7.09 17.09 27.09 7.10 17.10 27.10 Рис. в Изменение придонной температуры воды (Н=21.5 м) в южной части пролива Старка ( 42. 57.02 с.ш., 131. 48.19 в.д.): а - 2008 г., б 2009 г., в 2010 г..

Conclusion 1. Seasonal upwelling develops at the northwestern Japan Sea along Primorye coast during transition of monsoon winds (September-October period). 2. Eddy dynamics leads to intensification of cross shelf transport, formation of local upwelling areas, changes of vertical stratification and increase of primary production 3. Water mass properties and primary productions most prominent because of advection of upwelled water onto the shelf 4. Ventilation of hypoxic conditions at peter the Great Bay slope by upwelling is very important 5. Upwelling brings high salinity water onto the shelf which controls winter convection processes and slope cascading in next winter