Section 1: Types of Waves

Similar documents
Section 1 Types of Waves

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

CHAPTER 10 WAVES. Section 10.1 Types of Waves

Characteristics of Waves

Mechanical waves Electromagnetic waves

Types of Waves. Section Section 11.1

Introduction to Waves

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

WAVES. Unit 3. Sources: Ck12.org

2 Characteristics of Waves

Name Class Date. How do waves behave when they interact with objects? What happens when two waves meet? How do standing waves form?

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

ENERGY OF WAVES ch.1 PRACTICE TEST

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School

Chapter 17 Mechanical Waves

Chapter 14: Waves. What s disturbing you?

Practice Problems For 1st Wave Exam

Directed Reading A. Section: The Nature of Waves WAVE ENERGY. surface of the water does not. Skills Worksheet. 1. What is a wave?

17.1: Mechanical Waves

Chs. 16 and 17 Mechanical Waves

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying

Waves, Sounds, and Light

How do waves interact with objects? How do waves behave when they move between two media? How do waves interact with other waves?

PHYSICS Simple Harmonic Motion, Vibrations and Waves

WAVES. Mr. Banks 8 th Grade Science

The physicist's greatest tool is his wastebasket Albert Einstein

Mechanical Waves and Sound

Parts of Longitudinal Waves A compression

Waves. What are waves?

Chapter 20 Study Questions Name: Class:

Chapter 17. Mechanical Waves and sound

What is a wave? A wave is a disturbance that transfers energy from place to place.

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse

Name Class Date. What is a wave? How do waves form? How are transverse and longitudinal waves different?

Wave a repeating disturbance or movement that transfers energy through matter or space

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p

Table of Contents. Chapter: Waves. Section 1: The Nature of Waves. Section 2: Wave Properties. Section 3: The Behavior of Waves

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Physics Waves & Sound

Physics Mechanics

Transverse waves cause particles to vibrate perpendicularly to the direction of the wave's motion (e.g. waves on a string, ripples on a pond).

Waves. Please get out a sheet of paper for notes.

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another.

Physical Science 1 Chapter 6 WAVES. A wave is a disturbance that is propagated through a system. Waves transfer energy.

Not all waves require a medium to travel. Light from the sun travels through empty space.

waves? Properties Interactions

Check out Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011

Waves & Interference

How do waves transfer energy?

PHYSICS. Waves & Simple Harmonic Motion

CERT Educational Series Light and Waves Module

What are waves? Wave

Exercises Vibration of a Pendulum (page 491) 25.2 Wave Description (pages ) 25.3 Wave Motion (pages )

Waves and Sound. Honors Physics

Slide 2 / 28 Wave Motion. A wave travels along its medium, but the individual particles just move up and down.

Cover Sheet-Block 6 Wave Properties

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

WAVES. Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train).

P11 Waves 1 Basics.notebook December 13, 2013

Chapter 19: Vibrations And Waves

Name: Section: Date: Wave Review

How are waves generated? Waves are generated by

Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed : Wave Basics / Wave Properties

Florida Benchmarks. SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials.

Vocabulary. Energy Wave Amplitude Conduction Convection Radiation Color spectrum Wavelength Potential energy

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Waves. Kevin Small or

Waves Disturbances that transport but not

Waves and Sound. (Chapter 25-26)

Physical Science Ch. 10: Waves

Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc.

hill The waves reach the house because the hill has caused them to be A water wave gap

a disturbance that transfers energy Carries energy from one place to another Classified by what they move through

MECHANICAL WAVES AND SOUND

Question. A. Incorrect! Check the definition for period. B. Incorrect! Check the definition for speed.

Lecture 8. Sound Waves Superposition and Standing Waves

Period: Date: 1. A single disturbance that moves from point to point through a medium is called a. a. period b. periodic wave c. wavelength d.

Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another.

Why are both electromagnetic and mechanical waves needed to make movies? Waves. transfer energy but do not carry medium with them.

Algebra Based Physics

This requires a medium!

Chapters 25: Waves. f = 1 T. v =!f. Text: Chapter 25 Think and Explain: 1-10 Think and Solve: 1-4

20.1 Waves. A wave is an oscillation that travels from one place to another. Because waves can change motion, they are a travelling form on energy.

Chapter 16 Waves and Sound

Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move.

Define transverse waves and longitudinal waves. Draw a simple diagram of each

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

WAVES, WAVE BEHAVIOR, GEOPHYSICS AND SOUND REVIEW ANSWER KEY

Physical Science Ch. 10: Waves

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

Physics 101 Lecture 20 Waves & Sound

Academic Year First Term. Grade 6 Science Revision Sheet

Chapter 19: Vibrations and Waves

Chapter # 08 Waves. [WAVES] Chapter # 08

Transcription:

Waves Section 1 Section 1: Types of Waves Preview Key Ideas Bellringer What Is a Wave? Vibrations and Waves Transverse and Longitudinal Waves Surface Waves

Waves Section 1 Key Ideas What does a wave carry? How are waves generated? What is the difference between a transverse wave and a longitudinal wave? How do the particles in ocean waves move?

Waves Section 1 Bellringer 1. Imagine throwing a rock into a pond or lake. Describe the effect that the rock has on the surface of the water. 2. When surfing, a person moves just ahead of a wave. Where does the energy come from to move the surfer through the water? 3. What happens to a string on a guitar or other stringed instrument when it is plucked?

Waves Section 1 What Is a Wave? What does a wave carry? A wave is a disturbance that carries energy through matter or space.

Waves Section 1 What Is a Wave?, continued

Waves Section 1 What Is a Wave?, continued Most waves travel through a medium. medium: a physical environment in which phenomena occur mechanical wave: a wave that requires a medium through which to travel examples: sound waves, water waves

Waves Section 1 What Is a Wave?, continued Electromagnetic waves do not require a medium. electromagnetic wave: a wave that consists of oscillating electric and magnetic fields, which radiate outward at the speed of light examples: visible light waves, radio waves

Waves Section 1 What Is a Wave?, continued Waves transfer energy. Tsunamis carry enough energy to cause damage to coastal towns. The energy of normal ocean waves breaks up rocks into pieces to form sandy beaches.

Waves Section 1 What Is a Wave?, continued Energy may spread out as a wave travels. When sound waves travel in air, the waves spread out in spheres. As the waves travel outward, the spherical wave fronts get bigger, so the energy spreads out over a larger volume.

Waves Section 1 Vibrations and Waves How are waves generated? Most waves are caused by vibrating objects. The sound waves produced by a singer are caused by vibrating vocal cords. Electromagnetic waves may be caused by vibrating charged particles. For mechanical waves, the particles in the medium through which the wave passes vibrate, too.

Waves Section 1 Vibrations and Waves, continued The mechanical energy of a vibrating mass-spring system changes form. This type of vibration is called simple harmonic motion.

Waves Section 1 Vibrations and Waves, continued A wave can pass through a series of vibrating objects. The disturbance travels down the row as energy is transferred from one mass to another. Wave particles move like masses on springs.

Waves Section 1 Transverse and Longitudinal Waves What is the difference between a transverse wave a longitudinal wave? A transverse wave is a wave in which the wave motion is perpendicular to the particle motion. A longitudinal wave is a wave in which the wave motion is parallel to the particle motion.

Waves Section 1 Transverse and Longitudinal Waves, continued Transverse waves have perpendicular motion. transverse wave: a wave in which the particles of the medium move perpendicularly to the direction the wave is traveling Longitudinal waves have parallel motion. longitudinal wave: a wave in which the particles of the medium vibrate parallel to the direction of wave motion

Waves Section 1 Transverse and Longitudinal Waves, continued Waves have crests and troughs or compressions and rarefactions. crest: the highest point of a wave trough: the lowest point of a wave compressions: the crowded areas of a longitudinal wave rarefactions: the stretched-out areas of a longitudinal wave

Waves Section 1 Surface Waves How do the particles in ocean waves move? The particles in a surface wave move both perpendicularly and parallel to the direction in which the wave travels. surface waves: waves that occur at the boundary between two different mediums, such as water and air

Waves Section 2 Section 2: Characteristics of Waves Preview Key Ideas Bellringer Wave Properties Wave Speed Math Skills The Doppler Effect

Waves Section 2 Key Ideas What are some ways to measure and compare waves? How can you calculate the speed of a wave? Why does the pitch of an ambulance siren change as the ambulance rushes past you?

Waves Section 2 Bellringer In the diagram, A is the distance from a point on one wave to an identical point on the next wave. What might this distance be called? 1. In the diagram, B is the amplitude of a wave. What do you think this is a measure of? 2. Twenty waves pass by a point in a certain amount of time. Would this be a measure of a wave s speed or frequency?

Waves Section 2 Wave Properties What are some ways to measure and compare waves? Amplitude and wavelength are measurements of distance. Period and frequency are measurements based on time.

Waves Section 2 Wave Properties, continued Amplitude measures the amount of particle vibration. amplitude: the maximum distance that the particles of a wave s medium vibrate from their rest position for a transverse wave, measured from the rest position to the crest or the trough expressed in the SI unit meters (m)

Waves Section 2 Wave Properties, continued Wavelength is the distance between two equivalent parts of a wave. wavelength: the distance from any point on a wave to an identical point on the next wave for a transverse wave, measured from crest to crest or trough to trough represented by the symbol l expressed in the SI unit meters (m)

Waves Section 2 Wave Properties, continued Amplitude and wavelength tell you about energy. larger amplitude = more energy shorter wavelength = more energy

Waves Section 2 Wave Properties, continued The period is a measurement of the time it takes for a wave to pass a given point. period: in physics, the time that it takes a complete cycle or wave oscillation to occur represented by the symbol T expressed in the SI unit seconds (s) in the diagram, T = 2 s

Waves Section 2 Wave Properties, continued Frequency is a measurement of the vibration rate. frequency: the number of cycles or vibrations per unit of time; also the number of waves produced in a given amount of time represented by the symbol f expressed in the SI unit hertz (Hz), which equals 1/s in the diagram, f = 0.5 Hz

Waves Section 2 Wave Properties, continued The frequency and period of a wave are related. The frequency is the inverse of the period. 1 frequency, or f 1/ T period

Waves Section 2 Wave Speed How can you calculate the speed of a wave? The speed of a wave is equal to wavelength divided by period, or to frequency multiplied by wavelength.

Waves Section 2 Wave Speed, continued Wave speed equals wavelength divided by period. speed = distance/time wave speed = wavelength/period, or v=λ/t Wave speed equals frequency times wavelength. 1 frequency T wave speed = frequency wavelength, or v = f l

Waves Section 2 Math Skills Wave Speed The string of a piano that produces the note middle C vibrates with a frequency of 262 Hz. If the sound waves produced by this string have a wavelength in air of 1.30 m, what is the speed of the sound waves? 1. List the given and unknown values. Given: frequency, f = 262 Hz wavelength, l = 1.30 m Unknown: wave speed, v =? m/s

Waves Section 2 Math Skills, continued 2. Write the equation for wave speed. v = f l 3. Insert the known values into the equation, and solve. v = 262 Hz 1.30 m v = 341 m/s

Waves Section 2 Wave Speed, continued The speed of a wave depends on the medium. In general, wave speed is greatest in solids and least in gases. In a given medium, the speed of waves is constant. Kinetic theory explains differences in wave speed. Light has a finite speed. the speed of light (c) = 3.00 10 8 m/s for electromagnetic waves, c = f l

Waves Section 2 The Doppler Effect Why does the pitch of an ambulance siren change as the ambulance rushes past you? Motion between the source of waves and the observer creates a change in observed frequency.

Waves Section 2 The Doppler Effect, continued Pitch is determined by the frequency of sound waves. The pitch of a sound (how high or low it is) is determined by the frequency at which sound waves strike the eardrum in your ear. A higher-pitched sound is caused by sound waves of higher frequency.

Waves Section 2 The Doppler Effect, continued Frequency changes when the source of waves is moving. Doppler effect: an observed change in the frequency of a wave when the source or observer is moving The Doppler effect occurs for many types of waves, including sound waves and light waves.

Waves Section 3 Section 3: Wave Interactions Preview Key Ideas Bellringer Reflection, Diffraction, and Refraction Interference Standing Waves

Waves Section 3 Key Ideas How do waves behave when they hit a boundary, when they pass around an edge or opening, and when they pass from one medium to another? What happens when two waves are in the same location? How are standing waves formed?

Waves Section 3 Bellringer 1. Why do we see rainbows on rainy days? 2. a. When you throw a ball against a wall, what happens to the ball? b. When light waves hit a barrier, what happens to the light waves? 3. When two objects meet, share the same space, and overlap with each other, what is it called?

Waves Section 3 Reflection, Diffraction, and Refraction How do waves behave when they hit a boundary, when they pass around an edge or opening, and when they pass from one medium to another? When a wave meets a surface or a boundary, the wave bounces back. When a wave passes the edge of an object or passes through an opening, the wave bends. A wave also bends when it passes from one medium to another at an angle.

Waves Section 3 Reflection, Diffraction, and Refraction, continued Reflection occurs when a wave meets a boundary. reflection: the bouncing back of a ray of light, sound, or heat when the ray hits a surface that it does not go through Examples: The reflection of light waves in a lake can create a mirror image of a landscape. Water waves are reflected when they hit the side of a boat.

Waves Section 3 Reflection, Diffraction, and Refraction, continued Diffraction is the bending of waves around an edge. diffraction: a change in the direction of a wave when the wave finds an obstacle or an edge, such as an opening Examples: Water waves diffract around a block in a tank of water. Sound waves passing through a door diffract.

Waves Section 3 Reflection, Diffraction, and Refraction, continued Waves can also bend by refraction. refraction: the bending of a wavefront as the wavefront passes between two substances in which the speed of the wave differs All waves are refracted when they pass from one medium to another at an angle.

Waves Section 3 Interference What happens when two waves are in the same location? When several waves are in the same location, they combine to produce a single, new wave that is different from the original waves. This interaction is called interference. interference: the combination of two or more waves that results in a single wave

Waves Section 3 Interference, continued Constructive interference increases amplitude. constructive interference: a superposition of two or more waves that produces an intensity equal to the sum of the intensities of the individual waves Destructive interference decreases amplitude. destructive interference: a superposition of two or more waves that produce an intensity equal to the difference of the intensities of the individual waves

Waves Section 3 Interference, continued

Waves Section 3 Interference, continued Interference of light waves creates colorful displays. When two waves of slightly different frequencies interfere with each other, they produce beats.

Waves Section 3 Standing Waves How are standing waves formed? A standing wave causes the medium to vibrate in a stationary pattern that resembles a loop or a series of loops. standing wave: a pattern of vibration that simulates a wave that is standing still

Waves Section 3 Standing Waves, continued Standing waves have nodes and antinodes. Each loop of a standing wave is separated from the next loop by points that have no vibration, called nodes. Midway between the nodes lie points of maximum vibration, called antinodes.