Supplemental Materials

Similar documents
SCIENTIFIC COMMITTEE SEVENTH REGULAR SESSION August 2011 Pohnpei, Federated States of Micronesia

Paper 2.2. Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Algebra 1 Unit 6 Study Guide

Math 4. Unit 1: Conic Sections Lesson 1.1: What Is a Conic Section?

Revision 7/2/02 MEASURING WRAVMA DRAWING DESIGNS WITH SCORING TEMPLATES

Inlet Swirl on Turbocharger Compressor Performance

Influencing Factors Study of the Variable Speed Scroll Compressor with EVI Technology

Roundabout Design Principles

Race Management Policies for World Sailing Events Fleet Racing Updated for Oceania & Australian Laser Regattas

Density of Individual Airborne Wind Energy Systems in AWES Farms

Effects of directionality on wind load and response predictions

STAGE 4 ACTIVITIES YEAR OLD PLAYERS

REVISED - SYS SUMMARY OF CALLS - FIRST AID FOR CALLS FREE SKATING INDEX for Free Skating Program Elements

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET

Power efficiency and aerodynamic forces measurements on the Dettwiler-wind turbine

INSTITUTE FOR YOUTH SOCCER GERMANY ( COACHES.COM )

Module 5 : Pulse propagation through third order nonlinear optical medium. Lecture 38 : Long distance soliton transmission system.

Real-time Analysis of Industrial Gases with Online Near- Infrared Spectroscopy

1.3.4 CHARACTERISTICS OF CLASSIFICATIONS

Hardware Triaxial and Consolidation Testing Systems Pressure Measurement and Control

Experiment 11: The Ideal Gas Law

Race Management Policies for SB20 World Championship 2018

Section I: Multiple Choice Select the best answer for each problem.

% per year Age (years)

CHAPTER ONE HUNDRED NINETY FIVE

Introduction to Roundabout Analysis Using ARCADY

Available online at ScienceDirect. The 2014 Conference of the International Sports Engineering Association

PART 3 MODULE 6 GEOMETRY: UNITS OF GEOMETRIC MEASURE

The 9th International Symposium on Automation and Robotic in Construction June 3-5,1992 Tokyo, Japan

Introductory Lab: Vacuum Methods

VISUAL PHYSICS School of Physics University of Sydney Australia. Why can a steel needle float but a larger piece of steel sink?

FACTORS OF DIFFICULTY IN SYNCHRONIZED SKATING

2018/2019 Records of Clarifications from ISU Sports Directorate and SyS TC for Judges, Technical Officials, Coaches and Skaters

SHOT ON GOAL. Name: Football scoring a goal and trigonometry Ian Edwards Luther College Teachers Teaching with Technology

5.1. Data Displays Batter Up. My Notes ACTIVITY

Teachings From An American Style Fighter Kite

Influence of HALO and drain-extension doping gradients on transistor performance

PSY201: Chapter 5: The Normal Curve and Standard Scores

INTRODUCTION TABLE OF CONTENTS

Assignment. To New Heights! Variance in Subjective and Random Samples. Use the table to answer Questions 2 through 7.

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1

Chapter 13. Factorial ANOVA. Patrick Mair 2015 Psych Factorial ANOVA 0 / 19

Introducing k-point Parallelism Into VASP. Asimina Maniopoulou Numerical Algorithms Group Ltd, HECToR CSE

Lower Columbia River Dam Fish Ladder Passage Times, Eric Johnson and Christopher Peery University of Idaho

U11-U12 Activities & Games

THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE

ROUNDABOUT CAPACITY: THE UK EMPIRICAL METHODOLOGY

Experimental Verification of Integrated Pressure Suppression Systems in Fusion Reactors at In-Vessel Loss-of -Coolant Events

Habit Formation in Voting: Evidence from Rainy Elections Thomas Fujiwara, Kyle Meng, and Tom Vogl ONLINE APPENDIX

CHAPTER 7 : SMOKE METERS AND THEIR INSTALLATIONS

PUV Wave Directional Spectra How PUV Wave Analysis Works

CHAPTER 1 STANDARD PRACTICES

MODELING OF THE INFLOW BEHAVIOR OF EVACUATING CROWD INTO A STAIRWAY

STANDARD SCORES AND THE NORMAL DISTRIBUTION

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

Quartz etch process to improve etch depth linearity and uniformity using Mask Etcher IV

AN EXPERIMENTAL AND ANALYTICAL STUDY OF PLASMA CLOSING SWITCHES FILLED WITH ENVIRONMENTALLY FRIENDLY GASES

Calculation of Trail Usage from Counter Data

CORRELATION EFFECTS IN THE FIELD CLASSIFICATION OF GROUND BASED REMOTE WIND SENSORS

Practice Test Unit 6B/11A/11B: Probability and Logic

Influence of the Number of Blades on the Mechanical Power Curve of Wind Turbines

RACE MANAGEMENT POLICY GUIDELINES FOR THE FINN CLASS MAJOR CHAMPIONSHIPS 2018.

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS

Boyle s law Verifying the relation between air pressure and volume measuring air pressure in a closed container.

Product Technical Bulletin #48

Millennial Walker A multi-functional, elderly assistance walker with improved posture, comfort, and folding capabilities.

DATA HANDLING EXAM QUESTIONS

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

World Sailing. Race Management Policies for World Sailing Events (Fleet Racing)

OPERATIONAL AMV PRODUCTS DERIVED WITH METEOSAT-6 RAPID SCAN DATA. Arthur de Smet. EUMETSAT, Am Kavalleriesand 31, D Darmstadt, Germany ABSTRACT

Chapter 2: Visual Description of Data

DISTRIBUTION: Electronic Recipients List TRANSMITTAL LETTER NO. (13-01) MINNESOTA DEPARTMENT OF TRANSPORTATION. MANUAL: Road Design English Manual

THE HORNS REV WIND FARM AND THE OPERATIONAL EXPERIENCE WITH THE WIND FARM MAIN CONTROLLER

Analysis of dilatometer test in calibration chamber

Studies on mass distribution profile of detached fibre fringe in a comber

Procedia Engineering 00 2 (2010) (2009) Properties of friction during the impact between tennis racket surface and ball

Structure RMSd(A) RMSd(B) RMSd(A) RMSd(B)

Chapter 7. SCIIB Pressure Sensor Performance Evaluations: Experiments, Results and Discussions

Fluid-Structure Interaction Analysis of a Flow Control Device

2.0 LANE WIDTHS GUIDELINE

Level MEASUREMENT 1/2016

MTB 02 Intermediate Minitab

TRB/AASHTO Geometric Design Research Efforts Supplemental Information

Heat Pump Connections and Interior Piping

Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils

I N T E R N A T I O N A L S K A T I N G U N I O N

Legendre et al Appendices and Supplements, p. 1

OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE SA MARITIME QUALIFICATIONS CODE. Deck: Chart Work

Investigating the effects of interchanging components used to perform ripple assessments on calibrated vector network analysers

CFD SIMULATIONS OF GAS DISPERSION IN VENTILATED ROOMS

1 SE/P-02. Experimental and Analytical Studies on Thermal-Hydraulic Performance of a Vacuum Vessel Pressure Suppression System in ITER

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

RUNNING LOADS IN DECATHLON TRAINING

Multilane Roundabouts

Mark Scheme (Results) Summer 2009

BUCKET WHEEL RECLAIMERS. AUTHOR: MR. W KNAPPE MAN TAKRAF Fördertechnik GmbH

Wind Pressure Distribution on Rectangular Plan Buildings with Multiple Domes

Roundabout Design 101: Roundabout Capacity Issues

Example: Calculate the density of methane at 50 psig and 32 ⁰F. H.W. In previous example calculate the density of methane in gm/m 3.

Transcription:

Transparency Enhancement for SrVO 3 by SrTiO 3 Mixing: A First- Principles Study Z. T. Y. Liu 1, N. J. Podraza 1, S. V. Khare 1*, P. Sarin 2 1 Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA 2 School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK 74106, USA *Corresponding author: sanjay.khare@utoledo.edu Supplemental Materials

A. Magnetism and potential choices for V We justify the choice of U = 4 ev for V. Figure S1 shows the energy-dependent complex dielectric function spectra!! and!! for SrVO 3, and Figure S2 shows the band structures calculated with different parameter sets. In Figure S1, there are curves from six variations, ferromagnetic (FM) or non-magnetic (NM) with PBE potentials and U = 0 or 4 ev, or using the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06). In agreement with previous calculations 1, FM/U = 0 matches the experimental measurements well. Comparing FM/U = 0 and NM/U = 0, the lack of consideration of magnetization has a small influence on the complex dielectric functions, consistent with previous calculations 1. It red-shifts (lower) the rise of!! at ~2.8 ev by 0.2 ev. On the other hand, within FM, the introduction of the GGA+U scheme with U = 4 ev red-shifts the rise of!! greatly, by 0.8 ev, while within NM, it merely blue-shifts (higher) the rise by 0.2 ev, overlapping with the FM/U = 0 curve. Generally, GGA+U widens the band gap for semiconductors and insulators, and blue-shifts the overall complex dielectric function curves, as in the NM case. Further calculations reveal that for FM, U = 0 results in the magnetic moment of V 4+ being 0.5!!, and a value of U beyond 2 ev increases the effective on-site Coulomb repulsion and raises the magnetic moment to 1!!. At U = 4 ev, there is a larger separation between the spin-up and spin-down channels of the V-t 2g bands around the Fermi energy level (E F ) as shown in Figure S2(a) and (b). Each channel then gets closer to the adjacent bands, i.e. the lower-lying O-p and higher-lying V-e g bands, facilitating interband transitions. GGA+U leads to little change of the NM band structure, because there is no such spin channel separation occurring in the FM case. Only NM/U = 4 ev is shown in Figure S2(c), similar to FM/U = 0 in Figure S2(a). The FM and NM HSE06 curves in Figure S1 deviate greatly from the experimental observations. In short, considering the correlated nature of SrVO 3, small magnetic moments, and agreement of complex dielectric functions with the experimental measurements, we used NM/U = 4 ev for all calculations in this work.

Figure S1. Calculated complex dielectric function spectra!! and!! of SrVO 3 with different parameter settings. FM stands for the ferromagnetic configuration for V 4+ and NM for nonmagnetic. The first four cases were calculated with PBE potentials, and last two with HSE06.

Figure S2. Calculated band structures of SrVO3 with (a) FM/U = 0, (b) FM/U = 4 ev, (c) NM/U = 4 ev, all with PBE potentials. FM stands for the ferromagnetic configuration for V4+ and NM for non-magnetic. In cases of FM, the solid blue and dashed red curves stand for the spin-up and spin-down channels, respectively.

B. Cluster expansion Below we provide detailed information of the cluster set used in the fitting process. Figure S3. Effective cluster interactions (ECIs) of SrTi 1-x V x O 3. ECI values have been multiplied by their multiplicities. Blue circles and red squares triangles indicate pair and triplet interactions. Connecting lines are a guide to the eye. Table S1. Cluster sets and effective cluster interactions (ECIs) of SrTi 1-x V x O 3. Type Index Diameter (Å) Multiplicity Coordinates ECI (mev) empty 1 0.00 1 25.777 point 1 0.00 1 [[1.0, 1.0, 1.0]] 8.794 pair 1 3.87 3 [1.0, 0.0, 1.0]] -7.326 pair 2 5.47 6 pair 3 6.70 4 pair 4 7.73 3 [1.0, 0.0, 0.0]] [0.0, 0.0, 0.0]] [1.0, 1.0, -1.0]] -1.738-0.006 2.152 trip 1 5.47 12 [1.0, 1.0, 0.0], [1.0, 0.0, 0.0]] 0.668

trip 2 5.47 8 trip 3 6.70 24 trip 4 7.73 3 trip 5 7.73 12 trip 6 7.73 12 [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]] [1.0, 1.0, 0.0], [0.0, 0.0, 0.0]] [1.0, 1.0, 0.0], [1.0, 1.0, -1.0]] [1.0, 0.0, 0.0], [1.0, 1.0, -1.0]] [0.0, 0.0, 0.0], [1.0, 1.0, -1.0]] 0.534-0.180 1.612 0.152-0.423 Volumes of random solid solutions deviate from linearity slightly with down-bowing behavior. Figure S4. Volume deviations from linearity of SrTi 1-x V x O 3. Curves indicate CE-fitted values of the random solid solution configurations. C. Special quasi-random structure (SQS) prototypes Here we provide the ionic configurations of the SQS s of SrTi 1-x V x O 3 at x = 8/9, 7/9,, 1/9. Each SQS is a cubic supercell with a lattice constant of 11.6 Å of 3 3 3 5-atom unit cells. The 27 exchangeable sites are listed for Ti and V. Coordinates of the other ions are provided at the end.

Table S2. Ionic configurations of the SQS s of SrTi 1-x V x O 3 at x = 8/9, 7/9,, 1/9. x = 8/9: Ti 0.333 0.333 1.000 Ti 1.000 0.333 0.333 Ti 0.667 0.333 0.333 V 1.000 1.000 1.000 V 1.000 0.667 0.333 V 0.333 1.000 1.000 V 0.333 0.667 0.333 V 0.667 1.000 1.000 V 0.667 0.667 0.333 V 1.000 0.333 1.000 V 1.000 1.000 0.667 V 0.667 0.333 1.000 V 0.333 1.000 0.667 V 1.000 0.667 1.000 V 0.667 1.000 0.667 V 0.333 0.667 1.000 V 1.000 0.333 0.667 V 0.667 0.667 1.000 V 0.333 0.333 0.667 V 1.000 1.000 0.333 V 0.667 0.333 0.667 V 0.333 1.000 0.333 V 1.000 0.667 0.667 V 0.667 1.000 0.333 V 0.333 0.667 0.667 V 0.333 0.333 0.333 V 0.667 0.667 0.667 x = 7/9: Ti 0.333 1.000 1.000 Ti 0.667 0.333 1.000 Ti 0.333 0.667 1.000 Ti 0.667 0.667 1.000 V 0.667 0.333 0.333 Ti 0.333 0.333 0.333 V 1.000 0.667 0.333 Ti 0.333 1.000 0.667 V 0.333 0.667 0.333 V 1.000 1.000 1.000 V 0.667 0.667 0.333 V 0.667 1.000 1.000 V 1.000 1.000 0.667 V 1.000 0.333 1.000 V 0.667 1.000 0.667 V 0.333 0.333 1.000 V 1.000 0.333 0.667 V 1.000 0.667 1.000 V 0.333 0.333 0.667 V 1.000 1.000 0.333 V 0.667 0.333 0.667 V 0.333 1.000 0.333 V 1.000 0.667 0.667 V 0.667 1.000 0.333 V 0.333 0.667 0.667 V 1.000 0.333 0.333 V 0.667 0.667 0.667 x = 6/9:

Ti 0.333 1.000 1.000 Ti 1.000 0.333 1.000 Ti 1.000 0.667 1.000 Ti 0.667 0.667 1.000 V 0.333 0.333 0.333 Ti 0.333 1.000 0.333 V 0.667 0.333 0.333 Ti 0.667 1.000 0.333 V 0.667 0.667 0.333 Ti 1.000 0.333 0.333 V 1.000 1.000 0.667 Ti 1.000 0.667 0.333 V 0.333 1.000 0.667 Ti 0.333 0.667 0.333 V 0.667 1.000 0.667 V 1.000 1.000 1.000 V 1.000 0.333 0.667 V 0.667 1.000 1.000 V 0.333 0.333 0.667 V 0.333 0.333 1.000 V 0.667 0.333 0.667 V 0.667 0.333 1.000 V 1.000 0.667 0.667 V 0.333 0.667 1.000 V 0.333 0.667 0.667 V 1.000 1.000 0.333 V 0.667 0.667 0.667 x = 5/9: Ti 1.000 1.000 1.000 Ti 0.333 1.000 1.000 Ti 0.667 1.000 1.000 Ti 1.000 0.333 1.000 V 0.333 1.000 0.333 Ti 0.333 0.333 1.000 V 1.000 0.333 0.333 Ti 1.000 0.667 1.000 V 0.333 0.333 0.333 Ti 0.667 0.667 1.000 V 0.667 0.333 0.333 Ti 0.667 1.000 0.333 V 1.000 0.667 0.333 Ti 0.333 0.667 0.333 V 0.333 1.000 0.667 Ti 0.667 0.667 0.333 V 0.667 1.000 0.667 Ti 1.000 1.000 0.667 V 1.000 0.333 0.667 Ti 0.333 0.667 0.667 V 0.333 0.333 0.667 V 0.667 0.333 1.000 V 0.667 0.333 0.667 V 0.333 0.667 1.000 V 1.000 0.667 0.667 V 1.000 1.000 0.333 V 0.667 0.667 0.667 x = 4/9:

Ti 1.000 1.000 1.000 Ti 0.333 1.000 1.000 Ti 1.000 0.333 1.000 Ti 0.667 0.333 1.000 V 0.667 1.000 1.000 Ti 0.667 0.667 1.000 V 0.333 0.333 1.000 Ti 1.000 0.333 0.333 V 1.000 0.667 1.000 Ti 0.333 0.667 0.333 V 0.333 0.667 1.000 Ti 0.333 1.000 0.667 V 1.000 1.000 0.333 Ti 0.667 1.000 0.667 V 0.333 1.000 0.333 Ti 1.000 0.333 0.667 V 0.667 1.000 0.333 Ti 0.333 0.333 0.667 V 0.333 0.333 0.333 Ti 0.667 0.333 0.667 V 0.667 0.333 0.333 Ti 1.000 0.667 0.667 V 1.000 0.667 0.333 Ti 0.333 0.667 0.667 V 0.667 0.667 0.333 Ti 0.667 0.667 0.667 V 1.000 1.000 0.667 x = 3/9: Ti 1.000 1.000 1.000 Ti 0.333 0.333 1.000 Ti 1.000 0.667 1.000 Ti 0.667 0.667 1.000 Ti 1.000 0.667 0.667 Ti 0.333 1.000 0.333 Ti 0.333 0.667 0.667 Ti 1.000 0.333 0.333 Ti 0.667 0.667 0.667 Ti 0.333 0.333 0.333 V 0.333 1.000 1.000 Ti 1.000 0.667 0.333 V 0.667 1.000 1.000 Ti 0.333 0.667 0.333 V 1.000 0.333 1.000 Ti 0.667 0.667 0.333 V 0.667 0.333 1.000 Ti 0.333 1.000 0.667 V 0.333 0.667 1.000 Ti 0.667 1.000 0.667 V 1.000 1.000 0.333 Ti 1.000 0.333 0.667 V 0.667 1.000 0.333 Ti 0.333 0.333 0.667 V 0.667 0.333 0.333 Ti 0.667 0.333 0.667 V 1.000 1.000 0.667 x = 2/9: Ti 1.000 1.000 1.000 Ti 0.333 1.000 1.000

Ti 0.667 1.000 1.000 Ti 1.000 0.333 1.000 Ti 1.000 0.333 0.667 Ti 0.333 0.333 1.000 Ti 0.333 0.333 0.667 Ti 1.000 0.667 1.000 Ti 0.667 0.333 0.667 Ti 0.333 0.667 1.000 Ti 1.000 0.667 0.667 Ti 0.667 0.667 1.000 Ti 0.333 0.667 0.667 Ti 0.667 1.000 0.333 Ti 0.667 0.667 0.667 Ti 0.333 0.333 0.333 V 0.667 0.333 1.000 Ti 1.000 0.667 0.333 V 1.000 1.000 0.333 Ti 0.333 0.667 0.333 V 0.333 1.000 0.333 Ti 0.667 0.667 0.333 V 1.000 0.333 0.333 Ti 1.000 1.000 0.667 V 0.667 0.333 0.333 Ti 0.333 1.000 0.667 V 0.667 1.000 0.667 x = 1/9: Ti 1.000 1.000 1.000 Ti 0.333 1.000 1.000 Ti 1.000 0.333 1.000 Ti 0.333 0.333 1.000 Ti 0.667 0.667 0.333 Ti 0.667 0.333 1.000 Ti 1.000 1.000 0.667 Ti 1.000 0.667 1.000 Ti 0.333 1.000 0.667 Ti 0.333 0.667 1.000 Ti 1.000 0.333 0.667 Ti 0.667 0.667 1.000 Ti 0.333 0.333 0.667 Ti 0.333 1.000 0.333 Ti 0.667 0.333 0.667 Ti 0.667 1.000 0.333 Ti 1.000 0.667 0.667 Ti 1.000 0.333 0.333 Ti 0.333 0.667 0.667 Ti 0.333 0.333 0.333 Ti 0.667 0.667 0.667 Ti 0.667 0.333 0.333 V 0.667 1.000 1.000 Ti 1.000 0.667 0.333 V 1.000 1.000 0.333 Ti 0.333 0.667 0.333 V 0.667 1.000 0.667 Other ions: Sr 0.167 0.167 0.167 O 1.000 1.000 0.167 Sr 0.500 0.167 0.167 O 0.333 1.000 0.167 Sr 0.833 0.167 0.167 O 0.667 1.000 0.167 Sr 0.167 0.500 0.167 O 1.000 0.333 0.167

Sr 0.500 0.500 0.167 O 0.333 0.333 0.167 Sr 0.833 0.500 0.167 O 0.667 0.333 0.167 Sr 0.167 0.833 0.167 O 1.000 0.667 0.167 Sr 0.500 0.833 0.167 O 0.333 0.667 0.167 Sr 0.833 0.833 0.167 O 0.667 0.667 0.167 Sr 0.167 0.167 0.500 O 1.000 1.000 0.500 Sr 0.500 0.167 0.500 O 0.333 1.000 0.500 Sr 0.833 0.167 0.500 O 0.667 1.000 0.500 Sr 0.167 0.500 0.500 O 1.000 0.333 0.500 Sr 0.500 0.500 0.500 O 0.333 0.333 0.500 Sr 0.833 0.500 0.500 O 0.667 0.333 0.500 Sr 0.167 0.833 0.500 O 1.000 0.667 0.500 Sr 0.500 0.833 0.500 O 0.333 0.667 0.500 Sr 0.833 0.833 0.500 O 0.667 0.667 0.500 Sr 0.167 0.167 0.833 O 1.000 1.000 0.833 Sr 0.500 0.167 0.833 O 0.333 1.000 0.833 Sr 0.833 0.167 0.833 O 0.667 1.000 0.833 Sr 0.167 0.500 0.833 O 1.000 0.333 0.833 Sr 0.500 0.500 0.833 O 0.333 0.333 0.833 Sr 0.833 0.500 0.833 O 0.667 0.333 0.833 Sr 0.167 0.833 0.833 O 1.000 0.667 0.833 Sr 0.500 0.833 0.833 O 0.333 0.667 0.833 Sr 0.833 0.833 0.833 O 0.667 0.667 0.833 O 1.000 0.167 1.000 O 0.167 1.000 1.000 O 0.333 0.167 1.000 O 0.500 1.000 1.000 O 0.667 0.167 1.000 O 0.833 1.000 1.000 O 1.000 0.500 1.000 O 0.167 0.333 1.000 O 0.333 0.500 1.000 O 0.500 0.333 1.000 O 0.667 0.500 1.000 O 0.833 0.333 1.000 O 1.000 0.833 1.000 O 0.167 0.667 1.000 O 0.333 0.833 1.000 O 0.500 0.667 1.000 O 0.667 0.833 1.000 O 0.833 0.667 1.000 O 1.000 0.167 0.333 O 0.167 1.000 0.333 O 0.333 0.167 0.333 O 0.500 1.000 0.333 O 0.667 0.167 0.333 O 0.833 1.000 0.333 O 1.000 0.500 0.333 O 0.167 0.333 0.333 O 0.333 0.500 0.333 O 0.500 0.333 0.333 O 0.667 0.500 0.333 O 0.833 0.333 0.333 O 1.000 0.833 0.333 O 0.167 0.667 0.333 O 0.333 0.833 0.333 O 0.500 0.667 0.333

O 0.667 0.833 0.333 O 0.833 0.667 0.333 O 1.000 0.167 0.667 O 0.167 1.000 0.667 O 0.333 0.167 0.667 O 0.500 1.000 0.667 O 0.667 0.167 0.667 O 0.833 1.000 0.667 O 1.000 0.500 0.667 O 0.167 0.333 0.667 O 0.333 0.500 0.667 O 0.500 0.333 0.667 O 0.667 0.500 0.667 O 0.833 0.333 0.667 O 1.000 0.833 0.667 O 0.167 0.667 0.667 O 0.333 0.833 0.667 O 0.500 0.667 0.667 O 0.667 0.833 0.667 O 0.833 0.667 0.667 Here we show the bond lengths of Ti-O and bond angles O-Ti-O in SQS s of SrTi 1-x V x O 3 with different compositions x for completeness. Figure S5. Bond lengths of Ti-O, and bond angles of O-Ti-O in SQS s of SrTi 1-x V x O 3 with different compositions x. Each box extends from the lower to upper quartile values, with a line at the median. The whiskers extend from the box to show the range of the data. Widths of the box are scaled with respect to numbers of data points. The slightly horizontally jittered red dots are actual values. The dashed lines correspond to values in the end member SrTiO 3.