J. David Hailey Ph.D. Vice President, Business Development COSA Xentaur 7125 North Loop East Houston, TX 77028

Similar documents
Chapter 5 TEST: Gases

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases

Interchangeability Criteria.

CHM 111 Unit 5 Sample Questions

CHEMISTRY - CLUTCH CH.5 - GASES.

Name Chemistry Pre-AP

4.) There are no forces of attraction or repulsion between gas particles. This means that

CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO Walnut Lake Rd th Street Houston TX Garner, IA 50438

Chapter 13 Gases, Vapors, Liquids, and Solids

Protective Atmospheres, Measurement Technologies and Troubleshooting Tools

UNIT 10 - GASES. Notes & Worksheets - Honors

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

Practice MC Test unit D (Ch 10) Gas Laws (pg 1 of 10)

Dr. Rogers Chapter 5 Homework Chem 111 Fall 2003

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

Chem 110 General Principles of Chemistry

PROPERTIES OF GASES. [MH5; Ch 5, (only)]

PSI Chemistry: Gases Multiple Choice Review

Name Hour. The Behavior of Gases. Practice B

Unit 10: Gas Laws. Monday Tuesday Wednesday Thursday Friday. 10 Review for Cumulative Retest. 17 Chem Think Gas Laws Tutorial- Computer Lab-

A. What are the three states of matter chemists work with?

Chemistry 1B Chapter 10 Worksheet - Daley. Name

Chemistry Chapter 11 Test Review

Unit 11 Gas Laws Chapters 13 of your textbook

FUNDAMENTALS OF ENERGY DETERMINATION

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

Gas Laws Chapter 14. Complete the following pressure conversion. Be sure to show how units cancel.

Technical Manual. Sensepoint XCD Gas Detector

Example 5.1 Converting between Pressure Units

Dalton s Law How is the total pressure of a mixture of gases related to the partial pressures of the component gases?

Gases NO CALCULATORS MAY BE USED FOR THESE QUESTIONS

White Paper. Chemical Sensor vs NDIR - Overview: NDIR Technology:

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

Part 6: Critical flow orifices

FUNDAMENTALS OF ENERGY DETERMINATION

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

(for tutoring, homework help, or help with online classes)

GAS LAW WORKSHEET 1 KEY

Problem Solving. Gas Laws

Boyle s Law Practice

States of Matter. Q 7. Calculate the average of kinetic energy, in joules of the molecules in 8.0 g of methane at 27 o C. (IIT JEE Marks)

Applications Note: Use of "pentane equivalent" calibration gas mixtures

Kinetic-Molecular Theory

Chapter 13 Gases. H. Cannon, C. Clapper and T. Guillot Klein High School. Pressure/Temperature Conversions

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

POGIL EXERCISE 18 All You Need to Know About Gas Laws

Control Valve Sizing. Sizing & Selection 3 P 1. P 2 (Outlet Pressure) P V P VC. CONTENTS Introduction Nomenclature Calculating C v

Chapter 12. The Gaseous State of Matter

Accelerated Chemistry Study Guide Chapter 13: Gases

Continuous gas analysis ULTRAMAT 23 Supplement 2 for Operating Instructions C79000-G52xx- C216-03

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Our Air- Why We Should Care!

THE WAY THE VENTURI AND ORIFICES WORK

S.A. Klein and G.F. Nellis Cambridge University Press, 2011

Under pressure pushing down

Chemistry Chapter 10 Test

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Kinetic-Molecular Theory of Matter

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

Gases. Properties of Gases Gas Pressure

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases.

MASS FLOW SYSTEMS MASS FLOW MEASURING, CONTROLLING AND BLENDING SYSTEMS

Journal of Applied and Industrial Sciences, 2014, 2 (4): , ISSN: (PRINT), ISSN: (ONLINE)

Lab 3 Introduction to Quantitative Analysis: Pumps and Measurements of Flow

Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very

AP TOPIC 6: Gases. Revised August General properties and kinetic theory

Date: Period: Gas Laws Worksheet #1 - Boyle s, Charles, Gay-Lussac s, and Combined Gas Law

Real-time Wobbe Index Determination of Natural Gas. J.C. Lötters Bronkhorst

Development of Gasdynamic Probe for Total Temperature Measurement in gases

Chemistry A Molecular Approach. Fourth Edition. Chapter 5. Gases. Copyright 2017, 2014, 2011 Pearson Education, Inc. All Rights Reserved

Gas Law Worksheets - WS: Boyle s and Charles Law

substitution Rearrangement solving for n/v Convert n to MASS (m) by multiplying BOTH sides by molar mass (M) d = m/v

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Technical Support Note

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Name: Chapter 13: Gases

CHEM 3351 Physical Chemistry I, Fall 2017

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c).

The Application of Temperature and/or Pressure Correction Factors in Gas Measurement

EXPERIMENTAL STUDY OF HOT INERT GAS JET IGNITION OF HYDROGEN-OXYGEN MIXTURE

Solubility of Gases in Water

UNIT 4 IB MATERIAL PARTICLE BEHAVIOR OF MATTER PHASES & ATTRACTIONS

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497

Gerald D. Anderson. Education Technical Specialist

Generating Calibration Gas Standards

Chapter 10: Gases. Characteristics of Gases

Chemistry 20 Unit 2 Gases FITB Notes. Topic A Characteristics of Gases

Ch. 14 The Behavior of Gases

EDUCTOR. principle of operation

Tutorial. BOSfluids. Relief valve

Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases.

Gases Chapter 8. Chapter 8

Gases. Chapter 8. Chapter 8. Gases Properties of Gases. We are surrounded by gases, but we are often

WIM WOBBE INDEX METER Installation, operation and maintenance manual

GASES. Unit #8. AP Chemistry

Laser Spectrometers for Online Moisture Measurement in Natural Gas. Ken Soleyn GE M&C

Transcription:

METHODOLOGY FOR RESIDUAL OXYGEN CALORIMETRY J. David Hailey Ph.D. Vice President, Business Development COSA Xentaur 7125 North Loop East Houston, TX 77028 KEYWORDS Combustion Air Requirement Index (CARI) Air/Fuel Ratio, CARI Index, Wobbe Index, Fuel Gas, Stoichiometric Air to Fuel Ratio, Choked Flow, Mass Flow Rate, Sonic Flow, Ideal Gas Law, Specific Heat, Exothermic Oxidation ABSTRACT This paper describes the methodology of flameless calorimetry for determination of Calorific Value (Heating Value) utilizing CARI Index, Wobbe Index and specific gravity in a real-time reporting basis. The fuel gases are exothermically oxidized in a catalytic converter and the residual oxygen from the reaction is correlated to the CARI and Wobbe Index. This measurement methodology offers an extremely fast speed of response and reliable measurements over large range of gas compositions and calorific values without the concern of flameouts or the need for assist gases. INTRODUCTION The basic components of a residual oxygen combustion calorimeter are the Fuels Conditioning Section, where the gas to be measured is blended with air using critical sized orifices for both gas and air to obtain a resulting excess oxygen reading that varies with combustible constituent content and Choked Flow thus a stable Sonic Flow Rate is achieved with only the Mass Flow Rate varying with the mixed gas composition, the Combustion Section, where the mixed gas and air are reduced down to their elemental states by Exothermic Oxidation in a catalytic over at over 800 C, and the Measurement Section, where the device measures the residual oxygen remaining from the mixed gas after Exothermic Oxidation and correlates this residual oxygen reading by a Zirconium Oxide Oxygen Sensor reading that is correlated to CARI Index, Wobbe Index and Calorific Value (BTU s/scf, or Joules/meter) with a densitometer for the calculation of Wobbe to Calorific Value by means of the Specific Gravity value of the gas being measured. cosa+xentaur New York Office: 84F Horseblock Rd., Yaphank, NY 11980, Tel: 631-342-3434, Fax: 631-342-5349 Texas Office: 7125 North Loop East, Houston, TX 77028, Tel: 713-947-9591, Fax: 713-947-7549 E-mail: info@cosaxentaur.com, Website: www.cosaxentaur.com

COMBUSTION BASICS Stoichiometric reactions are ones in which a mixture of reactants are exactly proportioned on a molal basis so that no excess of any reactant is present after the reaction. A Stoichiometric combustion is one in which all the oxygen atoms and fuel molecules are chemically reacted (oxidized). More plainly put, it is the point where just enough or excess oxygen is present to burn all of the combustible reactants in the stream. Carbon (C) to carbon dioxide (CO2), hydrogen (H) to water vapor (H2O) and all sulfur (S) to sulfur dioxide (SO2). The basic chemical equation for combustion of a fossil fuel is as follows (1): CnHm + (n+m/4) (O 2 + 3.76N 2 ) nco 2 + m/2h 2 O + (n+m/4)3.76n 2 + Q (1) Where CnHm is a fossil fuel, with n the number of Carbon atoms in the reaction, and m the number of Hydrogen atoms. O2 + 3.76N2 is air, which is used as the source of oxygen. Q is the heat released from the combustion process. The combustion process of the combustible gases such as Hydrocarbons in Instrument Air (N2 + O2) is best described as; Sample Gas + Oxygen + Nitrogen Water + Carbon Dioxide + Nitrogen + Heat Wherein the combusted Sample Gas in the presences of excess Oxygen will produce Heat, Water, Carbon Dioxide & Nitrogen which are considered to be the products of combustion and can be expressed as follows (2): CH 4 + 2 O 2 + N 2 2 H 2 O + CO 2 + N 2 + Q (2) Sample Gas + Oxygen + Nitrogen Water + Carbon Dioxide + Nitrogen + Heat To assure complete combustion of a gas, the combustion process is ran at higher oxygen levels than needed to theoretically burn all of the gas given the range and variability of the gas constituent(s) molar percentage content matrix being introduced. This extra amount is called excess oxygen, or because air is used, excess air. In most combustion processes, excess O 2 is generally measured to assure all fuel is burned. Standard practice is to use a Zirconium Oxide analyzer to perform this measurement. The Calorimeter s Instrument Air to Gas ratio is typically 14:1 and fixed by different Air & Gas orifice sizes and pressure to assure Choked Flow to achieve Sonic Flow stability so that there is excess Oxygen present regardless of the combustible gas composition, and this is stated as Residual Oxygen, also referred to as Combustion Air Requirement Index, which is the unit of measurement used to determine the Wobbe Index, CARI, and with the use of an intergraded density cell the Calorific Values such as Lower Heating Value (LHV) or Higher Heating Value (HHV) is also reported in BTU, MJ, Kcal, etc

FUELS CONDITIONING SECTION The Fuels Conditioning portion of a Gas Calorimeter is comprised of a continuous gas sample that is mixed with dry air and maintained at a constant temperature and ratio determined by Air/Gas orifices in the Mixing Chamber (Figure 1). The gas and air stream pressures are first equalized by a dome loaded pressure regulator. Figure 1. These streams are then temperature regulated by means of a heater in the sample system compartment and use of a heat exchange to equilibrate the Instrument Air and Sample Gas upstream of the Mixing Chamber. The flow to their respective orifice plates are regulated at critical flow rates, and then fed to a mixing chamber creating a homogeneous mixture of the gas and air as shown in figure 2. Mixing Chamber for turbulent blending of Instrument Air with Sample Gas Figure 2. Specific gravity of the process gas is measured when Calorific Value (CV) needs be reported in BTU/SCF, or MJ/Nm 3 and a densitometer (S.G.) is placed in the sample gas line upstream of the Mixing Chamber utilizing the Equation of State (3) wherein CV equals the Wobbe Index (WI) multiplied by the square root of the Specific Gravity (S.G.) of the gas being measured and the Wobbe Index Equation of State (4) is Wobbe Index (WI) divided by the square root of the Specific Gravity (S.G.) of the sample gas.

where; CV = WI S.G. (3) WI = CV S.G. (4) CV = calorific value (heating value) WI = wobbe index S.G. = specific gravity (relative density) Utilizing Choked Flow with the assumption of ideal gas behavior the steady state Choked Flow occurs when the ratio of the absolute upstream pressure to the absolute downstream pressure is equal to or greater than [ (k+1) / 2 ] k/(k 1), where k is the specific heat ratio of the gas (Isentropic Expansion Factor γ) For most gases, k ranges from 1.32 for Methane to 1.67 Argon, therefore [ (k+1) / 2 ] k/(k 1) ranges from 1.11 to approximately 2.1 which means that choked flow usually occurs when the absolute source Pressure Upstream (Pu) is at least 1.7 to 2.1 times as high as the absolute Pressure Downstream (Pd) as shown in table 1 below for a range of these aforementioned gas ranges. Therefore the minimum Pu/Pd pressure ratio is to be understood as the ratio between the upstream pressure (Pu) and the pressure at the orifice plate (nozzle throat) when the gas is traveling at Sonic Flow Speed as defined as Mach 1and inversely should the upstream pressure (Pu) become too low as compared to the downstream pressure (Pd) minimum choked ratio, then sonic flow cannot occur at the orifice plate throat. Gas Formula k = Cp/Cv (γ) Pu/Pd (Choked Minimum) Acetylene C2H2 1.300 1.832 Air - 1.399 1.893 Ammonia Nh4 1.320 1.845 Argon Ar 1.669 2.056 n-butane C4H10 1.110 1.717 Carbon Dioxide CO2 1.300 1.832 Carbon Monoxide CO 1.401 1.893 Chlorine Cl2 1.329 1.850 Ethane C2H6 1.220 1.784 Ethylene C2H4 1.220 1.784 Hydrochloric Acid HCl 1.411 1.900 Hydrogen H2 1.410 1.899 Hydrogen Sulphide H2S 1.301 1.833 Methane CH4 1.320 1.845 Methyl Chloride CH2Cl 1.199 1.771 Natural Gas - 1.270 1.814 Nitrogen N2 1.411 1.899 Nitrous Oxide N2O 1.310 1.839 Oxygen O2 1.401 1.893 Propane C3H8 1.150 1.742 Table 1 k = cp/cv of the gas or gas matrix cp = specific heat of the gas at a constant pressure cv = specific heat of the gas at a constant volume Pu = pressure upstream at a constant temperature Pd = pressure downstream at a constant temperature

The Conservation of Mass Principle requires that the gas velocity increase as it flows through the a smaller cross-sectional region of the restriction while the Venturi Effect causes the static pressure, and therefore the density, to decrease downstream past the restriction so Choked Flow is a limiting condition which occurs when the Mass Flow Rate does not increase with a further decrease in the Pressure Downstream (Pd) while the Pressure Upstream (Pu) is fixed along with the composition of the gases being measured, thus the gas mixture reaches the physical point at which the Choking Flow occurs for adiabatic conditions and when the orifice exit plane velocity(s) is at a sonic flow condition. COMBUSTION SECTION Now that the fuel is properly mixed with a reducing agent (air) and at this point where the Instrument Air and sample gas have been blended past the critical Air & Gas orifices and are at sonic speed it must be burned, or oxidized in order to determine the Calorific Value contained in the gas. The sample gas and air mixture from the Fuels Conditioning System is catalytically combusted in an oven (Figure 3) whose temperature is set to approximately 812 o C and by a thermocouple and PID algorithm programmed in the microcontroller Figure 3 After complete combustion of the sample gas that is mixed with Instrument Air in the Catalytic Oven the measurement of the Residual Oxygen by the Zirconium Oxide Oxygen Sensor is a function of the remaining molar percentage of Oxygen molecules after the combustion process and the demand for Oxygen to combust the gas matrix has been reached the residual Oxygen is then correlated to the CARI and WI values determined by calibration of the system using a lower and higher range of gases with a CARI and WI value to be representative of the range of the Sample Gas to be measured. Each of the calibration gases that represent the expected range of gases to be measured are combusted and their CARI, WI and CV + S.G. with a density cell are recorded for the low and high range and a mid point of calibration is added for extended range models, and these values are the calibration factors stored in the calorimeter and used when measuring the unknown Sample Gas matrix to provide a CARI, WI and

CV + S.G. Figure 4 below shows the Calibration Manifold where the Process Gas (Sample Gas), and the Low, Medium and the High range if so equipped for an extended CV measurement range. As the sample gas combined with instrument air flows of a fuel gas through an orifice is dependent upon the specific gravity of this gas matrix. the amount of air required for complete combustion of the sample gas will change with the density of the sample gas. The Combustion Air Requirement Index (CARI) is a dimensionless parameter indicating how much air is required for the stoichiometric combustion of a sample gas (5). CARI = Air / Gas S.G. (5) where; CARI = Combustion Air Requirement Index S.G. = specific gravity Calibration gas mixtures representing the Low, Mid and occasionally the High range of the Wobbe Index of the process gas stream, can be used to establish the linear relationship between CARI and the Wobbe Index by measuring the Residual Oxygen in the Catalytic Combustion Oven after measuring and recording the two or three calibration gases, thus the Wobbe index can be calculated by solving the linear equation (6,7): Wobbe Index = ao + b (6) where; WI = a, b = calibration constants O = concentration of residual oxygen in the flue gas Wm Wl (O Ol)+Wm (7) Om Ol Where; Wm = Wobbe Index, Mid (High) Calibration gas Wl = Wobbe Index, Low Calibration gas Om = concentration of residual oxygen after combusting mid (high) Calibration Gas Ol = concentration of residual oxygen after combusting Low Calibration Gas O = concentration of residual oxygen in the sample gas In graph 1 you can see that the relationship between the CV (heating value) of the various gases corresponds closely to the CARI, this relationship is even closer when calculation Gross CV.

Graph 1 The Thermal Loading of the Catalytic Combustion Oven is expressed as follows (8, 9, 10, 11): Furnace Thermal Load = Qg CV (8) Qg = k x ( ) P S.G. (9) Thermal load = k x ( )P x CV / S.G. (10) where; Thermal load = k x ( )P x WI (11) Qg = flow of sample gas thus thermal load CV = calorific value (heating value) k = cp/cv of the gas or gas matrix (see table 1) WI = wobbe index P = pressure for Choked flow Pu/Pd (see table 1) S.G. = specific gravity (relative density)

Therefore if at a constant sample gas pressure, the Wobbe Index is controlled at constant pressure, then the thermal load to the oven is therefore constant as well. As the compositional matrix of the sample gas changes, so then will the thermal load and will be expressed as residual oxygen level. The measurement of excess oxygen provides a direct measurement of the Combustion Air Requirement Index (CARI) of the fuel, which can then be mathematically correlated to the Wobbe Index. Differences between the CARI and Wobbe Index values can be cancelled out by the use of calibration gases thus giving this technique the ability to report Wobbe Index values along with CARI. With the addition of a Specific Gravity Cell, CV can be reported as well. CONCLUSIONS This methodology does not suffer from ambient temperature effects as do most other approaches, minimizing or eliminating measurement shelter and associated building and utility costs. There is no flame to go out, so during a low calorific value event the system never shuts down, disrupting plant operation or require a call out service. The constant flow of sample gas allows for a fast speed of response to changing calorific values. This methodology has very low maintenance requirements when compared to the other methodologies with regard to repair, operation, setup, down time and field service. There is also the added advantage of being able to measure extremely high dew point gases that require the sample gas and analyzer enclosure to be to as much as 95 C to keep the sample gas in a gaseous state. Thus, high BTU gas can be measured without the concern of heavy hydrocarbons condensing. REFERENCES 1. Princeton University Thermodynamics - Stoichiometric Combustion http://www.princeton.edu/~humcomp/sophlab/ther_41.htm 2. Taftan Data - Stoichiometric Combustion http://www.taftan.com/thermodynamics/combust.htm 3. Engineering Thermodynamics, Thermodynamics of Reacting Mixtures, Reynolds and Perkin, McGraw Hill Publishing 1970 4. David R Lide - CRC Handbook of Chemistry and Physics CRC Press 2007 5. Perry, Robert H. and Green, Don W. (1984). Perry's Chemical Engineers' Handbook, Table 6th Edition. McGraw-Hill Company 1984