Formation of Nudicaulins In Vivo and In Vitro and the Biomimetic Synthesis and Bioactivity of O-Methylated Nudicaulin Derivatives

Similar documents
LC-MS-Guided Isolation of Insulin Secretion-promoting. Monoterpenoid Carbazole Alkaloids from Murraya

Hawaiienols A D, Highly Oxygenated p-terphenyls from an. Insect-Associated Fungus Paraconiothyrium hawaiiense

Bafilomycins and Odoriferous Sesquiterpenoids from Streptomyces albolongus Isolated from Elephas maximus Feces

Fortunoids A C, Three Sesquiterpenoid Dimers with. Different Carbon Skeletons from Chloranthus fortunei

Supporting information

Lipid Peroxidation and Cyclooxygenase Enzyme Inhibitory Compounds

Supplementary Information

Support Information. Diketopiperazines as cross communication quorum-sensing signals between Cronobacter sakazakii and Bacillus cereus

Surface disinfection process

Surface disinfection process

Marine AChE inhibitors isolated from Geodia baretti: Natural compounds and their synthetic analogs

What surveillance do we have for AMR?

Joo Tae Hwang, Yesol Kim, Hyun-Jae Jang, Hyun-Mee Oh, Chi-Hwan Lim, Seung Woong Lee and Mun-Chual Rho

Supporting Information

Supplementary Materials: Bioactive Polycyclic Quinones from Marine Streptomyces sp. 182SMLY

Evgeny A. Katayev and Markus B. Schmid

Internal Quality Assurance. Jenny Andrews Secretary of the BSAC Working Party on Susceptibility Testing

Supporting information. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation

Supporting Information

Height (ft) Find the average rebound percentage for your ball. Show your work.

National surveillance services a helpful investment in educating healthcare professionals

A New Inhibitor Targeting Signal Transducer and Activator of. Transcription 5 (STAT5) Signaling in Myeloid Leukemias

FOAM. Overview. Sterilast 1550 Tiburon Blvd, Suite G-325, Tiburon, CA Page 1 of 8

Height (ft) Find the average rebound percentage for your ball. Show your work.

MediZAR. MediZar Sanitiser Products Ltd.

Supporting information for J. Med. Chem., 1994, 37(5), , DOI: /jm00031a018

Dehydrogenative Transformations of Imines Using a Heterogeneous Photocatalyst. Supporting Information

Co(III)-Catalyzed C H Activation: A Site-Selective Conjugate Addition of Maleimide to Indole at the C-2 Position

Synthesis of Potential Antimicrobial/Antitubercular s-triazine Scaffolds Endowed with Quinoline and Quinazoline Heterocycles

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 ISSN SUPPORTING INFORMATION

User guide for the NMR spectrometer AVA400Stud

International Journal of Generic Drugs ANALYTICAL METHOD PROCEDURES THIS SOP IS 'SWITCHED : OFF : ON'

Supporting information. Random Structural Modification of a Low Band Gap BODIPY-Based Polymer

Application of nanosilver in swimming pool water treatment technology

Thermo Scientific Heraeus BBD6220 CO 2 Incubators

Thermo Scientific Heraeus BBD6220 CO 2 Incubators

Contamination Removal of EUVL masks and optics using 13.5-nm and 172-nm radiation

Bacterial retention within a multi-layered absorbent AIRLOCK Technology Single Use Negative Pressure Wound Therapy (snpwt) dressing

DOS in Food Science & Nutrition, Manasagangotri, Mysore

Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake

CHEMISTRY 102D ASSIGNMENTS. WEEK 1 (August 23-27) Introduction, Classification of Matter, Significant Figures, Dimensional Analysis

Application Note. Rapid performance verification of AZURA systems with refractive index detector. Summary. Introduction

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

iba World of IBA Oligos HIGH QUALITY DNA AND RNA CUSTOM SERVICES FLUORESCENT LABELS Solutions For Life Sciences

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

complex formation in mortar-pestle along with living cell imaging

SUPPLEMENTARY MATERIAL TO Solvatochromism of isatin based Schiff bases: An LSER and LFER study

INVASIVE BACTERIAL DISEASE SURVEILLANCE REPORT, 2016

ANALYTICAL SCALE HPLC AGILENT SYSTEMS OPERATIONAL QUALIFICATION

Analysis of the Comparative Workflow of the VITEK 2 and the Phoenix System

Relative Dosimetry. Photons

Antimicrobial Resistance in the UK

Wavemength [nm] Supplementary Figure 1: Absorption spectra of Ap3 in various solvents.

SUPPORTING INFORMATION

1. INTRODUCTION 2. THE PURPOSE OF THE USER GUIDE 3. CONTACT 4. INSTRUCTIONS FOR USE. 4.1 How to access the BSAC Resistance Surveillance Database

Ozone Technology for Commercial Pools. presented by. DEL Ozone

Three-Dimensional Plasmonic Hydrogel Architecture: Facile Synthesis and Its Macro Scale Effective Space

Pseudomonas aeruginosa for the Evaluation of Swimming Pool Chlorination and Algicides

ESCMID Online Lecture Library. by author

Invasive Bacterial Disease Surveillance Report Emerging Infections Program Minnesota Department of Health

Gas Clean. Filters. Delivering Clean Gases for GC and GC/MS Operation

Detection of Micro-organisms in Compressed Gases

Laboratory Accreditation Programmes

Analysis of Benzenesulfonic Acid and P-Toluenesufonic Acid Esters in Genotox Monitoring using UPLC/UV-MS

Aliphatic Polycarbonates and Poly(ester carbonate)s from Fatty Acid Derived Monomers

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Dehydrochlormethyltestosterone: An Analytical Profile

Supporting Information for:

Any laboratory is equipped with specific tools, equipment,

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

MICROBIOLOGICAL CO2 INCUBATORS. NuAire, Inc Fernbrook Lane Plymouth, MN U.S.A. nuaire.com

NuAire, Inc Fernbrook Lane Plymouth, MN U.S.A

Walleye pollock condition in the Bering Sea

Effects of Relative Humidity, Concentration, and Exposure Time on the Efficacy of Chlorine Dioxide Gas Decontamination

UVGI Device for Direct Irradiations UV-DIRECT-NX

USP <797> LABELING ESTABLISHING BEYOND-USE DATES AND IN-USE TIMES

INVASIVE BACTERIAL DISEASE SURVEILLANCE REPORT, 2010

Biphenyls from the Twigs of Garcinia multiflora and their Anti- Tobacco Mosaic Virus Activities

Supporting Information for. Grafting trimethylaluminum and its halogen derivatives on silica: General trends for

Setting a New Standard in Flash Chromatography Performance

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

(2 pts) Draw the line of best fit through the data and estimate the concentration of Fe in your sample solution.

Mid-IR Lasers Market Review and Forecast 2010

Characterization and formulation of cocrystals

sensors ISSN

Instructions for SOTA Water Ozonator Model WOZ5

Practical aspects of tapering for competition in athletics. Iñigo Mujika

How type 1 fimbriae help Escherichia coli to evade extracellular

The Water O 3. zonator. Model WOZ3 Manual CONTENTS

Hyperbarics and Wound Care: A Perfect Partnership

Ms. Peggy Gilligan Associate Administrator for Aviation Safety Federal Aviation Administration 800 Independence Avenue, SW Washington, DC 20590

Metabolomics-driven Discovery of Meroterpenoids from a Musselderived. Penicillium ubiquetum

Beta Study Report. Results of Nosocomial Infection Study In Whirlpool Bathing

Measuring Relative Permeability With NMR

Agilent 1290 Infinity LC System Applications requiring the Agilent Ultra-Low Dispersion Kit

INSTruCTIONS FOr SOTa WaTEr O ZONaTOr model WOZ5 CONTENTS INTrOduCTION COmplEmENTary units

Automatic Soft Water Ozone Sanitation System Patent Pending

HEALTH AND WATER QUALITY OF SWIMMING POOL: THE ITALIAN REGULATORY GUIDELINES

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π

APPLICATION NOTE. This application note will summarize the power and thermal cycling capability of eupec high power IGBT modules.

Transcription:

Formation of Nudicaulins In Vivo and In Vitro and the Biomimetic Synthesis and Bioactivity of O-Methylated Nudicaulin Derivatives Bettina Dudek 1,, Florian Schnurrer 1,, Hans-Martin Dahse 2, Christian Paetz 1, Anne-Christin Warskulat 1, Christiane Weigel 2, Kerstin Voigt 2 and Bernd Schneider 1, * 1 Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany; bdudek@ice.mpg.de (B.D.); fschnurrer@ice.mpg.de (F.S.); cpaetz@ice.mpg.de (C.P.); anne.warskulat@yahoo.de (A.-C.W.) 2 Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, D-07745 Jena, Germany; hans-martin.dahse@hki-jena.de (H.-M.D.); christiane.weigel@hki-jena.de (C.W.); kerstin.voigt@hki-jena.de (K.V.) * Correspondence: schneider@ice.mpg.de; Tel.: +49-3641-5549682 These authors contributed equally to this work. Supplementary Materials Table of content 1. Nudicaulin formation 3 2. NMR spectra 3 3. HR-MS 19 4. UV/Vis absorption spectra 21 5. CD spectrum 24 6. Cell Toxicity 25 7. Antimicrobial activity 28 Table of schemes, figures, and tables Scheme S1: Formation of nudicaulin derivatives from pelargonidin glucosides in P. nudicaule petals. Cyanidin, which possesses one additional hydroxyl group, can also form nudicaulin derivatives. 3 Figure S1: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 4 Figure S2: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 4 Figure S3: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d4) 5 Figure S4: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d4) 5 Figure S5: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), 1 H- 1 H COSY spectrum (500 MHz, 1% TFA- MeOH-d4) 6 Figure S6: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 6 Figure S7: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 7 Figure S8: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d4) 7 Figure S9: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d4) 8 Figure S10: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), 1 H- 1 H COSY spectrum (500 MHz, 1% TFA - MeOH-d4 8 Figure S11: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 9 Figure S12: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 9 Figure S13: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d4)10

Figure S14: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d4) 10 Figure S15: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H- 1 H COSY spectrum (500 MHz, 1% TFA - MeOH-d4) 11 Figure S16: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 11 Figure S17: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 12 Figure S18: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d4)12 Figure S19: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d4) 13 Figure S20: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), 1 H- 1 H COSY spectrum (500 MHz, 1% TFA - MeOH-d4) 13 Figure S21: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (10), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 14 Figure S22: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (8), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 14 Figure S23: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d4) 15 Figure S24: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d4)15 Figure S25: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (10), 1 H- 1 H COSY spectrum (500 MHz, 1% TFA - MeOH-d4) 16 Figure S26: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 16 Figure S27: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d4) 17 Figure S28: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOHd4) 17 Figure S29: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOHd4) 18 Figure S30: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (10), 1 H- 1 H COSY spectrum (500 MHz, 1% - MeOH-d4) 18 Figure S31: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), mass spectrum 19 Figure S32: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), mass spectrum 19 Figure S33: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), mass spectrum 19 Figure S34: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), mass spectrum 20 Figure S35: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (10), mass spectrum 20 Figure S36: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), mass spectrum 20 Figure S37: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), UV/Vis spectrum (0.1 % TFA-MeOH) 21 Figure S38: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), UV/Vis spectrum (0.1 % TFA-MeOH) 21 Figure S39: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), UV/Vis spectrum (0.1 % TFA-MeOH) 22 Figure S40: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), UV/Vis spectrum (0.1 % TFA-MeOH) 22 Figure S41: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (10), UV/Vis spectrum (0.1 % TFA-MeOH) 23 Figure S42: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), UV/Vis spectrum (0.1 % TFA-MeOH) 23 Figure S43: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), CD spectrum (concentration 0.78 mg ml -1 (1.66 mm in MeOH), cuvette width 1 mm) 24 Figure S44: Dose response relationship for antiproliferative effect on HUVEC cells (72 h), Representative curves are given. 26 Figure S45: Dose response relationship values for antiproliferative effect on K-562 cells (72 h), Representative curves are given. 26 Figure S46: Dose response relationship values for cytotoxicity on HeLa cells (72 h), Representative curves are given. 27 Table S1: Antiproliferative and cytotoxicity data of compounds 6-11 25 Table S2: Antimicrobial data of compounds 6-11 28

1. Nudicaulin formation Scheme S1: Formation of nudicaulin derivatives from pelargonidin glucosides in P. nudicaule petals. Cyanidin, which possesses one additional hydroxyl group, can also form nudicaulin derivatives.

2. NMR spectra Figure S1: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S2: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S3: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S4: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S5: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), 1 H- 1 H COSY spectrum (500 MHz, 1% TFA- MeOH-d 4) Figure S6: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S7: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S8: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S9: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S10: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), 1 H- 1 H COSY spectrum (500 MHz, 1% TFA - MeOH-d 4

Figure S11: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S12: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S13: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S14: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S15: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H- 1 H COSY spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S16: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S17: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S18: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S19: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S20: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), 1 H- 1 H COSY spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S21: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (10), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S22: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (8), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S23: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S24: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (8), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S25: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (10), 1 H- 1 H COSY spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S26: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), 1 H-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S27: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), 13 C-NMR spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S28: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), 1 H- 13 C HSQC spectrum (500 MHz, 1% TFA - MeOH-d 4)

Figure S29: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), 1 H- 13 C HMBC spectrum (500 MHz, 1% TFA - MeOH-d 4) Figure S30: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (10), 1 H- 1 H COSY spectrum (500 MHz, 1% - MeOH-d 4)

3. HR-MS Figure S31: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), mass spectrum Figure S32: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), mass spectrum Figure S33: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), mass spectrum

Figure S34: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), mass spectrum Figure S35: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (10), mass spectrum Figure S36: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), mass spectrum

4. UV/Vis absorption spectra UV/Vis absorption spectra were acquired with the photodiode array detector (PDA) G1315B, 200-700 nm of HPLC 1 (Chapter 4.1). Figure S37: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), UV/Vis spectrum (0.1 % TFA-MeOH) Figure S38: 16-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (7), UV/Vis spectrum (0.1 % TFA-MeOH)

Figure S39: 17-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (8), UV/Vis spectrum (0.1 % TFA-MeOH) Figure S40: 18-Methyl-5,7,11,3,4 -penta-o-methylnudicaulin (9), UV/Vis spectrum (0.1 % TFA-MeOH)

Figure S41: 17-Fluoro-5,7,11,3,4 -penta-o-methylnudicaulin (10), UV/Vis spectrum (0.1 % TFA-MeOH) Figure S42: 17-Hydroxy-5,7,11,3,4 -penta-o-methylnudicaulin (11), UV/Vis spectrum (0.1 % TFA-MeOH)

5. CD spectrum Figure S43: 5,7,11,3,4 -Penta-O-methylnudicaulin (6), CD spectrum (concentration 0.78 mg ml -1 (1.66 mm in MeOH), cuvette width 1 mm)

6. Cell Toxicity Table S1: Antiproliferative and cytotoxicity data of compounds 6-11 Antiproliferative activity Cytotoxicity Compound HUVEC K-562 HeLa GI 50 µmol l -1 GI 50 µmol l -1 CC 50 µmol l -1 6 1.3 (± 0.2) 1.1 (± 0.4) 3.4 (± 0.4) 7 2.5 (± 1.2) 1.4 (± 0.6) 5.8 (± 0.2) 8 5.3 (± 1.9) 4.1 (± 0.6) 16.5 (± 1.4) 9 2.9 (± 0.4) 2.9 (± 0.4) 8.4 (± 1.2) 10 2.2 (± 0.6) 1.0 (± 0.2) 5.7 (± 0.2) 11 2.0 (± 0.4) 1.0 (± 0.4) 5.5 (± 0.2) Imatinib * 22.1 (± 2.4) 0.2 (± 1.4 10-2 ) 78.6 (± 2.8) Doxorubicin * 0.2 1.0 (± 1.1) 3.68 (± 1.5) For structures of compounds 6-11, see Scheme II. * Chemotherapeutic drugs, values published in [23] Krauth, F.; Dahse, H.-M.; Rüttinger, H.-H.; Frohberg, P. Synthesis and characterization of novel 1,2,4-triazine derivatives with antiproliferative activity. Bioorg. Med. Chem. 2010, 18, 1816 1821, DOI 10.1016/j.bmc.2010.01.053.

100 Antiproliferative Effect on HUVEC (72 h) Proliferation (% vs. Control) 50 0 0.1 1 10 100 1000 Concentration (µmol l -1 ) Control 6 7 8 9 10 11 Figure S44: Dose response relationship for antiproliferative effect on HUVEC cells (72 h), Representative curves are given. 100 Antiproliferative Effect on K-562 (72 h) Proliferation (% vs. Control) 50 0 0.1 1 10 100 1000 Concentration (µmol l -1 ) Control 6 7 8 9 10 11 Figure S45: Dose response relationship values for antiproliferative effect on K-562 cells (72 h), Representative curves are given.

Cytotoxicity on HeLa (72 h) 100 Viability (% vs. Control) 50 0 0.1 1 10 100 1000 Concentration (µmol l -1 ) Control 6 7 8 9 10 11 Figure S46: Dose response relationship values for cytotoxicity on HeLa cells (72 h), Representative curves are given.

7. Antimicrobial activity Table S2: Antimicrobial data of compounds 6-11 Compound 6* 7* 8* 9* 10* 11* Ciproflaxacin*ricin MeOH Amphote- B*** c mg ml -1 1 1 1 1 1 1 5*10-3 0 1*10-2 Bacillus subtilis 6633 B1 0 0 12P 0 0 0 28 0 0 Staphylococcus aureus 511 B3 0 0 13P 0 0 0 18 0 0 Escherichia coli 458 B4 0 0 0 0 0 0 24/ 32p 0 0 Pseudomonas aeruginosa SG137 B7 0 0 0 0 0 0 26 10 0 P. aeruginosa K799/61 B9 0 0 0 0 0 0 28/37p 0 0 MRSA S. aureus 134/93 R9 0 0 13P 0 0 0 0 0 0 VRE Enterococcus faecalis 1528 R10 0 0 0 0 0 0 17F 0 0 Mycobacterium vaccae 10670 M4 18p 14p 14p 15p 15p 18p 23p 0 0 Sporobolomyces salmonicolor 549 H4 0 0 0 0 0 0 0 18p Candida albicans C. alb H8 0 0 0 0 0 0 0 0 21 Penicillium notatum JP36 P1 0 0 0 0 0 0 0 0 18p For structures of compounds 6-11, see Scheme II. p = colonies in the inhibition zone; P = many colonies in the inhibition zone; A = indication of inhibition; F = promotion of growth * solution in MeOH ** solution in deionized water *** solution in DMSO/MeOH MRSA indicates methicillin-resistant Staphylococcus aureus VRE indicates vancomycin-resistant Enterococcus