Supporting Information

Similar documents
Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Supporting Information

Supporting information

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Electronic Supplementary Information (ESI)

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Supporting Information

Supporting Information for

Supporting Information

Supporting Information

state asymmetric supercapacitors

Electronic Supplementary Information (ESI)

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supporting Information

Supplementary Information

Supplementary Material

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Electronic Supplementary Information

Supporting Information for

Supplementary Information

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Supporting Information

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Supporting Information

Electronic Supporting Information (ESI)

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Supporting Information

Electronic Supplementary Information

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Supporting Information

noble-metal-free hetero-structural photocatalyst for efficient H 2

Supplementary Information

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supporting Information

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Supporting Information

Electronic Supplementary Information

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Supporting Information

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Supporting Information

Electronic Supplementary Information (ESI)

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Supporting information

Supporting Information

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Highly enhanced performance of spongy graphene as oil sorbent

Supplementary Information

Complex Systems and Applications

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Supporting Information

Supporting Information

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Zhaohuai Li, Qiu He, Xu Xu,* Yan Zhao, Xiaowei Liu, Cheng Zhou, Dong Ai, Lixue Xia, and Liqiang Mai*

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Electronic Supplementary Information

Electronic Supplementary Information

3D CNTs/Graphene-S-Al 3 Ni 2 Cathodes for High-Sulfur-Loading and Long-Life Lithium Sulfur Batteries

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

Supporting Information

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

2012 International Conference on Future Energy, Environment, and Materials

Curriculum Vitae. Yu (Will) Wang

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

(ICCTP 2011) of Chinese Transportation. Nanjing, China. 11th International Conference. Professionals August Volume 3 of 5.

Supplementary Information

Supporting Information

Applied Medical Parasitology By LI CHAO PIN, ZHANG JIN SHUN ZHU BIAN SUN XIN

Electronic Supplementary Information for

Supporting information

Zhao Bao Tai Chi Kung Fu (English/Chinese Edition) (English And Chinese Edition) By Wayne Peng

Imaging Spectrometer. Technologies and Applications PROCEEDINGS OF SPIE. International Symposium. Detection and Imaging on Photoelectronic

Supporting Information. High-performance nonfullerene polymer solar cells based on fluorinated wide

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Electronic Supplementary Information (ESI) for. MnOOH/Nitrogen-Doped Graphene Hybrid Nanowires. Sandwiched by Annealing Graphene Oxide Sheets for

Chinese Martial Arts Shuai Jiao Association Examining list of ranking promotion

Flexible Nb 4 N 5 /rgo Electrode for High-Performance Solid State Supercapacitors. Huazhong University of Science and Technology Wuhan , China

Proceedings. First International Workshop on Knowledge Discovery and Data Mining WKDD Adelaide, Australia January 2008

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Paragenesis BN/CNTs Hybrid as a Monoclinic Sulfur Host for High Rate and Ultralong Life Lithium-Sulfur Battery Bin He, Wen-Cui Li, Yu Zhang, Xiao-Fei Yu, Bingsen Zhang, Feng Li, An-Hui Lu* Table S1. The specific surface area and pore volume of polar materials used as sulfur host for lithium-sulfur batteries in the literature. Host materials S BET (m 2 g -1 ) V total ( cm 3 g -1 ) Refs. Co 4N 48.4 0.237 1 TiN 69.6 0.32 2 NbC 22.37 0.078 3 Co 3O 4 nanosheets 80.4 4 TiO 2 nanosheet 92 0.27 5 Co 3O 4 nanoneedle 75.6 0.26 6 SnO 2 shells 66.7 7 hollow TiO 2 sphere 76 0.15 8 TiO 2 nanotube 134.9 9 MoO 2 70 0.3 10 Rutile TiO 2 73.6 0.213 11 Co 3S 4 31 12 VN/C 38.9 0.084 13 C/TiO 2 148 0.29 14 La 0.6Sr 0.4CoO 3-δ 70.3 15 CC/TiO 2 44.1 16 SnO 2 29 0.125 17 C/SnO 2 nanosheets 89.6 18 CNTs/MnO 51.3 19 BaTiO 3 12 20 p-bn/cnts 168 0.33 This work

Figure S1. (a) The photograph of O-BN and p-bn/cnts. (b) SEM image of p-bn/cnts. Figure S2. (a) Raman spectrum, (b) Thermogravimetric analysis of p-bn/cnts. Raman spectrum of p-bn/cnts (Figure S2a) exhibits two intense peaks centered at approximately 1344 and 1582 cm -1 and two small peaks centered at approximately 2620 and 2900 cm -1. The peak at 1582 cm -1 is generally observed in single crystalline graphite and attributed to the in-plane bond stretching of sp 2 C pairs. As the D peak of carbon and the peak assigned to E2g vibration mode of BN are so close, thus the peak at 1344 cm -1 is maybe the superimposition of the above two peaks. The other peaks, located at ~2620 and 2900 cm -1, are called 2D (D+D) and D+G bands and correspond to the second-order of Raman spectrum in overtone and combination modes, respectively. The 58% weight loss of p-bn/cnts at 400-700 is due to combustion of carbon nanotubes. The Co was oxidized into Co3O4 at the high temperature of 400-700 under air and 7.9 wt% Co can be generated 10.8 wt% Co3O4, thus the BN content is approximately 31.2 wt% (58%+10.8%+31.2%=100%).

Figure S3. TEM images of p-bn/cnts. Figure S4. TEM images of control sample prepared without H3BO3

Figure S5. (a) XPS spectrum of p-bn/cnts. (b-d) High-resolution XPS S 2p spectra of (b) Li2S6, (c) Li2S6/O-BN and (d) Li2S6/p-BN/CNTs. Figure S6. Pore size distributions of O-BN, p-bn/cnts and O-CNTs.

Figure S7. Static adsorption test of O-CNTs, O-BN and p-bn/cnts with Li2S6 solution. Figure S8. (a) UV/Vis-spectra of Li2S6 solution between 0.5 and 1.75 mm. (b) Linear calibration of the absorbance at 450 nm of Li2S6 solutions among 0.5 and 1.75 mm.

Figure S9. XRD patterns of p-bn/cnts-s after storing it for two months, and sulfur, O-BN-S, O-CNTs. Figure S10. (a) SEM image and EDS mapping of p-bn/cnts-s. (b-f) EDS elemental maps of (b) carbon, (c) nitrogen, (d) oxygen, (e) sulfur and (f) cobalt.

Figure S11. Electrochemical impedance spectra of p-bn/cnts-s after the first cycle and 50 cycles. Figure S12. (a) STEM image and EDS elemental mapping of p-bn/cnts-s after 50 cycles. (b-f) EDS elemental maps of (b) carbon, (c) nitrogen, (d) oxygen, (e) sulfur and (f) cobalt.

Table S2. The cycle and rate performances of the Li-S batteries in the literature Sulfur Sulfur 1 C Rate performance Materials content loading Cycle Last cycle Decay Specific capacity Refs. (%) (mg cm -2 ) number (mah g -1 ) rates (%) (mah g -1 ) p-bn/cnts 66 1.5-2.0 500 816 0.045 840 (4C) This work Hollow Co3S4 53 2.5 450 610 0.08 752 (2C) 21 VN/graphene 56 3 200 917 0.0935 701 (3C) 22 CMK-3/polymer 48 1.0-1.5 100 838 0.3829 850 (3 C) 23 PCNTs@Gra/DTT 63 0.49 400 880 0.05 750 (3C) 24 Carbon/Celgard 70 0.7 200 721 0.20 450 (4 C) 25 Carbon Rods 78.9 0.93 300 700 0.0927 770 (3 C) 26 Polypyrrole-MnO2 70 1.0~2.0 500 550 0.071 350 (4 C) 27 Carbon 70 0.9 1.2 250 588 0.1386 480 (3 C) 28 Graphene Oxide 70 1 1.2 400 750 0.08 800 (1 C) 29 Carbon 50.5 150 558 0.13 696.5 (1 C) 30 Co-N-GC 70 1.5-2.0 500 625 0.09 685 (2 C) 31 GN-CNT 76.4 1.3 1.6 500 476 0.09 535 (2 C) 32 Ti4O7 70 0.4-0.6 861 (2 C) 33 TiO-G 65 1.0 831 (2 C) 34 MoS2 75 1.5 850 (2 C) 35 SnO/CNT 70 1.0 1.3 773 (3C) 36 MIL-100(V)/rGO 50 0.9 1.0 600 (0.5 C) 37 MoS2/Celgard 65 770 (1 C) 38 Cobalt Hydroxide 75 3 500 (1 C) 39 Nb2O5 60 1.5 741 (3 C) 40 Carbon nanotubes 50 439 (2 C) 41 RGO CNTs 73 1.1 712 (2 C) 42 Si/SiO2 carbon 70 614 (2 C) 43 Cabon 68.3 1-1.5 738 (2 C) 44 Carbon nanotube 70 1.2 300 (4 C) 45 TiO2-x 70 1.5 655 (2 C) 46 Carbon 70 1.3 900 (2 C) 47 CNT-Graphene 73 1.3 1.6 696 (2 C) 48 Ti3C2 Nanoribbon 68 0.7-1.0 403 (4 C) 49 Ti3C2Tx@Meso-C 72.8 2.0 544.3 (4 C) 50

References 1. D.-R. Deng, F. Xue, Y.-J. Jia, J.-C. Ye, C.-D. Bai, M.-S. Zheng and Q.-F. Dong, ACS Nano, 2017, 11, 6031-6039. 2. Z. Cui, C. Zu, W. Zhou, A. Manthiram and J. B. Goodenough, Adv. Mater., 2016, 28, 6926-6931. 3. W. Cai, G. Li, K. Zhang, G. Xiao, C. Wang, K. Ye, Z. Chen, Y. Zhu and Y. Qian, Adv. Funct. Mater., 2018, 28, 1704865. 4. H. Wang, T. Zhou, Dan Li, H. Gao, G. Gao, A. Du, H. Liu and Z. Guo, ACS Appl. Mater. Interfaces, 2017, 9, 4320-4325. 5. X. Yang, X. Qian, L. Jin, D. Zhao, S. Wang, D. Rao, S. Yao, X. Shen, Y. Zhou and X. Xi, J. Solid State Electrochem., 2016, 20, 2161-2168. 6. Z. Chang, H. Dou, B. Ding, J. Wang, Y. Wang, X. Hao and D. R. MacFarlane, J. Mater. Chem. A, 2017, 5, 250-257. 7. L. P. Zhang, Y. F. Wang, S. Q. Gou and J. H. Zeng, J. Phys. Chem. C, 2015, 119, 28721-28727. 8. J. Li, B. Ding, G. Xu, L. Hou, X. Zhang and C. Yuan, Nanoscale, 2013, 5, 5743-5746. 9. K. Xie, Y. Han, W. Wei, H. Yu, C. Zhang, J.-G. Wang, W. Lu and B. Wei, RSC Adv., 2015, 5, 77348-77353. 10. Q. Qu, T. Gao, H. Zheng, Y. Wang, X. Li, X. Li, J. Chen, Y. Han, J. Shao and H. Zheng, Adv. Mater. Interfaces, 2015, 2, 1500048.

11. Q. Sun, K. Chen, Y. Liu, Y. Li and M. Wei, Chem. Eur. J., 2017, 23, 16312-16318. 12. J. Pu, Z. Shen, J. Zheng, W. Wu, C. Zhu, Q. Zhou, H. Zhang and F. Pan, Nano Energy, 2017, 37, 7-14. 13. X. Li, K. Ding, B. Gao, Q. Li, Y. Li, J. Fu, X. Zhang, P. K. Chu and K. Huo, Nano Energy, 2017, 40, 655-662. 14. J. Yao, T. Mei, Z. Cui, Z. Yu, K. Xu and X. Wang, Chem. Eng. J., 2017, 330, 644-650. 15. Z. Hao, R. Zeng, L. Yuan, Q. Bing, J. Liu, J. Xiang and Y. Huang, Nano Energy, 2017, 40, 360-368. 16. T. Lei, Y. Xie, X. Wang, S. Miao, J. Xiong and C. Yan, Small, 2017, 13, 1701013. 17. J. Liu, L. Yuan, K. Yuan, Z. Li, Z. Hao, J. Xiang and Y. Huang, Nanoscale, 2016, 8, 13638-13645. 18. M. Wang, L. Fan, X. Wu, D. Tian, J. Cheng, Y. Qiu, H. Wu, B. Guan, N. Zhang, K. Sun and Y. Wang, J. Mater. Chem. A, 2017, 5, 19613-19618. 19. T. An, D. Deng, M. Lei, Q.-H. Wu, Z. Tian, M. Zheng and Q. Dong, J. Mater. Chem. A, 2016, 4, 12858-12864. 20. K. Xie, Y. You, K. Yuan, W. Lu, K. Zhang, F. Xu, M. Ye, S. Ke, C. Shen, X. Zeng, X. Fan and B. Wei, Adv. Mater., 2017, 29, 1604724. 21. H. Xu and A. Manthiram, Nano Energy, 2017, 33, 124-129. 22. Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.-M. Cheng and F. Li, Nat. commun., 2017, 8, 14627.

23. Y. Pan, Y. Zhou, Q. Zhao, Y. Dou, S. Chou, F. Cheng, J. Chen, H. K. Liu, Lei Jiang and S. X. Dou, Nano Energy, 2017, 33, 205-212. 24. W. Hua, Z. Yang, H. Nie, Z. Li, J. Yang, Z. Guo, C. Ruan, X. Chen and S. Huang, ACS Nano, 2017, 11, 2209-2218. 25. J. Zhu, Y. Ge, D. Kim, Y. Lu, C. Chen, M. Jiang and X. Zhang, Nano Energy, 2016, 20, 176-184. 26. Z. Zheng, H. Guo, F. Pei, X. Zhang, X. Chen, X. Fang, T. Wang and N. Zheng, Adv. Funct. Mater., 2016, 26, 8952-8959. 27. J. Zhang, Y. Shi, Y. Ding, W. Zhang and G. Yu, Nano Lett., 2016, 16, 7276-7281. 28. S. Yuan, J. L. Bao, L. Wang, Y. Xia, D. G. Truhlar and Y. Wang, Adv. Energy Mater., 2016, 6, 1501733. 29. M. Shaibani, A. Akbari, P. Sheath, C. D. Easton, P. C. Banerjee, K. Konstas, A. Fakhfouri, M. Barghamadi, M. M. Musameh, A. S. Best, T. Ru ther, P. J. Mahon, M. R. Hill, A. F. Hollenkamp and M. Majumder, ACS Nano, 2016, 10, 7768-7779. 30. K. Mi, Y. Jiang, J. Feng, Y. Qian and S. Xiong, Adv. Funct. Mater., 2016, 26, 1571-1579. 31. Y.-J. Li, J.-M. Fan, M.-S. Zheng and Q.-F. Dong, Energy Environ. Sci., 2016, 9, 1998-2004. 32. Z. Zhang, L. L. Kong, S. Liu, G.-R. Li and X.-P. Gao, Adv. Energy Mater., 2017, 7, 1602543.

33. H. Wei, E. F. Rodriguez, A. S. Best, A. F. Hollenkamp, D. Chen and R. A. Caruso, Adv. Energy Mater., 2017, 7, 1601616. 34. Y. Chen, S. Choi, D. Su, X. Gao and G. Wang, Nano Energy, 2018, 47, 331-339. 35. H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G. Zheng and J. Y. Lee, Energy Environ. Sci., 2017, 10, 1476-1486. 36. A-Y. Kim, M. K. Kim, J. Y. Kim, Y. Wen, L, Gu, V.-D. Dao, H.-S, Choi, D, Byun and J. K. Lee, Nano Res., 2017, 10, 2083-2095. 37. Y. Hou, H. Mao and L. Xu, Nano Res., 2017, 10, 344-353. 38. Z. A. Ghazi, X. He, A. M. Khattak, N. A. Khan, B. Liang, A. Iqbal, J. Wang, H. Sin, L. Li and Z. Tang, Adv. Mater., 2017, 29, 1606817. 39. J. Zhang, H. Hu, Z. Li and X. W. Lou, Angew. Chem. Int. Ed., 2016, 55, 3982-3986. 40. Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling and D. Long, Energy Environ. Sci., 2016, 9, 3230-3239. 41. L. Sun, D. Wang, Y. Luo, K. Wang, W. Kong, Y. Wu, L. Zhang, K. Jiang, Q. Li, Y. Zhang, J. Wang and S. Fan, ACS Nano, 2016, 10, 1300-1308. 42. D. Su, M. Cortie and G. Wang, Adv. Energy Mater., 2017, 7, 1602014. 43. S. Rehman, S. Guo and Y. Hou, Adv. Mater., 2016, 28, 3167-3172. 44. S. Rehman, X. Gu, K. Khan, N. Mahmood, W. Yang, X. Huang, S. Guo and Y. Hou, Adv. Energy Mater., 2016, 6, 1502518. 45. L. Ma, H. L. Zhuang, S. Wei, K. E. Hendrickson, M. S. Kim, G. Cohn, R. G. Hennig and L. A. Archer, ACS Nano, 2016, 10, 1050-1059.

46. Z. Li, J. Zhang, B. Guan, D. Wang, L.-M. Liu and X. W. Lou, Nat. Commun., 2016, 7, 13065. 47. M. Li, Y. Zhang, X. Wang, W. Ahn, G. Jiang, K. Feng, G. Lui and Z. Chen, Adv. Funct. Mater., 2016, 26, 8408-8417. 48. Y.-L. Ding, P. Kopold, K. Hahn, P. A. Aken, J. Maier and Y. Yu, Adv. Funct. Mater., 2016, 26, 1112-1119. 49. Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi, X. Wang, J. Chen and Z.-S. Wu, ACS Nano, 2018, 12, 2381-2388. 50. W. Bao, D. Su, W, Zhang, X. Guo and G. Wang, Adv. Funct. Mater., 2016, 26, 8746-8756.