Metabolomics-driven Discovery of Meroterpenoids from a Musselderived. Penicillium ubiquetum

Similar documents
LC-MS-Guided Isolation of Insulin Secretion-promoting. Monoterpenoid Carbazole Alkaloids from Murraya

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

Supporting information. Random Structural Modification of a Low Band Gap BODIPY-Based Polymer

Supporting Information

Fortunoids A C, Three Sesquiterpenoid Dimers with. Different Carbon Skeletons from Chloranthus fortunei

A New Inhibitor Targeting Signal Transducer and Activator of. Transcription 5 (STAT5) Signaling in Myeloid Leukemias

Hawaiienols A D, Highly Oxygenated p-terphenyls from an. Insect-Associated Fungus Paraconiothyrium hawaiiense

Marine AChE inhibitors isolated from Geodia baretti: Natural compounds and their synthetic analogs

Joo Tae Hwang, Yesol Kim, Hyun-Jae Jang, Hyun-Mee Oh, Chi-Hwan Lim, Seung Woong Lee and Mun-Chual Rho

Wavemength [nm] Supplementary Figure 1: Absorption spectra of Ap3 in various solvents.

Bioactive Pentacyclic Triterpenoids from the Leaves of Cleistocalyx operculatus

Aliphatic Polycarbonates and Poly(ester carbonate)s from Fatty Acid Derived Monomers

PUV Wave Directional Spectra How PUV Wave Analysis Works

OMCL Network of the Council of Europe QUALITY ASSURANCE DOCUMENT

Supporting Information for. Grafting trimethylaluminum and its halogen derivatives on silica: General trends for

Extended Application Note

Technical Procedure for Drug Chemistry Gas Chromatograph/Mass Spectrometry (GC-MS)

Svensk läkemedelsstandard

Supporting Information

GEOPHYSICAL RESEARCH LETTERS

Supporting information for J. Med. Chem., 1994, 37(5), , DOI: /jm00031a018

Retention Time Locking: Concepts and Applications. Application

Supplementary Information

Supporting Information

Support Information. Diketopiperazines as cross communication quorum-sensing signals between Cronobacter sakazakii and Bacillus cereus

May 1, By John Heim,Doug Staples

Typically NMR Sample Configuration

Agilent Dimension Software for ELSD User Manual

EVALUATION OF PROFICIENCY TESTING PROGRAM, SETTING PRIORITIES FOR THE FUTURE.

Supporting information

Supplementary Information

Renzo BAGNATI Mario Negri Institute of Pharmacological Research- IRCCS Milano - Italy

APPLICATION NOTE. Fast Analysis of Coal Mine Gas Using the INFICON 3000 Micro GC ABSTRACT

CHEMTRACE Fremont Blvd. Fremont, CA 94538, Tel: (510) Fax: (510)

Analysis of Benzenesulfonic Acid and P-Toluenesufonic Acid Esters in Genotox Monitoring using UPLC/UV-MS

Characterizing Ireland s wave energy resource

A VALIDATED STABILITY-INDICATING RP-HPLC ASSAY METHOD FOR BOLDENONE UNDECYLENATE AND ITS RELATED SUBSTANCES

(2 pts) Draw the line of best fit through the data and estimate the concentration of Fe in your sample solution.

Smart-Walk: An Intelligent Physiological Monitoring System for Smart Families

User guide for the NMR spectrometer AVA300

François Auguste Victor Grignard, was a French chemist who discovered one of the world s first synthetic organometallic reactions.

Appendix A COMPARISON OF DRAINAGE ALGORITHMS UNDER GRAVITY- DRIVEN FLOW DURING GAS INJECTION

User guide for the NMR spectrometer AVA400Stud

The JET Gas Baking Plant for DT Operation and Analysis of Tritium Permeation and Baking Gas Activation in DTE1

Evgeny A. Katayev and Markus B. Schmid

Low-Pressure Retention Time Locking with the 7890A GC. Application. Authors. Abstract. Introduction HPI

Inter-comparison of wave measurement by accelerometer and GPS wave buoy in shallow water off Cuddalore, east coast of India

Determination of capsaicinoid profile of some peppers sold in Nigerian markets

GCMSD-Headspace Analysis SOP

FOUP material influence on HF contamination during queue-time

El Niño climate disturbance in northern Madagascar and in the Comoros

The FLUX-METER: implementation of a portable integrated instrumentation for the measurement of CO 2 and CH 4 diffuse flux from landfill soil cover.

Carrier Gases in Capillary GC

Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method)

DETERMINATION OF TETRAHYDROTHIOPHENE IN AMBIENT AIR BY GAS CHROMATOGRAPHY WITH A PFPD DETECTOR COUPLED TO A PRECONCENTRATION TECHNOLOGY

Vertical in situ profiles of nitrate and oxygen in the northern Japan Sea

CHAPTER 3 Development and Validation of a RP-HPLC method for Dutasteride and its impurities in bulk drug

Supporting information. for. The Solvent-free Michaelis-Arbuzov Rearrangement under Flow Conditions

EFFECTS OF REVIVOGEN SCALP THERAPY ON TESTOSTERONE METABOLISM IN RECONSTRUCTED HUMAN EPIDERMIS

extraction of EG and DEG from the matrix. However, the addition of all diluent at once resulted in poor recoveries.

Final Report of APMP.QM-K46 Ammonia in Nitrogen at 30 µmol/mol Level

Gases&Technology. Measurement of Impurities in Helium Using the Dielectric Barrier Discharge Helium Ionization Detector. FEATURE.

Real-time Analysis of Industrial Gases with Online Near- Infrared Spectroscopy

Resist round robin ELETTRA

Improved Performance in Capillary Electrophoresis using Internal Standards

EFFECTS OF SIDEWALL OPENINGS ON THE WIND LOADS ON PIPE-FRAMED GREENHOUSES

Chemistry 12 Notes on Graphs Involving LeChatelier s Principle

Biochemical Applications of Computational Chemistry

LEVANT WORMSEED FOR HOMOEOPATHIC PREPARATIONS CINA FOR HOMOEOPATHIC PREPARATIONS

COMPARISON OF CONTEMPORANEOUS WAVE MEASUREMENTS WITH A SAAB WAVERADAR REX AND A DATAWELL DIRECTIONAL WAVERIDER BUOY

The Soret absorption band of isolated chlorophyll a and b tagged with quarternary

Effects of Bulb Degradation on Fly Attraction to Insect Light Traps

Innovative gas and outgassing analysis and monitoring

Supporting Information for Micro-Collection of. Gases in a Capillary Tube: Preservation of Spatial

SUPPLEMENTARY MATERIAL TO Solvatochromism of isatin based Schiff bases: An LSER and LFER study

WAVE FORECASTING FOR OFFSHORE WIND FARMS

Detector Tubes and Badges

Research of the Relationship between Partial Discharge and Gas Decomposition Products in SF 6 Insulated Equipment

Methylprednisolone detection in urine following local and oral administrations

Oximetry of Oxygen Supersaturated Solutions Using Nitroxides as EPR Probe

Toxicology Gas Chromatography-Mass Spectrometry (GC-MS)

Boat-tail effect on the wake of the Ahmed body: from symmetry-breaking modes to periodic vortex-shedding

EFFECTS OF CLEAROGEN ACNE LOTION ON TESTOSTERONE METABOLISM IN RECONSTRUCTED HUMAN EPIDERMIS

save percentages? (Name) (University)

Now it is. easy to switch. CHS TM Steroid Profiling kit and software. Brochure not for distribution in the USA and Canada

CFD SIMULATIONS OF GAS DISPERSION IN VENTILATED ROOMS

Title: Standard Operating Procedure for Measurement of Ethylene (C 2 H 4 ) in Ambient Air by Reduced Gas Detection (RGD)

Supplemental Materials

Real-time PCB Gas Monitoring System (MOHMS-21GP)

INTRODUCTION OF THE PARAMETER TOTAL ORGANIC CARBON (TOC) AS A STANDARD FOR THE QUALITY CONTROL OF SWIMMING POOL WATER

INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS

Svensk läkemedelsstandard

Introductory Lab: Vacuum Methods

A NOVEL SENSOR USING REMOTE PLASMA EMISSION SPECTROSCOPY FOR MONITORING AND CONTROL OF VACUUM WEB COATING PROCESSES

COMPARISON OF DEEP-WATER ADCP AND NDBC BUOY MEASUREMENTS TO HINDCAST PARAMETERS. William R. Dally and Daniel A. Osiecki

Electromagnetic Attacks on Ring Oscillator-Based True Random Number Generator

Co(III)-Catalyzed C H Activation: A Site-Selective Conjugate Addition of Maleimide to Indole at the C-2 Position

The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 Wind tunnel measurements

CLT Continued Aircraft Operations Evaluations

Controls and Control Charting

Transcription:

Supporting Information Metabolomics-driven Discovery of Meroterpenoids from a Musselderived Penicillium ubiquetum Thi Phuong Thuy oang,, Catherine Roullier,*,, Marie-Claude Boumard, Thibaut Robiou du Pont, assan Nazih, Jean-François Gallard, Yves François Pouchus, Mehdi A. Beniddir, livier Grovel, EA 2160 - Mer Molécules Santé, Université de Nantes, 44035 Nantes-cedex 1, France Phu Tho College of Pharmacy, 290000 Phu Tho, Vietnam Corsaire-ThalassMICS Metabolomics Facility, Biogenouest, Université denantes, France 1

Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France. Équipe Pharmacognosie-Chimie des Substances Naturelles BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France 2

Table of contents Figure S1. Amounts of citrinin figured by their respective peak areas on the different culture media....3 Figure S2. PCA 2D score plot figuring all samples and including QC (grey stars)...4 Figure S3. 1 NMR spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide A (1)...5 Figure S4. 13 C NMR spectrum (125 Mz, CDCl 3 ) of 22-deoxyminiolutelide A (1)...6 Figure S5. CSY spectrum (500 Mz, CDCl 3 ) of 22-deoxyminiolutelide A (1)...7 Figure S6. SQC spectrum (500 Mz, CDCl 3 ) of 22-deoxyminiolutelide A (1)...8 Figure S7. MBC spectrum (500 Mz, CDCl 3 ) of 22-deoxyminiolutelide A (1)...9 Figure S8. NESY spectrum (500 Mz, CDCl 3 ) of 22-deoxyminiolutelide A (1)...10 Figure S9. Experimental ECD spectrum of 22-deoxyminiolutelide A (1) (Me)...11 Figure S10. 1 NMR spectrum (600 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2)...12 Figure S11. 13 C NMR spectrum (150 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2)...13 Figure S12. CSY spectrum (600 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2)...14 Figure S13. SQC spectrum (600 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2)...15 Figure S14. MBC spectrum (600 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2)...16 Figure S15. RESY spectrum (600 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2)...17 Figure S16. Experimental ECD spectrum of 4-hydroxy-22-deoxyminiolutelide B (2) (Me)...18 Figure S17. 1 NMR spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide B (3)...19 Figure S18. 13 C NMR spectrum (125 Mz, CDCl3) of 22-deoxyminiolutelide B (3)...20 Figure S19. Key MBC (left structure, single-headed arrows), CSY (bold lines) and NESY (right structure, double-headed arrows) correlations of 22-deoxyminiolutelide B (3)...21 Figure S20. CSY spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide B (3)...22 Figure S21. SQC spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide B (3)...23 Figure S22. MBC spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide B (3)...24 Figure S23. NESY spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide B (3)...25 Figure S24. Experimental ECD spectrum of 22-deoxyminiolutelide B (3) (Me)...26 Figure S25. 1 NMR spectrum (500 Mz, CDCl 3 ) of miniolutelide A (4)...27 Figure S26. 13 C NMR spectrum (125 Mz, CDCl 3 ) of miniolutelide A (4)...28 Figure S27. Experimental ECD spectrum of miniolutelide A (4) (Me)...29 Figure S28. 1 NMR spectrum (400 Mz, CDCl 3 ) of miniolutelide B (5)...30 3

Figure S29. 13 C NMR spectrum (100 Mz, CDCl 3 ) of miniolutelide B (5)...31 Figure S30. Experimental ECD spectrum of miniolutelide B (5) (Me)...32 Figure S31. 1 NMR spectrum (500 Mz, CDCl 3 ) of berkeleyacetal A (6)...33 Figure S32. 13 C NMR spectrum (125 Mz, CDCl 3 ) of berkeleyacetal A (6)...34 Figure S33. 1 NMR spectrum (600 Mz, CDCl 3 ) of miniolutelide C (7)...35 Figure S34. 13 C NMR spectrum (150 Mz, CDCl 3 ) of miniolutelide C (7)...36 Figure S35. 1 NMR spectrum (500 Mz, DMS) of 22-deoxy-10-oxominiolutelide B (8)...37 Figure S36. 13 C NMR spectrum (125 Mz, DMS) of 22-deoxy-10-oxominiolutelide B (8)...38 Figure S37. 1 NMR spectrum (600 Mz, CDCl 3 ) of eupeniacetal A (9)...39 Figure S38. 13 C NMR spectrum (150 Mz, CDCl 3 ) of eupeniacetal A (9)...40 Figure S39. Experimental ECD spectrum of eupeniacetal A (9) (Me)...41 Figure S40. Proposed biosynthetic pathway for isolated meroterpenoids based on Gu et al. (2018) and Iida et al. (2007), and observed production profiles clustered by Pearson correlation coefficient (r)...42 Figure S41. Comparison of PLC-RMS total ion chromatograms (TIC) together with extracted ion chromatograms for m/z 489.2119 of one replicate of MMS330 CYA-SW extract analyzed at different times (at 0, 10 and 40 days after extraction). Compounds 8 and 1 are highlighted...43 Figure S42. PLC-UV chromatogram (at 254 nm) of purified compound 8 after 2 h in C 3 CN/ 2 (40:60, v/v) shows conversion into compounds 1 and 3...44 Figure S43. (+)RESIMS/MS spectra of five ions from the molecular network...45 4

Peak area citrinin Media Figure S1. Amounts of citrinin figured by their respective peak areas on the different culture media. Peak areas were obtained by integration of the corresponding peak (at t R = 11.6 min) on extracted ion chromatograms for m/z = 251.0915 from PLC-(+)ESIMS data. Independent t-test analysis was performed in order to examine the significance of the differential production of citrinin between the two groups SW and DW on these three media (number of replicates = 3). A p-value of 0.0047 was obtained between CYA-DW and CYA-SW. 5

Figure S2. PCA 2D score plot figuring all samples and including QC (grey stars). The Quality Control (QC), which corresponded to a mix of all samples, was injected several times during the sequence of analyses. The plot shows that these profiles cluster together at the center enhancing the consistency of the results presented on the manuscript because very low deviation of the QC is observed. 6

1.06 1.07 1.04 1.03 1.09 3.01 1.05 1.10 1.11 1.40 0.82 3.01 5.66 3.09 3.23 3.16 1.08 3.04 6.28 6.05 6.04 5.88 5.75 4.27 4.25 4.24 4.23 3.78 3.27 3.26 3.25 3.23 3.09 3.07 2.91 2.90 2.89 2.24 2.21 1.62 1.52 1.44 1.43 1.31 1.23 1.21 1.17 1.14 0.75 2 1 16 17 18 26 3 4 5 15 14 25 19 20 12 13 24 6 7 8 11 10 22 23 9 21 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chemical Shift (ppm) Figure S3. 1 NMR spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide A (1) 7

209.44 176.46 163.93 155.16 141.01 131.65 116.19 99.47 83.01 78.90 77.42 77.16 55.37 49.62 48.44 46.49 42.88 39.16 37.88 28.54 26.93 26.76 25.08 18.84 15.63 15.17 2 1 16 17 18 26 3 4 5 15 14 25 19 20 12 13 24 6 7 8 11 10 22 23 9 21 200 180 160 140 120 100 80 60 40 20 0 Chemical Shift (ppm) Figure S4. 13 C NMR spectrum (125 Mz, CDCl 3 ) of 22-deoxyminiolutelide A (1) 8

0 1 2 3 4 5 6 F1 Chemical Shift (ppm) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 F2 Chemical Shift (ppm) Figure S5. CSY spectrum (500 Mz, CDCl 3 ) of 22-deoxyminiolutelide A (1) 9

50 100 150 F1 Chemical Shift (ppm) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 F2 Chemical Shift (ppm) Figure S6. SQC spectrum (500 Mz, CDCl 3 ) of 22-deoxyminiolutelide A (1) 10

50 100 150 F1 Chemical Shift (ppm) 200 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 F2 Chemical Shift (ppm) Figure S7. MBC spectrum (500 Mz, CDCl 3 ) of 22-deoxyminiolutelide A (1) 11

0 1 2 3 4 5 6 F1 Chemical Shift (ppm) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 F2 Chemical Shift (ppm) Figure S8. NESY spectrum (500 Mz, CDCl 3 ) of 22-deoxyminiolutelide A (1) 12

Figure S9. Experimental ECD spectrum of 22-deoxyminiolutelide A (1) (Me) 13

1.04 0.96 0.96 0.97 0.99 2.86 1.36 0.99 0.70 3.67 5.08 3.12 2.88 4.38 2.77 6.57 6.41 6.15 6.15 5.55 5.54 4.60 4.59 3.85 3.66 3.06 3.04 2.44 2.43 2.42 2.41 1.65 1.53 1.52 1.49 1.39 1.38 1.29 1.02 6 8 7 1 2 3 4 5 22 23 19 16 12 11 15 13 17 14 10 9 18 26 25 24 20 21 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Chemical Shift (ppm) Figure S10. 1 NMR spectrum (600 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2) 14

129.88 119.26 103.04 99.03 80.28 77.78 77.37 77.16 76.95 53.98 52.94 49.12 47.91 45.23 30.81 26.97 26.70 26.61 26.12 16.72 13.80 Me 6 8 7 1 2 3 4 5 22 23 19 16 12 11 15 13 17 14 10 9 18 25 24 20 21 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm) Figure S11. 13 C NMR spectrum (150 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2) 15

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 F1 Chemical Shift (ppm) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 F2 Chemical Shift (ppm) Figure S12. CSY spectrum (600 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2) 16

0 20 40 60 80 100 F1 Chemical Shift (ppm) 120 140 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 F2 Chemical Shift (ppm) Figure S13. SQC spectrum (600 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2) 17

20 40 60 80 100 120 140 160 180 200 F1 Chemical Shift (ppm) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 F2 Chemical Shift (ppm) Figure S14. MBC spectrum (600 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2) 18

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 F1 Chemical Shift (ppm) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 F2 Chemical Shift (ppm) Figure S15. RESY spectrum (600 Mz, CDCl3) of 4-hydroxy-22-deoxyminiolutelide B (2) 19

Figure S16. Experimental ECD spectrum of 4-hydroxy-22-deoxyminiolutelide B (2) (Me) 20

1.09 1.15 1.36 1.13 1.13 3.31 1.35 1.11 1.20 1.25 1.52 0.79 3.40 6.59 3.57 3.62 3.37 6.49 6.13 6.13 6.12 6.12 5.88 5.54 5.53 4.56 4.55 3.84 3.66 3.65 3.64 3.62 3.03 3.02 2.83 2.82 2.81 2.80 2.79 2.78 1.84 1.81 1.73 1.72 1.67 1.64 1.50 1.49 1.39 1.38 1.17 1.16 1.00 2 1 16 17 18 26 25 24 6 7 8 3 4 5 19 22 23 13 12 11 15 14 10 9 20 21 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chemical Shift (ppm) Figure S17. 1 NMR spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide B (3) 21

180.33 175.41 163.46 157.60 134.89 129.53 120.68 102.85 99.09 82.35 80.84 77.81 77.42 77.16 76.91 61.11 52.83 49.27 46.72 45.20 43.83 43.52 34.82 27.32 26.76 26.21 18.79 17.51 13.79 2 1 16 17 18 26 25 24 6 7 8 3 4 5 19 22 23 13 12 11 15 14 10 9 20 21 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm) Figure S18. 13 C NMR spectrum (125 Mz, CDCl3) of 22-deoxyminiolutelide B (3) 22

1 2 26 14 25 24 19 22 9 10 21 23 25 4 13 5 21 6β 19 6α 8 7 22 9 10 24 23 26 Figure S19. Key MBC (left structure, single-headed arrows), CSY (bold lines) and NESY (right structure, double-headed arrows) correlations of 22-deoxyminiolutelide B (3) 23

1 2 3 4 5 F1 Chemical Shift (ppm) 6 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 F2 Chemical Shift (ppm) Figure S20. CSY spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide B (3) 24

0 20 40 60 80 100 120 F1 Chemical Shift (ppm) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 F2 Chemical Shift (ppm) Figure S21. SQC spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide B (3) 25

20 40 60 80 100 120 140 160 F1 Chemical Shift (ppm) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 F2 Chemical Shift (ppm) Figure S22. MBC spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide B (3) 26

1 2 3 4 5 F1 Chemical Shift (ppm) 6 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 F2 Chemical Shift (ppm) Figure S23. NESY spectrum (500 Mz, CDCl3) of 22-deoxyminiolutelide B (3) 27

Figure S24. Experimental ECD spectrum of 22-deoxyminiolutelide B (3) (Me) 28

1.00 1.10 1.07 1.06 1.10 3.24 1.11 1.15 1.17 1.13 3.35 3.40 3.29 3.82 1.15 3.14 3.13 6.23 5.87 5.73 5.73 5.72 5.63 4.29 4.27 4.26 4.25 3.76 3.09 2.90 2.88 2.87 2.86 2.84 2.22 2.20 2.19 2.18 2.15 2.14 2.12 2.12 1.61 1.51 1.39 1.38 1.28 1.24 1.22 1.21 0.95 2 1 16 17 18 26 3 4 5 15 14 25 19 20 12 13 24 6 7 8 22 23 11 10 9 21 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm) Figure S25. 1 NMR spectrum (500 Mz, CDCl 3 ) of miniolutelide A (4) 29

207.24 175.02 164.39 155.83 155.08 140.59 131.55 115.83 103.55 83.32 83.20 79.37 77.42 77.16 76.91 76.70 58.22 55.39 50.50 43.04 39.91 37.85 28.49 26.68 26.27 20.43 18.55 15.98 15.76 2 1 16 17 18 26 3 4 5 15 14 25 19 20 12 13 24 6 7 8 22 23 11 10 9 21 200 180 160 140 120 100 80 60 40 20 0 Chemical Shift (ppm) Figure S26. 13 C NMR spectrum (125 Mz, CDCl 3 ) of miniolutelide A (4) 30

Figure S27. Experimental ECD spectrum of miniolutelide A (4) (Me) 31

0.88 1.20 1.13 1.18 0.90 4.48 0.60 1.25 1.09 1.61 1.73 3.61 3.14 6.41 3.25 2.74 7.33 7.26 6.13 6.12 5.87 5.31 4.57 4.56 3.87 2.77 2.06 1.90 1.78 1.64 1.49 1.43 1.41 1.16 1.14 1.05 17 2 1 16 18 26 3 4 5 25 19 13 12 15 14 6 7 8 10 24 11 22 23 9 20 21 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chemical Shift (ppm) Figure S28. 1 NMR spectrum (400 Mz, CDCl 3 ) of miniolutelide B (5) 32

179.23 174.01 163.52 157.46 134.92 129.78 120.80 108.44 103.51 82.47 80.50 79.62 78.08 77.48 77.16 76.85 67.84 52.96 52.52 50.64 43.46 41.95 38.32 27.34 26.21 19.38 18.68 18.02 13.64 17 2 1 16 18 26 3 4 5 25 19 13 12 15 14 6 7 8 10 24 11 22 23 9 20 21 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm) Figure S29. 13 C NMR spectrum (100 Mz, CDCl 3 ) of miniolutelide B (5) 33

Figure S30. Experimental ECD spectrum of miniolutelide B (5) (Me) 34

1.28 1.35 0.86 3.25 0.81 2.03 0.88 0.85 0.99 3.12 3.36 1.85 0.69 3.13 3.54 3.28 2.85 6.14 6.13 6.12 6.11 6.05 6.04 4.54 4.53 4.52 4.50 3.87 3.86 3.85 3.41 3.38 2.80 2.80 2.77 2.76 2.50 2.49 2.47 2.10 2.09 2.07 2.06 1.79 1.67 1.64 1.54 1.51 1.43 1.42 1.37 0.78 17 1 2 16 18 26 3 4 5 25 19 12 15 14 13 24 6 7 8 11 22 23 9 10 20 21 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Chemical Shift (ppm) Figure S31. 1 NMR spectrum (500 Mz, CDCl 3 ) of berkeleyacetal A (6) 35

204.46 175.99 171.13 167.85 136.54 135.71 129.17 127.41 99.55 83.10 77.41 77.16 76.90 76.11 62.48 56.73 53.49 52.36 43.35 38.58 35.82 35.02 30.37 29.19 27.67 26.26 21.32 19.36 16.23 17 1 2 16 18 26 3 4 5 25 19 12 15 14 13 24 6 7 8 11 22 23 9 10 20 21 200 180 160 140 120 100 80 60 40 20 0 Chemical Shift (ppm) Figure S32. 13 C NMR spectrum (125 Mz, CDCl 3 ) of berkeleyacetal A (6) 36

5.90 5.88 5.86 4.24 4.23 4.22 4.21 3.88 3.76 3.75 3.36 3.36 3.35 3.33 3.32 3.32 3.05 3.04 3.03 3.02 2.99 2.96 2.81 2.43 2.41 2.40 2.39 1.89 1.50 1.48 1.45 1.41 1.40 1.13 24 25 6 8 7 1 2 3 4 5 22 23 19 16 12 11 15 13 17 14 10 9 18 26 20 21 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm) Figure S33. 1 NMR spectrum (600 Mz, CDCl 3 ) of miniolutelide C (7) 37

177.50 175.12 170.74 134.86 132.69 128.48 126.25 100.81 98.48 84.45 79.53 77.37 77.16 76.95 73.33 62.21 53.45 50.67 46.35 44.88 35.12 34.21 34.09 26.94 26.42 19.30 15.11 13.86 24 25 6 8 7 1 2 3 4 5 22 23 19 16 12 11 15 13 17 14 10 9 18 26 20 21 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Chemical Shift (ppm) Figure S34. 13 C NMR spectrum (150 Mz, CDCl 3 ) of miniolutelide C (7) 38

6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chemical Shift (ppm) Figure S35. 1 NMR spectrum (500 Mz, DMS) of 22-deoxy-10-oxominiolutelide B (8) 39

210.96 181.21 177.51 175.46 171.36 163.71 163.39 158.53 155.91 154.96 140.80 139.83 138.04 134.66 132.19 129.94 120.54 116.01 103.21 100.07 99.35 83.04 81.18 78.71 77.26 76.48 71.34 55.59 53.08 49.13 48.27 46.64 44.23 42.87 42.81 40.53 40.45 27.04 26.37 24.53 19.23 15.89 15.15 14.09 220 200 180 160 140 120 100 80 60 40 20 0 Chemical Shift (ppm) Figure S36. 13 C NMR spectrum (125 Mz, DMS) of 22-deoxy-10-oxominiolutelide B (8) 40

1.06 0.92 3.03 1.23 1.17 1.19 1.77 1.85 0.93 3.11 1.64 3.38 3.22 3.14 3.35 3.16 6.39 6.39 6.38 6.37 6.07 6.06 3.71 3.47 3.43 3.35 3.31 3.15 3.14 3.13 3.12 2.53 2.51 2.51 2.49 2.47 2.45 1.80 1.77 1.76 1.75 1.74 1.63 1.58 1.43 1.39 1.02 17 1 2 3 4 5 25 19 16 15 13 14 18 24 6 7 12 11 22 23 10 21 20 8 9 26 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chemical Shift (ppm) Figure S37. 1 NMR spectrum (600 Mz, CDCl 3 ) of eupeniacetal A (9) 41

207.91 170.53 170.47 170.22 138.87 136.40 128.73 126.18 96.85 82.95 79.73 77.37 77.16 76.95 54.19 53.36 50.31 45.72 43.26 42.08 38.14 34.44 31.08 30.30 29.43 26.38 25.36 25.21 15.38 17 1 2 3 4 5 25 19 16 15 13 14 18 24 6 7 12 11 22 23 10 21 20 8 9 26 200 180 160 140 120 100 80 60 40 20 0 Chemical Shift (ppm) Figure S38. 13 C NMR spectrum (150 Mz, CDCl 3 ) of eupeniacetal A (9) 42

Figure S39. Experimental ECD spectrum of eupeniacetal A (9) (Me) 43

miniolutelide C (7) PP farnesyl pyrophosphate D E berkeleyacetal A (6) C 3,5-dimethyl orsellinic acid protoaustinoid A [ 2 ] + 2 [o] berkeleydione 22-epoxyberkeleydione [ 2 ] 22-deoxy-10-oxo miniolutelide B (8) D E D E eupeniacetal A (9) 22-deoxy miniolutelide A (1) 22-deoxy miniolutelide B (3) miniolutelide A (4) miniolutelide B (5) berkeleyacetal A (6) miniolutelide C (7) miniolutelide B (5) 22-deoxy miniolutelide B (3) 4-hydroxy-22-deoxy miniolutelide B (2) 22-deoxy-10-oxo miniolutelide B (8) miniolutelide A (4) eupeniacetal A (9) Legend CYA-DW CYA-SW DCA-DW DCA-SW MES-DW MES-SW Figure S40. Proposed biosynthetic pathway for isolated meroterpenoids based on Gu et al. (2018) and Iida et al. (2007), and observed production profiles clustered by Pearson correlation coefficient (r) 44

(x10,000,000) 1:TIC (1.00) 1:489.2119 (10.00) 5.0 4.0 8 T0 3.0 2.0 1.0 3 0.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 min (x10,000,000) 1:TIC (1.00) 1:489.2119 (10.00) 5.0 T0 + 10 days 4.0 3.0 8 2.0 1.0 3 1 0.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 min (x10,000,000) 1:TIC (1.00) 1:489.2119 (10.00) 5.0 4.0 3.0 8 T0 + 40 days 2.0 1.0 3 1 0.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 min Figure S41. Comparison of PLC-RMS total ion chromatograms (TIC) together with extracted ion chromatograms for m/z 489.2119 of one replicate of MMS330 CYA-SW extract analyzed at different times (at 0, 10 and 40 days after extraction). Compounds 8 and 1 are highlighted 45

mau 2500 8 2000 1500 1000 500 3 1 0 5 10 15 20 25 30 35 min Figure S42. PLC-UV chromatogram (at 254 nm) of purified compound 8 after 2 h in C 3 CN/ 2 (40:60, v/v) shows conversion into compounds 1 and 3 46

Inten. (x100,000) Berkeleyacetal A (6) C 26 32 8 t R 12.9 min 4.0 3.0 2.0 413.1908 427.2081 455.2077 395.1803 1.0 349.1634 441.1893 371.1507 198.9036223.1164 269.1043 0.0 150 200 250 300 350 400 450 m/z Miniolutelide C (7) C 26 32 9 t R 10.0 min Inten. (x100,000) 5.0 471.1959 4.0 3.0 429.1957 2.0 399.1809 1.0 457.1883 357.1817383.1789 411.1744 0.0 150 200 250 300 350 400 450 m/z Eupeniacetal A (9) C 26 32 8 t R 11.6 min Inten. (x100,000) 2.0 427.2144 455.2080 1.0 413.2025 224.1155 395.1736 0.0 150 200 250 300 350 400 450 m/z Inten. (x1,000,000) 7.5 5.0 487.1971 Miniolutelide B (5) C 26 32 10 t R 10.8 min 2.5 0.0 459.2033 441.1920 469.1885 506.2081 250 300 350 400 450 500 m/z 22-deoxyminiolutelide B (3) C 26 32 9 t R 10.5 min 1.5 1.0 0.5 Inten. (x1,000,000) 471.2045 453.2014 427.2204 0.0 150 200 250 300 350 400 450 500 m/z Figure S43. (+)RESIMS/MS spectra of five ions from the molecular network 47