Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Similar documents
Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Fabrication of Novel Lamellar Alternating Nitrogen-Doped

state asymmetric supercapacitors

Supporting Information

Supporting information

Supporting Information

Supplementary Material

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supporting Information

Electronic Supporting Information (ESI)

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Electronic Supplementary Information (ESI)

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Electronic Supplementary Information

Supporting Information

Supporting Information for

Supporting Information for

Supplementary Information

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Electronic Supplementary Information (ESI)

Supporting Information

Electronic Supplementary Information

Supplementary Information

Supporting Information

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Supporting information

Supporting Information

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supporting Information

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Supplementary Information

Supporting Information

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Supporting Information

noble-metal-free hetero-structural photocatalyst for efficient H 2

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Electronic Supplementary Information

Electronic Supplementary Information (ESI)

Supporting Information

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Supplementary Information

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Supporting Information

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Highly enhanced performance of spongy graphene as oil sorbent

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Electronic Supplementary Information (ESI) for. MnOOH/Nitrogen-Doped Graphene Hybrid Nanowires. Sandwiched by Annealing Graphene Oxide Sheets for

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Electronic Supplementary Information

Supporting Information

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

Electronic Supplementary Information

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Electronic Supplementary Information for

Supporting information

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

Supplementary Information

Curriculum Vitae. Yu (Will) Wang

Hydrophilic/Hydrophobic Interphase-Mediated. Bubble-Like Stretchable Janus Ultrathin Films. Towards Self-Adaptive and Pneumatic

Flexible Nb 4 N 5 /rgo Electrode for High-Performance Solid State Supercapacitors. Huazhong University of Science and Technology Wuhan , China

Complex Systems and Applications

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Ph.D., Industrial and Systems Engineering, 2009

The study of 3-strand PP/PE composite monofilament Rope

Supporting Information

2012 International Conference on Future Energy, Environment, and Materials

Imaging Spectrometer. Technologies and Applications PROCEEDINGS OF SPIE. International Symposium. Detection and Imaging on Photoelectronic

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Analysis of wind resistance of high-rise building structures based on computational fluid dynamics simulation technology

RSC Advances.

Identification of a Large Amount of Excess Fe in Superconducting Single- Layer FeSe/SrTiO 3 Films

HONG KONG CHINA BODYBUILDING & FITNESS ASSOCIATION IS A MEMBER OF THE WBPF, ABBF & EABBF AND RECOGNISED BY THE SPORTS FEDERATION & OLYMPIC COMMITTEE O

Simulation Research of a type of Pressure Vessel under Complex Loading Part 1 Component Load of the Numerical Analysis

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

3D CNTs/Graphene-S-Al 3 Ni 2 Cathodes for High-Sulfur-Loading and Long-Life Lithium Sulfur Batteries

Transcription:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Facile fabrication of well-defined polyaniline microtubes derived from natural kapok fiber for supercapacitor with long-term cycling stability Weibing Xu a,b, Bin Mu a*, Wenbo Zhang a,c and Aiqin Wang a* a State Key Laboratory of Solid Lubrication, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. b University of Chinese Academy of Sciences, Beijing 100049, P.R. China. c School of Chemical Engineering, Northwest University for Nationalities, Lanzhou 730000, P.R.China. * Corresponding authors. Tel.: +86 931 4968118; fax: +86 931 8277088. E-mail: mubin@licp.cas.cn (B. Mu). aqwang@licp.cas.cn (A. Wang). 1

Fig. S1 The specific capacitance of bulk PANI and PANI microtubes prepared using different concentration of NaOH solution for 60 min (a), and (b) 6.0 M NaOH solution for different etching time. Fig. S2 SEM images of PANI microtubes prepared using NaOH solution with different concentrations of (a) 2.0 M, (b) 4.0 M, (c) 6.0 M and (d) 8.0 M. 2

Fig. S3 EIS spectra of PANI microtubes prepared using different concentrations of NaOH solution for 60 min: (a) 2.0 M, (b) 4.0 M, (c) 6.0 M and (d) 8.0 M. Fig. S4 Cycle stability of PANI microtubes prepared using different concentrations of NaOH solution for 60 min: (a) 2.0 M, (b) 4.0 M, (c) 6.0 M and (d) 8.0 M. 3

Fig. S5 CV curves of the negative (AC) and positive (PANI microtubes) electrodes in a three-electrode configuration at a scan rate of 10 mv s -1 and (b) CV curves of the PANI microtubes//ac asymmetric supercapacitor at a scan rate of 100 mv s -1 within different potential windows in 1.0 M H 2 SO 4. 4

Table S1 Comparison of the diameter and the cycling stability of various micro/nanostructured PANI materials. Morphology Diameter Templat e Max capacitance Retention(cycles) Ref Nanofibers 400-550nm PAA 601 62%(500) 1 Nanotube 400nm ZnO 650 65%(400) 2 Nanowire 50nm Free 950 88%(500) 3 Nanowires 30-60nm Free 775 90%(1500) 4 Nanofibers 100nm Free 278 53%(2000) 5 Nanofibers 200nm Free 267 86%(1000) 6 Nanotubes 100nm MnO 2 533 65%(1000) 7 Nanofibers 110nm PPD 548 75%(1000) 8 Irregular - Free 323 89%(1300) 9 Nanorods 50nm Free 455 65%(1300) 10 Particles 100nm Free 358 95%(1000) 11 Nanofibers 50-100nm SA 2093 74%(1000) 12 Nanorods 150nm Free 658 65%(250) 13 Nanotubes 80nm MnO 2 661 63%(1000) 14 Nanotubes 100nm MnO 2 896 57%(6000) 15 Nanobelts 2µm Free 873 96%(1000) 16 Nanorods 1-2µm Free 757 90%(1000) 17 Nanofibers Microtube 70-100nm 20-25µm Free KF 480 667 75%(1000) 60%(10000) 18 This 1. Y. E. Miao, W. Fan, D. Chen and T. X. Liu, ACS applied materials & interfaces, 2013, 5, 4423-4428. 2. Z. L.Wang, R. Guo, G. R. Li, H. L. Lu, Z. Q. Liu, F. M. Xiao, M. Q. Zhang and Y. X. Tong, Journal of Materials Chemistry, 2012, 22, 2401-2404. 3. K. Wang, J. Y. Huang and Z. X. Wei, The Journal of Physical Chemistry C, 2010, 114, 8062-8067. 4. V. Gupta and N. Miura, Materials Letters, 2006, 60, 1466-1469. 5. H. L. Xu, X. W. Li and G. C. Wang, Journal of Power Sources, 2015, 294, 16-21. 5

6. S. Chaudhari, Y. Sharma and P. S. Archana, Journal of Applied Polymer Science, 2013, 129, 1660-1668. 7. L. R. Wang, F. Ran, Y. T. Tan, L. Zhao, L. B. Kong and L. Kang, Chinese Chemical Letters, 2011, 22, 964-968. 8. H. Guan, L. Z. Fan, H. C. Zhang and X. H. Qiu, Electrochimica Acta, 2010, 56, 964-968. 9. X. Wang, D. Liu, J. X. Deng, X. J. Duan, J. S. Guo and P. Liu, RSC Advances, 2015, 5, 78545-78552. 10. X. Wang, J. X. Deng, X. J. Duan, D. Liu, J. S. Guo and P. Liu, Journal of Materials Chemistry A, 2014, 2, 12323-12329. 11. J. X. Deng, X. Wang, J. S. Guo and P. Liu, Industrial & Engineering Chemistry Research, 2014, 53, 13680-13689. 12. Y. Z. Li, X. Zhao, Q. Xu, Q. H. Zhang and D. J. Chen, Langmuir, 2011, 27,6458-6463. 13. H. Xu, J. L. Li, Z. J. Peng, J. X. Zhuang and J. L. Zhang, Electrochimica Acta, 2013, 90, 393-399. 14. L. J. Ren, G. N. Zhang, J. F. Wang, L. P. Kang, Z. B. Lei, Z. W. Liu, Z. T. Liu, Z. P. Hao and Z. H. Liu, Electrochimica Acta, 2014, 145, 99-108. 15. W. Chen, R. B. Rakhi, H. N. Alshareef, The Journal of Physical Chemistry C, 2013, 117, 15009-15019. 16. G. R. Li, Z. P. Feng, J. H. Zhong, Z. L. Wang and Y. X. Tong, Macromolecules, 2010, 43, 2178-2183. 6

17. J. Ma, Y. F. Liu, Z. H. Hu and Z. J. Xu, Ionics, 2013, 19, 1405-1413. 18. H. R. Ghenaatian, M. F. Mousavi, S. H. Kazemi and M. Shamsipur, Synthetic Metals, 2009, 159, 1717-1722. Table S2 Comparison of energy density (ED) and power density (PD) of supercapacitor based on various micro/nano-structured PANI materials. Material Electrolyte ED a PD b Ref Polyaniline nanofibers 1 M HCl 9.4 Wh kg -1 436W kg -1 1 289 KW kg - Polyaniline nanotubes 1 M H 2 SO 4 8.7 Wh kg -1 1 2 Polyaniline powder 1 M LiPF6 14.8 Wh kg -1 48W kg -1 3 Graphene/Polyaniline Nanofiber 1 M HCl 18.5 Wh kg -1 100W kg -1 4 Polyaniline-MnO 2 nanotube 1 M H 2 SO 4 17.8 Wh kg -1 600W kg -1 5 Graphene-mesoporous polyaniline 1 M H 2 SO 4 11.3 Wh kg -1 107W kg -1 6 Polyaniline-MnO 2 nanofibrous 1 M NaNO 3 6.6 Wh kg -1 100W kg -1 7 RGO-PANI 1 M H 2 SO 4 17.6 Wh kg -1 10W kg -1 8 Graphene/PANI nanofibers 1 M H 2 SO 4 4.9 Wh kg -1 300W kg -1 9 3.1KW kg - Graphene nanoribbon/pani 1 M H 2 SO 4 7.6 Wh kg 1 1 10 21.1 Wh Graphene/MWCNT/PANI 1 M H 2 SO 4 kg 1 25KW kg -1 11 Polyaniline microtubes 1 M H 2 SO 4 14.1 Wh kg -1 250W kg -1 This work a ED is the highest value in literature. b PD corresponding to highest energy density. 1. H. R. Ghenaatian, M. F. Mousavi, S. H. Kazemi and M. Shamsipur, Synthetic Metals, 2009, 159, 1717-1722. 2. W. Chen, R. B. Rakhi and H. N. Alshareef, Journal of Materials Chemistry A, 2013, 1, 3315-3324. 7

3. K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park and S. H. Chang, Journal of Power Sources, 2002 103, 305-309. 4. Q. Wu, Y. Xu, Z. Yao, A. Liu and G. Shi, ACS nano, 2010, 4, 1963-1970. 5. J. R. Jaidev, A. K. Mishra, S. Ramaprabhu, J Mater Chem, 2011, 21, 17601-17605. 6. Q. Wang, J. Yan, Z. Fan, T. Wei, M. Zhang and X. Jing, Journal of Power Sources, 2014, 247, 197-203. 7. L. J. Sun, X. X. Liu, K. K. T. Lau, L. Chen and W. M. Gu, Electrochimica Acta, 2008, 53, 3036-3042. 8. P. Yu, X. Zhao, Z. Huang, Y. Li and Q. Zhang, Journal of Materials Chemistry A, 2014, 2, 14413-14420. 9. P. J. Hung, K. Chang, Y. F. Lee, C. C. Hu and K. M. Lin, Electrochim. Acta, 2010, 55, 6015 6021. 10. L. Li, A. R. Raji, H. Fei, Y. Yang, E. L. Samuel and J. M. Tour, ACS Appl. Mater. Interfaces, 2013, 5, 6622 6627. 11. J. Shen, C. Yang, X. Li and G. Wang, ACS Appl. Mater. Interfaces, 2013, 5, 8467 8476. 8

9