Appendix Table of Contents:

Similar documents
CIVL473 Fundamentals of Steel Design

Basis of Structural Design

Session 1. Pushover Analysis of a Torsionally Eccentric Cellular Abutment. Date 11/03/ PM 4 PM Eastern Time

computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23.

ASCE D Wind Loading

EFFECTS OF SIDEWALL OPENINGS ON THE WIND LOADS ON PIPE-FRAMED GREENHOUSES

STRUCTURAL DESIGN FIGURE INTERNATIONAL BUILDING CODE 288aR

NUMERICAL EXAMPLE FOR LOAD BALANCING RESULT IN ADAPT-FLOOR PRO 2016

EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS

STRUCTURAL CALCULATIONS FOR. EXTREME MARQUEES TENTS Summit Range 2.4x2.4, 3x3, 3x4.5, 3x6, 4x4, 4x8, 6x6m

Lecture 11 Natural Ventilation (Passive Cooling)

TB-354 March 2017 (Expires 3/2019) Select Beam Design Tables

Design wind pressures and forces are determined per equations given in section : q Gf Cp - qi GCpi : at height z above ground Resisting System

Fortified For Safer Living

External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs

Application of pushover analysis in estimating seismic demands for large-span spatial structure

Pushover analysis with ZSOIL taking soil into account. Stéphane Commend GeoMod Ing. SA, Lausanne

Non-Linear Seismic Analysis of Multi-Storey Building

Wind vs. Water Presented by:

Culvert Design An Overview of the NYS Highway Design Manual Chapter 8

SIGN PLACEMENT-ELEVATION VIEW: FREEWAY (FORESLOPE) ROADSIDE SIGN LOCATIONS & SUPPORT SPACING MICHIGAN DEPARTMENT OF TRANSPORTATION (MIN.

Wind Action Effects on Mixed Reinforced Concrete Structures in Non Seismic Zones

UNIVERSITY OF HONG KONG LIBRARY. Hong Kong Collection

TESTING APPLICATION STANDARD (TAS)

Effect of Wind Pressure on R.C Tall Buildings using Gust Factor Method

Wind Pressure Distribution on Rectangular Plan Buildings with Multiple Domes

CONTENTS 1. INTRODUCTION DESCRIPTION OF TEST SAMPLE TEST RIG GENERAL ARRANGEMENT TEST SEQUENCE...7

ASTM E1886 and ASTM E1996 TEST REPORT. Report No.: E Rendered to: 3M COMPANY St. Paul, Minnesota 55144

Wind and Fastener Calculation Report for property located at

DESIGN OF ELEVATED SERVICE RESERVOIR

Numerical Analysis of Wind loads on Tapered Shape Tall Buildings

6.0 ENGINEERING. Build Anything Better. REPRINTED 2017

Letter of Transmittal

RESIDENTIAL BUILDING PLAN REVIEW CHECKLIST

Loads on Structures. Dead Load / Fixed Load Live Load / Imposed Load Earthquake Load Wind Load Snow Load

REVIEW Effects of Side Vents and Span Numbers on Wind-Induced Natural Ventilation of a Gothic Multi-Span Greenhouse

PRELIMINARY STUDY GIFFY BARRELS TENT BALLASTING SYSTEM. Prepared for: Giffy Tent Barrels tm, Inc. Date: December 27th, 2014.

BASIC FIRE SCHOOL VENTILATION, SALVAGE & OVERHAUL

Wind effects on tall building frames-influence of dynamic parameters

KCRC Ma On Shan Line. Railway Development in Hong Kong. Tai Wai Station and Maintenance Centre

SUMMARY PROBLEMS CAUSED BY BACKFLOW IN PIPE SYSTEMS.

Wind tunnel tests of a non-typical stadium roof

APPLICATION OF PUSHOVER ANALYSIS ON EARTHQUAKE RESPONSE PREDICATION OF COMPLEX LARGE-SPAN STEEL STRUCTURES

22'-9 1/2" 6.94 m. 48'-10" m TEACH TOT POOL. POOL AREA = ±3845 ft². 35'-1 1/2" m BEACH ENTRY MINI SPLASH PAD = ± 475 SF. 16'-0 1/2" 4.

Mini Channel & Fittings

WEDGE-ALL Wedge Anchors

FINAL REPORT. Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia

Wind tunnel test and numerical simulation of wind pressure on a high-rise building

SECTION BUTTERFLY VALVES

GAS DELIVERY PRESSURE AND MEASUREMENT

lated by the arrangement of spires and roughness blocks to fit the urban terrain (terrain IV, power law index = 0.7) specified in AIJ recommendation (

Effect of Depth of Periphery Beams on Behavior of Grid Beams on Grid Floor

b. What is the x-distance from the foot of the cliff to the point of impact in the lake?

New Orleans Municipal Yacht Harbor

Yasuyuki Hirose 1. Abstract

LPCorp.com

A Wind-Tunnel Study of a Cubic Rooftop AC Unit on a Low Building

Stephens Creek Culvert Replacement. CAC April 28, 2010

Below are the graphing equivalents of the above constraints.

Argon Injection Optimization in Continuous Slab Casting

Submittal / Substitution Request

Wind Effect on Smoke Exhaust by Natural Vent

APPENDIX G SCA BASIN CALCULATIONS

PQ Performance Qualification - Page 1/13

NCSEA Webinar March Michael O Rourke PE, Ph.D. Rensselaer

Summit Anchor Company, Inc.

Applying Trigonometry: Angles of Depression and Elevation

TYPICAL TOXIC GAS SYSTEM INSPECTION VIOLATIONS

CVEN Computer Applications in Engineering and Construction. Programming Assignment #4 Analysis of Wave Data Using Root-Finding Methods

Mott Manufacturing Limited

OFFSHORE RACING CONGRESS

Staff Report Text Amendment Case #: TA

Astoria Boulevard ADA and Station Renewal Track Improvements. February 19, 2019

STANDARD SAILING INSTRUCTIONS

DESIGN OF AXIALLY LOADED STEPPED FOOTING DATA :- SBC of soil =200 KN /m 2 Concrete Mix =M20 Steel Grade = Fe 415 Clear cover of bottom slab =50 mm

Figure 1 FSM 250 roof anchor system

AOS 103. Week 4 Discussion

HH Gregg Building Northgate Mall Cincinnati, Ohio May 14, 2014

OCEANIA AREA RECORD REGULATIONS

SWIFT FSC GUIDE NET ARRANGEMENTS

Summary of HEC 18, Evaluating Scour at Bridges FHWA NHI Should really follow HEC 18, but this summary will get you the main points.

Projectile Motion (8/24/11) (approx. completion time for just parts A & B: 1.5 h; for entire lab: 2.3 h)

RESILIENT INFRASTRUCTURE June 1 4, 2016

APPENDIX B TESTING PROTOCOLS. Method A: Straight Test Method B: Angular Deflection Test. Method C: Shear Load Test

CASE BOOK - INTERPRETATIONS OF THE RACING RULES OF SAILING

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge

5. STRUCTURAL ANALYSIS

IGUMA - IGU Design Limitations

Mott Manufacturing Limited

A Post ETHAN ALLEN Capsizing Assessment January 1, 2017

Appendix: Tables. Table XI. Table I. Table II. Table XII. Table III. Table IV

COMPFIRE CCFT-FP_550_55_ September 2010 Fin Plate Connection to Circular Concrete-Filled Tube Test Result

Vibration of floors and footfall analysis

Transportation Engineering II Dr. Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee

2. ROLES AND RESPONSIBILITIES

Quick Reference Technical Data

Pushover Analysis of Water Tank Staging

Lesson 6: The Distance Between Two Rational Numbers

Practical Steel Connection Software Design Using AISC 2010 Standard

A study of heat transfer effects on air pollution dispersion in street canyons by numerical simulations

Transcription:

Appendix Table of Contents: Page: I. Appendix A 30 1. Existing Conditions Calculations o Design Loads o Seismic Calculations o Wind Calculations o Spot Checks II. Appendix B... 35 2. Proposed Calculations ANTHONY PACITTI JR. PAGE 31 STRUCTURAL OPTION

APPENDIX A ANTHONY PACITTI JR. PAGE 32 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 33 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 34 STRUCTURAL OPTION

West- East Story Elevations Tributary Windward Pressure Design Windward Velocity Pressure Design Windward Windward Wind Leeward Pressure Design Leeward Velocity Pressure Design Leeward Design Leeward of Floor Height Coef. Pressure Force Coef Pressure Force Wind Load 4 45 15 0.787 13.865 9.43 14.14 0.91 16.039-6.82-10.23 24.37 3 30 15 0.701 12.348 8.40 12.60 0.91 16.039-6.82-10.23 22.82 2 15 15 0.575 10.130 6.89 10.33 0.91 16.039-6.82-10.23 20.56 Ground 0 North South Elevations Tributary Windward Design Design Windward Leeward Design Design Design Total Story Pressure Windward Leeward Leeward Windward Wind Pressure Velocity Velocity Velocity Leeward of Floor Height Coef. Pressure Pressure Force Coef Pressure Pressure Force Wind Load 4 45 15 0.787 13.865 9.43 38.18 0.91 16.039-6.82-27.61 65.79 3 30 15 0.701 12.348 8.40 34.01 0.91 16.039-6.82-27.61 61.61 2 15 15 0.575 10.130 6.89 27.90 0.91 16.039-6.82-27.61 55.51 Ground 0 Total

ANTHONY PACITTI JR. PAGE 35 STRUCTURAL OPTION

APPENDIX B ` ANTHONY PACITTI JR. PAGE 36 STRUCTURAL OPTION

West- East Story Elevations of Floor Tributary Height Windward Pressure Coef. Design Windward Velocity Pressure Design Windward Pressure Windward Wind Force Leeward Pressure Coef Design Leeward Velocity Pressure Design Leeward Pressure Design Leeward Force Total Wind Load Roof 75 7.5 0.910 16.044 10.91 8.18 0.91 16.039-6.82-5.11 13.29 5 60 15 0.854 15.053 10.24 15.35 0.91 16.039-6.82-10.23 25.58 4 45 15 0.787 13.865 9.43 14.14 0.91 16.039-6.82-10.23 24.37 3 30 15 0.701 12.348 8.40 12.60 0.91 16.039-6.82-10.23 22.82 2 15 15 0.575 10.130 6.89 10.33 0.91 16.039-6.82-10.23 20.56 Ground 0 North South Story Elevations of Floor Tributary Height Windward Pressure Coef. Design Windward Velocity Pressure Design Windward Pressure Windward Wind Force Leeward Pressure Coef Design Leeward Velocity Pressure Design Leeward Pressure Design Leeward Force Total Wind Load Roof 75 7.5 0.910 16.044 10.91 22.09 0.91 16.039-6.82-13.80 35.90 5 60 15 0.854 15.053 10.24 41.46 0.91 16.039-6.82-27.61 69.06 4 45 15 0.787 13.865 9.43 38.18 0.91 16.039-6.82-27.61 65.79 3 30 15 0.701 12.348 8.40 34.01 0.91 16.039-6.82-27.61 61.61 2 15 15 0.575 10.130 6.89 27.90 0.91 16.039-6.82-27.61 55.51 Ground 0 Computations of Total Unfactored Story Shears and Moments at Floor Levels (North- South) Story Unfactored Wind Load Height Story Shear Moment at Floor Level Roof 171.20 15.00 171.20 2568.00 5 151.93 15.00 323.13 7414.95 4 113.95 15.00 437.08 13971.15 3 75.97 15.00 513.05 21666.90 2 37.97 15.00 551.02 29932.20 Ground 0.00 75553.20 Computations of Total Unfactored Story Shears and Moments at Floor Levels (East - West) Story Moment at Unfactored Wind Load Height Story Shear Floor Level Roof 13.29 15.00 13.29 199.42 5 25.58 15.00 38.87 782.53 4 24.37 15.00 63.24 1731.15 3 22.82 15.00 86.06 3022.07 2 20.56 15.00 106.62 4621.35 Ground 0.00 10356.51

Calculations of Negative and Positive Moments for East- West Slab Strip 2 East West Slab Strip 2 A-2 B2 I2 J2 l-1 30.00 30.00 30.00 l-n 28.17 28.17 28.17 l-2 25.00 25.00 25.00 wu 0.37 0.37 0.37 Mo 909.91 909.91 909.91 Coeff. -0.26 0.52-0.70-0.65 0.35-0.65-0.70 0.52-0.26 Moments -236.58 473.15-636.94-591.44 318.47-591.44-636.94 473.15-236.58 Total column moments -236.58-226.30-226.30-236.58 Calculations of negative and Positive Moments for East-West Strip 1 Strip 1 A-1 B-1 I-2 J-2 l-1 30.00 30.00 30.00 l-n 28.17 28.17 28.17 l-2 edge 12.75 12.75 12.75 wu 0.37 0.37 0.37 Mo 464.05 464.05 464.05 Coeff. -0.26 0.52-0.70-0.65 0.35-0.65-0.70 0.52-0.26 Moments -120.65 241.31-324.84-301.63 162.42-301.63-324.84 241.31-120.65 column moment from slab load -120.65-115.40-115.40-120.65 Wall Load 0.42 0.42 0.42 Wall Mo 41.65 41.65 41.65 Coeff. -0.26 0.52-0.70-0.26 0.52-0.70-0.26 0.52-0.70 Moments -10.83 21.66-29.16-10.83 21.66-29.16-10.83 21.66-29.16 Column Moments from wall load -10.83-18.33-18.33-29.16 Total Column Moments -131.48-133.73-133.73-149.81

Calculations of Negative and Positive Moments for North -South Strip A B-1 B-2 B-3 B-4 North -South l-1 25.00 25.00 25.00 l-n 23.17 23.17 23.17 l-2 30.00 30.00 30.00 wu 0.37 0.37 0.37 Mo 738.65 738.65 738.65 Coeff. -0.26 0.52-0.70-0.65 0.35-0.65-0.70 0.52-0.26 Moments -192.05 384.10-517.05-480.12 258.53-480.12-517.05 384.10-192.05 Sum of column moments -192.05-183.70-183.70-183.70-183.70-183.70-192.05 Strip B A-1 A-2 A-3 A-4 l-1 25.00 25.00 25.00 l-n 23.17 23.17 23.17 l-2 edge 16.25 16.25 16.25 wu 0.37 0.37 0.37 Mo 400.10 400.10 400.10 Coeff. -0.26 0.52-0.70-0.65 0.35-0.65-0.70 0.52-0.26 Moments -104.03 208.05-280.07-260.07 140.04-260.07-280.07 208.05-104.03 column moments from slab load -104.03-99.50-99.50-99.50-104.03 Wall Load 0.42 0.42 0.42 Wall Mo 28.18 28.18 28.18 Coeff. -0.26 0.52-0.70-0.26 0.52-0.70-0.26 0.52-0.70 Moments -7.33 14.65-19.72-7.33 14.65-19.72-7.33 14.65-19.72 Column Moments from wall load -7.33-12.40-12.40-19.72 Total Column Moments -111.35-111.89-111.89-111.89-111.89-123.75

East -West Divison of Moment to Column and Middle Strip Length of Strip 12.5 12.5 12.5 11.5 7.5 Column Strip Middle Strip Column Strip Middle Strip Edge Column Exterior Negative Moment -236.58-236.58 0.00-120.65 Moment Coeff. 1.00 0.00 1.00 0.00 1.00 Moment to Column and Middle Strips -236.58 0.00-236.58 0.00-120.65 Wall Moment 0.00 0.00 0.00 0.00-10.83 Total Moment in Strip -236.58 0.00-236.58 0.00-131.48 As required(in^2) 5.39 0.00 5.39 0.00 3.00 Min As (in^2) 3.60 3.60 3.60 3.31 2.16 20 #4 bar @ 10 #5 bar Steel 18 #5 bars @ 8" 7" 18 #5 bars @ 8" 17 #4 bar @8" @9" As of Steel Used 5.58 4.00 5.58 3.40 3.10 End Span Positive Moments 473.15 473.15 241.31 Moment Coeff. 0.60 0.20 0.20 0.60 0.20 0.40 0.60 Moment to Column and Middle Strips 283.89 94.63 94.63 283.89 94.63 0.00 96.52 144.78 Wall Moment 0.00 0.00 0.00 0.00 21.66 Total Moment in Strip 283.89 189.26 283.89 191.15 166.44 As required(in^2) 6.47 4.31 6.47 4.36 3.79 Min As (in^2) 3.60 3.60 3.60 3.31 2.16 Steel 15 #6 bars @ 10" 15 #5 bar @ 10" 15 #6 bars @ 10" 15 #5 bar @ 10" 9 #6 bar @10" As of Steel Used 6.60 4.65 6.60 4.65 3.96 First Interior Negative Moment -591.44-591.44-301.63 Moment Coeff. 0.75 0.125 0.125 0.75 0.125 0.25 0.75 Moment to Column and Middle Strips -443.58-73.93-73.93-443.58-73.93 0.00-75.41-226.23 Wall Moment 0.00 0.00 0.00 0.00-29.60 Total Moment in Strip -443.58-147.86-443.58-149.34-255.83 As required(in^2) 10.11 3.37 10.11 3.40 5.83 Min As (in^2) 3.60 3.60 3.60 3.31 2.16 Steel 25#6 bars @ 6" 20 #4 bar @ 7" 25#6 bars @ 6" 17 #4 bar @8" 14 #6 bar @6" As of Steel Used 11.00 4.00 11.00 3.40 6.16 Interior Positive Moments 318.47 318.47 162.42 Moment Coeff. 0.60 0.200 0.200 0.60 0.200 0.40 0.60 Moment to Column and Middle Strips 191.08 63.69 63.69 191.08 63.69 0.00 64.97 97.45 Wall Moment 0.00 0.00 0.00 0.00 41.65 Total Moment in Strip 191.08 127.39 191.08 128.66 139.10 As required(in^2) 4.36 2.90 4.36 2.93 3.17 Min As (in^2) 3.60 3.60 3.60 3.31 2.16 Steel 15#5 bars @ 10" 20 #4 bar @ 7" 15#5 bars @ 10" 17 #4 bar @8" 11 #5 bars @8" As of Steel Used 4.65 4.00 4.65 3.40 3.41

North South Divison of Moment to Column and Middle Strip Length of Strip (ft) 12.5 17.5 12.5 17.5 7.5 Column Strip Middle Strip Column Strip Middle Strip Edge Column Exterior Negative Moment -192.05-192.05 0.00-104.03 Moment Coeff. 1.00 0.00 1.00 0.00 1.00 Moment to Column and Middle Strips -192.05 0.00-192.05 0.00-104.03 Wall Moment 0.00 0.00 0.00 0.00-7.33 Total Moment in Strip -192.05 0.00-192.05 0.00-111.35 As required(in^2) 4.38 0.00 4.38 0.00 2.54 Min As (in^2) 3.60 5.04 3.60 5.04 2.16 Steel 15#5 bars @ 10" 17 #5 bar @ 10" 15#5 bars @ 10" 17 #5 bar @ 10" 14 #4 bar @6" As of Steel Used 4.65 5.27 4.65 5.27 2.80 End Span Positive Moments 384.10 384.10 208.05 Moment Coeff. 0.60 0.20 0.20 0.60 0.20 0.40 0.60 Moment to Column and Middle Strips 230.46 76.82 76.82 230.46 76.82 0.00 83.22 124.83 Wall Moment 0.00 0.00 0.00 0.00 14.65 Total Moment in Strip 230.46 153.64 230.46 160.04 139.48 As required(in^2) 5.25 3.50 5.25 3.65 3.18 Min As (in^2) 3.60 5.04 3.60 5.04 2.16 Steel 18 #5 bars @ 8" 17 #5 bar @ 10" 18 #5 bars @ 8" 17 #5 bar @ 10" 11 #5 bars @8" As of Steel Used 5.58 5.27 5.58 5.27 3.41 First Interior Negative Moment -517.05-517.05-280.07 Moment Coeff. 0.75 0.125 0.125 0.75 0.125 0.25 0.75 Moment to Column and Middle Strips -387.79-64.63-64.63-387.79-64.63 0.00-70.02-210.05 Wall Moment 0.00 0.00 0.00 0.00-19.72 Total Moment in Strip -387.79-129.26-387.79-134.65-229.78 As required(in^2) 8.84 2.95 8.84 3.07 5.24 Min As (in^2) 3.60 5.04 3.60 5.04 2.16 Steel 15 #7 bars @ 6" 17 #5 bar @ 10" 15 #7 bars @ 6" 17 #5 bar @ 10" 9 #7 bar @10" As of Steel Used 9.00 5.27 9.00 5.27 5.40 Interior Positive Moments 258.53 258.53 140.04 Moment Coeff. 0.60 0.200 0.200 0.60 0.200 0.40 0.60 Moment to Column and Middle Strips 155.12 51.71 51.71 155.12 51.71 0.00 56.01 84.02 Wall Moment 0.00 0.00 0.00 0.00 28.18 Total Moment in Strip 155.12 103.41 155.12 107.72 112.20 As required(in^2) 3.54 2.36 3.54 2.46 2.56 Min As (in^2) 3.60 5.04 3.60 5.04 2.16 Steel 12 #5 bars @ 12" 17 #5 bar @ 10" 12 #5 bars @ 12" 17 #5 bar @ 10" 15 #4 bars @6" As of Steel Used 3.72 5.27 3.72 5.27 3.00

ANTHONY PACITTI JR. PAGE 37 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 38 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 39 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 40 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 41 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 42 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 43 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 44 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 45 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 46 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 47 STRUCTURAL OPTION

ANTHONY PACITTI JR. PAGE 48 STRUCTURAL OPTION