A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Similar documents
Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Supplementary Material

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Supplementary Information

Supporting Information

Supporting information

Supporting information

Supplementary Information

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

noble-metal-free hetero-structural photocatalyst for efficient H 2

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Supporting Information

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supporting Information

Supporting Information

Supporting Information

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supporting Information

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Supporting Information

Electronic Supplementary Information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

Supporting Information for

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Supporting Information

Supporting Information

Supporting Information for

Supporting information. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation

Supporting Information

Electronic Supporting Information (ESI)

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Supporting Information

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Supplementary Information

Electronic Supplementary Information

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Supplementary Information

LC-MS-Guided Isolation of Insulin Secretion-promoting. Monoterpenoid Carbazole Alkaloids from Murraya

Supporting Information

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Electronic Supplementary Information

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

state asymmetric supercapacitors

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Supporting Information

Electronic Supplementary Information (ESI)

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Electronic Supplementary Information

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Supporting Information

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Supporting Information

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Flexible porous coordination polymers constructed by 1,2-bis(4-pyridyl)hydrazine via solvothermal in situ reduction of 4,4 -Azopyridine

Electronic Supplementary Information

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Highly enhanced performance of spongy graphene as oil sorbent

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

A tribute to Guosen Yan

Supporting Information

Supplementary Information

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Facile fabrication of BUC 21/g C 3 N 4 composites and their enhanced photocatalytic Cr(VI) reduction performances under simulated sunlight

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Journal of Chemical and Pharmaceutical Research, 2014, 6(3): Research Article

A variable-pressure constant-volume method was employed to determine the gas permeation

The scope of fracture zone measure and high drill gas drainage technology research

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Supplementary Information

Bibliography (as of 13 August 2007)

Complex Systems and Applications

Supporting information

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

Supporting Information. High-performance nonfullerene polymer solar cells based on fluorinated wide

Electronic Supplementary Information for

Imaging Spectrometer. Technologies and Applications PROCEEDINGS OF SPIE. International Symposium. Detection and Imaging on Photoelectronic

2012 International Conference on Future Energy, Environment, and Materials

Electronic Supplementary Information (ESI)

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

Influence of Ventilation Tube Rupture from Fires on Gas Distribution in Tunnel

Supporting Information. Highly simple and rapid synthesis of ultrathin gold nanowires with

Transformation Optics and Experiments

Transcription:

Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is the Partner rganisations 2018 A ligand conformation preorganization approach to construct a copper-hexacarboxylate framework with a novel topology for selective gas adsorption Yao Wang, a Minghui He, a Xiaoxia Gao, a Xia Wang, a Guohai Xu, b* Zhengyi Zhang c and Yabing He a* a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang ormal University, Jinhua 321004, China. E-mail: heyabing@zjnu.cn b Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan ormal University, Ganzhou, Jiangxi 341000, China. E-mail: xugh308@gnnu.cn c Bruker (Beijing) Scientific Technology Co., Ltd., Beijing 100192, China

Fig. S1 The electronic photograph of the as-synthesized ZJU-100.

Fig. S2 (a) The simulated (black) and experimental (red) PXRD patterns of ZJU-100; (b) the PXRD patterns of ZJU-100 after immersion in aqueous HCl/aH solutions with ph ranging from 3 to 12 for 24 h.

Weight (%) 100 ZJU-100 80 60 40 20 0 100 200 300 400 500 600 700 800 900 T ( o C) Fig. S3 The TGA curve of ZJU-100 under nitrogen atmosphere.

Transmittance (cm -1 ) 4000 3000 2000 1000 Wavenumber (cm -1 ) ligand ZJU-100 Fig. S4 Comparison of FTIR spectra of ZJU-100 and its corresponding ligand H 6 L.

S BET = 1/(1.54192 10-6 + 0.00225)/22414 6.023 10 23 0.162 10-18 = 1933 m 2 g -1 S Langmuir = (1/0.00206)/22414 6.023 10 23 0.162 10-18 = 2113 m 2 g -1 BET constant C = 1 + 0.00225/1.54192 10-6 = 1460 ( p/ p o ) nm 1 C 1 = 0.0255 Fig. S5 (a) The consistency, (b) BET surface area, and (c) Langmuir surface area plots for ZJU-100.

Fig. S6 (a) 2 isotherms at 77 K and (b) DFT pore size distributions of ZJU-100 before and after immersion in water at room temperature for 24 h.

Fig. S7 Comparison of the pure-component isotherm data for (a) C 2 H 2, (b) C 2, and (c) CH 4 in ZJU-100 with the fitted isotherms at 278 K, 288 K, and 298 K.

8.707 8.119 8.115 7.283 3.981 1.672 1.635 H 3 CC CCH 3 H 3 C CH 3 H 3 CC CCH 3 CH 3 CCH 3 CCH 3 3.06 6.05 2.03 1.01 9.0 ppm 8.0 7.0 6.0 5.0 4.0 3.0 2.0 8.486 8.021 8.018 2.511 2.507 1.621 H 3 C CH 3 CH 3 3.09 2.09 1.00 ppm 8.0 7.0 6.0 5.0 4.0 3.0 2.0

167.001 142.286 138.408 134.530 133.155 132.404 129.106 40.369 40.230 40.091 39.951 39.812 39.673 39.534 19.879 142.286 138.408 134.530 133.155 132.404 129.106 ppm 140.0 135.0 130.0 ppm 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 Fig. S8 1 H and 13 C MR spectra.

Table S1 Crystal data and structure refinement for ZJU-100. MFs ZJU-100 Empirical formula C 297 H 162 Cu 24 132 Formula weight 7367.22 λ (Å) 1.54178 Crystal system Hexagonal Space group P6/mmm a = 63.7383(15) Å b = 63.7383(15) Å Unit cell dimensions c = 25.3645(7) Å α = 90 o β = 90 o γ = 120 o V (Å 3 ) 89240(5) Z 6 D c (g cm -3 ) 0.823 μ (mm -1 ) 1.333 F(000) 22176 θ range for data collection ( o ) 1.917 to 68.338-44 h 76 Limiting indices -76 k 59-30 l 26 Reflections collected / unique 352872 / 29233 R int 0.1101 Refinement method Full-matrix least-squares on F 2 Data/restraints/parameters 29233 / 3472 / 1204 Goodness-of-fit on F 2 1.085 Final R indices [I > 2σ(I)] R 1 = 0.1174 wr 2 = 0.2795 R indices (all data) R 1 = 0.1370 wr 2 = 0.2881 Largest diff. peak and hole (e. Å -3 ) 2.338 and -1.904 CCDC 1877489

Table S2 Summaries of gas adsorption properties and pore textural parameters of some reported MFs based on triisophthalate ligands. MFs Metal ion Ligand structure S BET (m 2 g -1 ) V p (cm 3 g -1 ) C 2H 2 uptake (cm 3 g -1, STP) C 2 uptake (cm 3 g -1, STP) Ref. Zn 4(BHB) Zn 2+ 156 A A 35 (273 K, 1 atm) 1 CH 3 SDU-1 Zn 2+ H 3C CH 3 779 0.353 A A 2, 3 CH 3 PC-5 Co 2+ H 3C CH 3 1140 0.496 A A 2 UTSA-20 Cu 2+ 1156 0.63 150.3 (296 K, 1 atm) 82.4 (296 K, 1 atm) 4, 5 ZJU-100 Cu 2+ CH 3 H 3C CH 3 1933 0.754 149.1 (298 K, 1 atm) 83.1 (298 K, 1 atm) This work Cu-TDPAT Cu 2+ H H H 1938 0.93 177.7 (298 K, 1 atm) 132 (298 K, 1 atm) 6, 7 Cu-TDPAH Cu 2+ H H H 2171 0.91 155.7 (298 K, 1 atm) 116 (298 K, 1 atm) 8 MFM-132 Cu 2+ 2466 1.06 A A 9 SDU-8 Cu 2+ Si 2516 1.02 A A 10 i Bu SDU-7 Cu 2+ Si 2713 1.10 A A 10 GDMU-2 Cu 2+ 2758 1.17 A 74 (273 K, 1 bar) 11

SDU-6 Cu 2+ Si 2826 1.17 A A 10 H H Cu-TPBTM Cu 2+ H 3160 1.268 A A 12 H H Cu 3(BTB 6- ) Cu 2+ H 3288 1.77 A A 13 H H Cu 3(TATB 6- ) Cu 2+ H 3360 1.91 A A 13 H TU-105 (U-125) (TT-122) Cu 2+ 3543 1.33 A 187 (273 K, 1 atm) 14-16 H HUST-5 Cu 2+ H H 3643 1.46 A 56 (298 K, 1 bar) 17 TT-112 Cu 2+ 3800 1.69 A A 18 Cu-TTA Cu 2+ H H H 3931 1.27 A 65.5 (298 K, 800 Tor) 19 TT-119 (PC-69) Cu 2+ 4118 2.35 A A 20, 21 PMF-2 (PC-61) Cu 2+ 4180 A A A 22, 23 PC-66 Cu 2+ 4600 1.63 A A 22

PC-68 Cu 2+ 6033 2.13 A A 22 U-100 (PC-610) Cu 2+ 6143 2.82 A A 22, 24 U-110 Cu 2+ 7140 4.4 A A 25

Table S3 Langmuir-Freundlich parameters for adsorption of C 2 H 2, C 2, and CH 4 in ZJU-100. Guest q sat (mmol g -1 ) b 0 (kpa) -v E (kj mol -1 ) v R 2 C 2 H 2 11.66812 1.3048 10-6 24.392 0.85623 0.99973 C 2 14.38261 2.63295 10-7 23.353 1 0.99996 CH 4 9.7708 1.1718 10-6 16.680 1 0.99998

Reference 1. Z. Chen, S. Xiang, T. Liao, Y. Yang, Y.-S. Chen, Y. Zhou, D. Zhao and B. Chen, Cryst. Growth Des., 2010, 10, 2775-2779. 2. L. Li, S. Tang, X. Lv, M. Jiang, C. Wang and X. Zhao, ew J. Chem., 2013, 37, 3662-3670. 3. X. Zhao, X. Wang, S. Wang, J. Dou, P. Cui, Z. Chen, D. Sun, X. Wang and D. Sun, Cryst. Growth Des., 2012, 12, 2736-2739. 4. Y. He, R. Krishna and B. Chen, Energy Environ. Sci., 2012, 5, 9107-9120 5. Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. 'Keeffe and B. Chen, Angew. Chem. Int. Ed., 2011, 50, 3178-3181. 6. K. Liu, D. Ma, B. Li, Y. Li, K. Yao, Z. Zhang, Y. Han and Z. Shi, J. Mater. Chem. A, 2014, 2, 15823-15828. 7. B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu,. ijem, Y. J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng and J. Li, Angew. Chem. Int. Ed., 2012, 51, 1412-1415. 8. K. Liu, B. Li, Y. Li, X. Li, F. Yang, G. Zeng, Y. Peng, Z. Zhang, G. Li, Z. Shi, S. Feng and D. Song, Chem. Commun., 2014, 50, 5031-5033. 9. Y. Yan, D. I. Kolokolov, I. d. Silva, A. G. Stepanov, A. J. Blake, A. Dailly, P. Manuel, C. C. Tang, S. Yang and M. Schröder, J. Am. Chem. Soc., 2017, 139, 13349-13360. 10. X. Zhao, D. Sun, S. Yuan, S. Feng, R. Cao, D. Yuan, S. Wang, J. Dou and D. Sun, Inorg. Chem., 2012, 51, 10350-10355. 11. J. Liu, G. Liu, C. Gu, W. Liu, J. Xu, B. Li and W. Wang, J. Mater. Chem. A, 2016, 4, 11630-11634. 12. B. Zheng, J. Bai, J. Duan, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2011, 133, 748-751. 13. B. Zheng, Z. Yang, J. Bai, Y. Li and S. Li, Chem. Commun., 2012, 48, 7025-7027. 14. X.-J. Wang, P.-Z. Li, Y. Chen, Q. Zhang, H. Zhang, X. X. Chan, R. Ganguly, Y. Li, J. Jiang and Y. Zhao, Sci. Rep., 2013, 3, 1149. 15. C. E. Wilmer,. K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A. Sarjeant, R. Q. Snurr and J. T. Hupp, Energy Environ. Sci., 2013, 6, 1158-1163. 16. Y. Yan, M. Suyetin, E. Bichoutskaia, A. J. Blake, D. R. Allan, S. A. Barnett and M. Schröder, Chem. Sci., 2013, 4, 1731-1736. 17. B. Zheng, H. Wang, Z. Wang,. zaki, C. Hang, X. Luo, L. Huang, W. Zeng, M. Yang and J. Duan, Chem. Commun., 2016, 52, 12988-12991. 18. Y. Yan, X. Lin, S. Yang, A. J. Blake, A. Dailly,. R. Champness, P. Hubberstey and M. Schröder, Chem. Commun., 2009, 1025-1027. 19. X. Guo, Z. Zhou, C. Chen, J. Bai, C. He and C. Duan, ACS Appl. Mater. Interfaces, 2016, 8, 31746-31756. 20. Y. Yan, S. Yang, A. J. Blake, W. Lewis, E. Poirier, S. A. Barnett,. R. Champness and M. Schröder, Chem. Commun., 2011, 47, 9995-9997. 21. D. Yuan, D. Zhao and H.-C. Zhou, Inorg. Chem., 2011, 50, 10528-10530. 22. D. Yuan, D. Zhao, D. Sun and H.-C. Zhou, Angew. Chem. Int. Ed., 2010, 49, 5357-5361. 23. S. Hong, M. h, M. Park, J. W. Yoon, J.-S. Chang and M. S. Lah, Chem. Commun., 2009, 5397-5399. 24.. K. Farha, A. Ö. Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T.

guyen, R. Q. Snurr and J. T. Hupp, ature Chem., 2010, 2, 944-948. 25.. K. Farha, I. Eryazici,. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. guyen, A. Ö. Yazaydın and J. T. Hupp, J. Am. Chem. Soc., 2012, 134, 15016-15021.