Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera

Similar documents
INVASION OF BEE SAMPLES WITH VARROA DESTRUCTOR

IMPACT OF VARROA MITE INFESTATION ON THE MANDIBULAR AND HYPOPHARYNGEAL GLANDS OF HONEY BEE WORKERS

Varroa mite reproductive biology. How Trump Won. How Varroa Won 3/10/2018. Zachary Huang Michigan State University East Lansing, Michigan, USA

Varroa destructor, How bad could that bee? Philip Moore Research Associate The University of Tennessee

Comparison of the reproductive ability of varroa mites in worker and drone brood of Africanized Honey Bees

Learning to identify a common cause of winter death in Northern Climates

insects How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera

Varroa Mites. Diagnose the disease first then diagnose the problem with the Honey Bee. Where can You find Varroa Mites?

Preparing Honeybee Colonies for Winter

Bidirectional Transfer of RNAi between Honey Bee and Varroa destructor: Varroa Gene Silencing Reduces Varroa Population

The effectiveness of thermotherapy in the elimination of Varroa destructor

Notes on Varroa destructor (Acari: Varroidae) parasitic on honeybees in New Zealand

Infestation levels of Varroa destructor in local honey bees of Jordan

IMPACT OF VARROA DESTRUCTOR ON THE HONEY BEES OF SOUTH AFRICA

Figure 1. Thresholds for sticky board types. Threshold of 60 varroa mites. Threshold of 120 varroa mites. Research by the beekeeper for the beekeeper

NZQA Expiring unit standard version 3 Page 1 of 5. Demonstrate knowledge of the varroa mite and its control in the beekeeping industry

VARROA-BEE RELATIONSHIPS -WHAT THEY TELL US ABOUT CONTROLLING VARROA MITES ON THE EUROPEAN HONEY BEE

Varroa Mites: Samples and Controls (Varroa destructor or jacobsoni) -discovered S.E. Asia 1904; U.S. 1987

Kathleen Prough Chief Apiary Inspector IDNR, Div. of Entomology & Plant Pathology Work # Cell # ,

A survey of Nosema spp. and Varroa destructor mites in honey bee (Apis mellifera) colonies. throughout Western Dominica Apiaries

Biology of the Varroa mite: what you need to know to understand its population dynamics

Biology of the Varroa mite: what you need to know to understand its population dynamics

Short-Term Fumigation of Honey Bee (Hymenoptera: Apidae) Colonies with Formic and Acetic Acids for the Control of Varroa destructor (Acari: Varroidae)

Beekeeping in Coastal California. January

Final Report: UF Development of Varroa destructor in vitro rearing methods. Cameron Jack 1, Jamie Ellis 2

Expression of Varroa Sensitive Hygiene (VSH) in Iranian Honey Bees (Apis mellifera meda)

BREEDING QUEENS IN THE AGE OF VARROA

Effect of cell size on Varroa 37 Africanized cells (13.9 and 10.3%, respectively). The Carniolan-sized cells also had a significantly larger number of

Launching MAQS in the US: Response from Beekeepers and the Latest Research Rome, 30-March 2012

PRACTICAL 16 FAMILIARIZATION WITH ENEMIES OF HONEY BEES AND THEIR CONTROL

Effect of queen age on hygienic and grooming behavior of Apis mellifera Ligustica against Varroa destructor

Overview. Brood Diseases. Adult Diseases. American Foulbrood (AFB) European Foulbrood (EFB) Chalkbrood Sacbrood. Nosema

Pests & Diseases of Honeybees

Legendre et al Appendices and Supplements, p. 1

Functional differentiation of goat mammary epithelium. A microarray preliminary approach

Varroa Management. How do I know if my colonies have Varroa?

Presented by Judy Scher

Does a remote Brazilian island hold the key to varroa tolerance?

Newsletter of the Appalachian Beekeepers

AmpFlSTR Identifiler PCR Amplification Kit

Honey Bee Pests and Diseases. Dale McMahan

Varroa destructor Infestation in Untreated Honey Bee (Hymenoptera: Apidae) Colonies Selected for Hygienic Behavior

Kevin O Donnell, Individual Experimental Project, UM Master Beekeeping Course, August, 2018

STUDY PERFORMANCE REPORT

V. Goswami, M.S. Khan/Journal of Natural Products, Vol. 6(2013):

FOR TREATMENT OF VARROOSIS CAUSED BY VARROA DESTRUCTOR IN HONEY BEES (APIS MELLIFERA)

EVALUATION OF EARLY SUMMER SPLITS ON VARROA MITE REDUCTION AND COLONY PRODUCTIVITY. Kathleen Ciola Evans

Steven & Angelia Coy Wiggins, MS

DEVELOPING NEW TREATMENTS

B E E L I N E S. Thanks, John! Farewell to John Gruszka. Then... and Now. ISSN Issue # 116

Bees Biting Mites. Breeding and small cell size. by ERIK OSTERLUND Sweden

RNA extraction, reverse transcription (RT) and real-time PCR. Total RNA from

RAPD identification of Varroa destructor genotypes in Brazil and other regions of the Americas

Characterization of two microsatellite PCR multiplexes for high throughput. genotyping of the Caribbean spiny lobster, Panulirus argus

SELECTION FOR UNCAPPING OF VARROA INFESTED BROOD CELLS IN THE HONEYBEE (APIS MELLIFERA)

A Combined Recruitment Index for Demersal Juvenile Cod in NAFO Divisions 3K and 3L

Breeding honey bees for varroa tolerance

May 4th Monthly meeting Friends Meeeting House 7:30pm. June Association Apiary visit Richmond Street (date to be announced)

Week 3: Bee Diseases & Pests. Richard Manley & Rick Moranz

Effectiveness of Acaricidal Treatments against Varroa destructor (Acari: Varroidae) Affecting Honey Bee, Apis mellifera L.

Enemies of the Hive. First Lessons in Beekeeping by Keith S. Delaplane Chapter 8 Honey Bee Disorders, Parasites, Predators and Nest Invaders

SBA NEWS LETTER ARTICLE: THE SASKATRAZ PROJECT - APRIL 2011

Do, or do not, treat for mites? Pro s and Con s of. Methods

Integrated pest management against Varroa destructor reduces colony mite levels and delays treatment threshold

Homeostasis and Negative Feedback Concepts and Breathing Experiments 1

MSD 96-Well MULTI-ARRAY and MULTI-SPOT Human Granulocyte Colony Stimulating Factor (hg-csf) Ultrasensitive Assay

DOI: /jas

VIROLOGY QUALITY ASSURANCE PROGRAM STATISTICAL CENTER

F7 (Human) Chromogenic Activity Assay Kit

Resources for Integrated Pest Management (IPM) and Varroa Mite Control

VIROLOGY QUALITY ASSURANCE PROGRAM STATISTICAL CENTER

Diseases and Pests, Tammy Horn, Photo by Jason Gaines, 2015

Supplemental Data. Gutjahr et al. (2008). Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway.

CAM Final Report John Scheele Advisor: Paul Ohmann I. Introduction

Reducing Disease Risks Caused by Pathogens Associated with Columbia

WADA Technical Document TD2014EAAS. Endogenous Anabolic Androgenic Steroids Measurement and Reporting

Goodyear Safety Research Project 2008 Presentation by Competitive Measure at the FEI Eventing Safety Forum. Presented by Tim Deans and Martin Herbert

First Year Beekeeper. Experiences and Lessons Learned. Eric Miller January 2016

Navel orangeworm biology, monitoring, and management

Analysis of Variance. Copyright 2014 Pearson Education, Inc.

Keywords: multiple linear regression; pedestrian crossing delay; right-turn car flow; the number of pedestrians;

Interactions Between Wild and Farmed Salmonids in Southern British Columbia: Pathogen Transfer

CAGE. ENGLISH INSTRUCTIONS FOR USE Insertion of the cage. lnsertion of the queen. Restriction of brood period. right position

Diseases and pests of honey bees. Zachary Huang Michigan State University. Varroa mite (Varroa destructor) (formerly Varroa jacobsoni)

I have just given you a number of facts about myself and our beekeeping; I give you one more -

Abstract. Tjeerd Blacquière 1, Gertraut Altreuther 2 *, Klemens J. Krieger 2. *

A NEW LOOK AT SPLITS

Bee Informed Partnership: Sentinel Apiary Program Final Report 2017

Field Tests of the Varroa Treatment Device Using Formic Acid to Control Varroa destructor and Acarapis woodi 1

Self-declaration by New Zealand of its status of freedom from Equine Viral Arteritis

Nomenclature. David E. MacFawn Master Craftsman Beekeeper SCBA Aiken Journeyman Class Saturday, April 23, 2016

Integrated Pest Management

VARROA IS PUBLIC ENEMY # 1

The Sustainability of Atlantic Salmon (Salmo salar L.) in South West England

Recommendations for Management of Honey Bee Pests and Diseases in Alberta 2012

The Varroa Bee Mite 1

Advanced Animal Science TEKS/LINKS Student Objectives One Credit

COMMON PROBLEMS AFFECTING HONEY BEES PATHOGENS, PESTS, PARASITES, DISEASES & PREDATORS

THE HIVE INSPECTION What are you looking for? and What do you see?

1 ^ site s of native and exotic freshw ater fishes in the south-w est ol W estern Australia / M arina Hassan.

Transcription:

Journal of General Virology (2011), 92, 151 155 DOI 10.1099/vir.0.023853-0 Short Communication Correspondence Yanping Chen judy.chen@ars.usda.gov Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera Gennaro Di Prisco, 1 Francesco Pennacchio, 1 Emilio Caprio, 1 Humberto F. Boncristiani, Jr, 2 Jay D. Evans 2 and Yanping Chen 2 1 Dipartimento di Entomologia e Zoologia Agraria Filippo Silvestri, Universita degli Studi di Napoli Federico II, Via Universita n.100, 80055 Portici, Napoli, Italy 2 USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA Received 21 May 2010 Accepted 30 September 2010 The Israeli acute paralysis virus (IAPV) is a significant marker of honeybee colony collapse disorder (CCD). In the present work, we provide the first evidence that Varroa destructor is IAPV replication-competent and capable of vectoring IAPV in honeybees. The honeybees became infected with IAPV after exposure to Varroa mites that carried the virus. The copy number of IAPV in bees was positively correlated with the density of Varroa mites and time period of exposure to Varroa mites. Further, we showed that the mite virus association could possibly reduce host immunity and therefore promote elevated levels of virus replication. This study defines an active role of Varroa mites in IAPV transmission and sheds light on the epidemiology of IAPV infection in honeybees. Varroatosis is one of the most serious honeybee diseases caused by a parasitic mite, Varroa destructor. Varroa mites use their piercing mouthparts to suck out haemolymph from honeybees. The repeated feeding results in a decline of colony vigour, shortened life span of the honeybees and eventual perishing of colonies (Rosenkranz et al., 2010). Further, the feeding of Varroa mites gives mites the potential to act as vectors of bee diseases, presenting additional threats to bee health. The role of Varroa mite as a vector in the transmission of bee viruses has been well documented (Bowen-Walker et al., 1999; Chen et al., 2004; Shen et al., 2005). However, it has not yet been demonstrated if this mite could act as a vector of Israeli acute paralysis virus (IAPV), a virus that was tightly correlated with honeybee colony collapse disorder (CCD), a malady that has decimated honeybee colonies across the USA (Cox-Foster et al., 2007; vanengelsdorp et al., 2007) and around the world (Neumann & Carreck, 2010). The present study was undertaken to determine the possible role of Varroa mites in the transmission of IAPV and in the promotion of its replication in honeybees. Moreover, the expression of immune-related gene transcripts, apidaecin and eater that are involved in honeybee humoral and cellular immunity (Ertürk-Hasdemir & Silverman, 2005; Evans et al., 2006; Kocks et al., 2005; Simone et al., 2009) was measured in Varroa-challenged bees. Apidaecin is a proline-rich peptide and one of the most prominent components of the honeybee humoral defence against microbial invasion (Evans et al. 2006). Eater is a member of epidermal growth factor-family protein involved cellular Supplementary figures are available with the online version of this paper. immunity, as it plays an important role in phagocytosis (Ertürk-Hasdemir & Silverman, 2005; Kocks et al., 2005). Two strong bee colonies (i.e. with at least seven frames filled with capped brood and food, and covered with adult bees) and two weak colonies (i.e. with a low-adult bee population and fewer than four frames with a small patch of capped brood) that were determined to be free of IAPV infection by RT-PCR assay were selected for transmission studies. Further, the expression levels of vitellogenin, an indicator of the general health of the colonies (Amdam et al., 2005; Simone et al., 2009), were determined for the two selected groups. The relative transcript levels of vitellogenin in bees from strong colonies were at least threefold higher than in bees from weak colonies with a peak of 4.46±0.31 (t53.084, P50.0059), which confirmed the health conditions visually determined above. Varroa mites that were to be used in transmission assays were collected from a colony that was heavily infested with mites; both honeybees and mites were shown to have IAPV infections by RT-PCR assay. The ubiquitous presence of deformed wing virus (Lanzi et al., 2006) in bees and of Varroa destructor virus-1 (VDV-1) (Ongus et al., 2004) in Varroa mites was considered as a background infection. The transmission studies were set up following the design illustrated in Fig. 1. Briefly, newly emerged bees from both strong and weak colonies were divided into four subgroups (n540) individually, based on the level of Varroa mites (0, 10, 20 and 30 %) they would receive in a bee rearing cup (Evans et al., 2009). In addition, for both strong and weak colonies, a subgroup of ten newly emerged bees was collected prior to transmission assay and used as negative 023853 Printed in Great Britain 151

G. Di Prisco and others control (defined as day 0). The first half of bees, along with half of experimental Varroa mites, were collected from each cup at day 3 after mite infestation, and the second half of bees and Varroa mites, were collected at day 7. The quantification of IAPV was performed by TaqMan realtime quantitative PCR (qrt-pcr). A PCR product of 586 bp was generated from the following pair of IAPV primers (sense: 59-GCGGAGAATATAAGGCTCAG-39; antisense: 59-CTTGCAAGATAAGAAAGGGGG-39). A 0.2 mm TaqMan probe (59-FAM-CGCCTGCACTGTCGTCATTA- GTTA-TAMRA-39), and 500 ng total RNA were incorporated in the reaction mixture of Access RT-PCR system (Promega). The absolute quantification method was used for analysing the qrt-pcr data of IAPV. The copy numbers of theiapvweredeterminedbyrelatingthec t value of each sample to an established standard curve. The standard curve was established by plotting the logarithm of initial quantities of 10-fold serial diluted IAPV-recombinant plasmid, ranging from 10 3 to 10 14 copies, against corresponding threshold value (C t ). A linear relationship was observed between C t values and input recombinant plasmid DNA (Supplementary Fig. S1, available in JGV Online). The PCR amplification efficiency was calculated as 157 % based on the slope of the standard curve (slope522.43), by using the formula: E510 (21/slope) 21 (Application Note: http://www.stratagene. com/lit_items/appnotes10:pdf), confirming the validity of the assay used in this study. The detection of negative-strand RNA of IAPV was conducted to assess whether Varroa mites could allow replication of IAPV. Briefly, the cdna complementary to the negative-strand RNA of IAPV was synthesized from RNA extracted from Varroa mites, with Tag-IAPV-sense primer (59-agcctgcgcacgtggGCGGAGAATATAAGGCTC- AG-39. The sequence of Tag is shown in lower case (Yue & Genersch, 2005). To prevent amplification of nonstrand-specific products, the synthesized cdnas were column purified (Qiagen) to remove short fragments of oligonucleotides and residues of enzymic reagents (Boncristiani et al., 2009). The purified cdnas were then PCR amplified with Tag and IAPV-antisense primer. The specificity of PCR products was confirmed by sequencing analysis. The relative quantification of apidaecin and eater transcripts was performed by SYBR Green qrt-pcr. The interpretation of qrt-pcr data was conducted using the comparative C t method (DDC t method) as described previously (Chen et al., 2005). After the validation of approximately equal amplification efficiencies of immune transcripts and the reference gene (Supplementary Fig. S2a, b, available in JGV Online), the expression of each immune transcript was determined by normalizing the C t value of the target to the reference gene b-actin (Chen et al., 2005) and relative to a calibrator, a sample representing the minimal level of the transcript. Negative controls from both healthy and weak groups (bees at day 0), showing the lowest level of gene expression and not showing significant difference between each other, were used as calibrator individually. The relative quantities of immune transcript expression in bees are expressed as an n-fold change relative to the calibrator following the equation 2 2DDCt. Normality of data was checked by Shapiro-Wilk test, using SYSTAT software, and Chi-squared and Jarque-Bera tests, using PAST software (Palaeontological Statistic software package), while homoscedasticity was checked with Levene s test, using SYSTAT software. IAPV, apidaecin and eater data were translated as log 10 (original data+1) before analysis to obtain a normal distribution. A threeway factorial ANOVA was used to compare genome 152 Journal of General Virology 92 Fig. 1. Experimental design to assess the role of Varroa mites in the IAPV transmission. Bees were transferred into rearing cups and exposed to different levels of Varroa mites. Samples of bees and associated mites were collected at days 3 and 7 post-exposure. Bees collected prior to transmission assay (day 0) were used as negative control.

Varroa destructor is a vector of honeybee virus equivalents of the virus and the relative levels of immune transcripts considering three factorial levels: the colony (strong versus weak), the Varroa mite inoculation (0, 10, 20 and 30 %) and the day post-treatment (3 versus 7). In order to measure the strength of the linear relationship, the coefficient of correlation, r 2 (Zar, 2009), was calculated between the viral copy number and the per cent of Varroa mite, as well as between the relative expression of immune genes and the per cent of Varroa-mite exposure. To test the effects of Varroa mite inoculation level on copies of IAPV among colonies (i.e. strong and weak) and among replicates within colony, two separate analyses of covariance (ANCOVA), at days 3 and 7, were carried out, with colony as main effect and replicates nested within colony. While all bees from negative control as well as bees not exposed to Varroa mites tested negative for IAPV, bees that were exposed to Varroa mites became IAPV positive. The copy numbers of IAPV were significantly and positively correlated with the level of Varroa mites introduced in bees from both strong colonies (day 3: r 2 50.86, P,0.001; day 7: r 2 50.84, P,0.001) and weak colonies (day 3: r 2 50.98, P,0.001; day 7: r 2 50.95, P,0.001). As shown in Fig. 2(a, b), the more mites introduced, the higher IAPV copy number was detected in infected bees, which also increased over time. The copy number of IAPV in bees at day 7 was significantly higher than that in bees at day 3 (F514.09; d.f. 1, 32; P,0.01). Bees originating from strong and weak colonies showed different levels of response to the challenge of Varroa mites. The IAPV concentrations in bees originating from strong colonies were significantly lower (Fig. 2a) than bees from weak colonies (Fig. 2b), at the different levels of Varroa-mite challenge (F559.17; d.f. 1, 32; P,0.001). While the copy number of IAPV in bees increased significantly as the load of Varroa mites increased (F5320.07; d.f. 3, 32; P,0.001), the magnitude of the IAPV titre change in bees from strong colonies was lower than in weak colonies. In fact, the effect of replicates was not significant, both at days 3 and 7, indicating that the relationship between copies of IAPV and levels of Varroa is the same for all the replicates, within each colony type. In contrast, the relationship between copies of IAPV and levels of Varroa were significantly different between strong and weak colonies, as indicated by significant differences of slopes (F518.1; d.f.51, 12; P,0.001 at day 7; F523.2; d.f.51, 12; P,0.001 at day 3) and intercepts (F514.7; d.f.51, 12; P,0.001 at day 7; F510.5; d.f.51, 12; P,0.001 at day 3). While evaluation of Varroa mites prior to transmission assays showed that 70 % Varroa mites (14/20) collected from the field were positive for IAPV, 100 % of the Varroa mites (72/72) originating from the same colony and collected after the inoculating experiment tested positive for IAPV. Further, the strand-specific RT-PCR assay showed the presence of negative-strand IAPV RNA in all Varroa-mite samples examined (Fig. 2c). Like other positive-stranded RNA viruses, the replication of IAPV (Maori et al., 2007) proceeds via the production of negative-stranded intermediates. Therefore, the presence of negative-strand RNA of IAPV in Varroa mite appears to be evidence of virus replication and suggests that the http://vir.sgmjournals.org 153 Fig. 2. Absolute quantification of IAPV copy number in bees at days 0, 3 and 7 postexposure to Varroa mites (0, 10, 20 and 30 %). (a) Bees originating from strong colonies. (b) Bees originating from weak colonies. Bees at day 0 and without Varroa-mite exposure (0 %) tested negative for IAPV. (c) The strandspecific RT-PCR result of a representative Varroa mite, in which IAPV actively replicates.

G. Di Prisco and others Varroa mite could be a biological vector that supports the replication of the virus. Further studies to confirm this hypothesis will be necessary. Our results also showed that Varroa mites not only served as a vector to transmit the virus but also impacted on the course of IAPV infection by possibly weakening the bees and reducing host immunity, and therefore leading to elevated levels of virus replication. Yang & Cox-Foster (2005) reported a suppression of the immune response by Varroa-mite feeding, which subsequently triggered viral replication in bees. The occurrence of immune suppression of apidaecin was observed in bees from weak colonies at the highest level of Varroa infestation. Moreover, the expression of immune transcripts was dependent upon host health backgrounds, and somehow affected by the cupinduced stress, which triggered gene transcript expression even in the absence of Varroa. While the correlation between the expression level of apidaecin and the load of Varroa mites in bees from strong colonies was not statistically significant (F52.53; d.f. 3, 16; P50.09) (Fig. 3a), the increases in level of Varroa exposure were accompanied by a decrease in relative levels of apidaecin in bees originating from weak colonies (F55.22; d.f. 3, 16; P50.011) (Fig. 3b). The expression of eater was evoked in bees by Varroa IAPV association. While the correlation between the levels of eater and the levels of Varroa-mite exposure was not statistically significant (F52.24; d.f. 3, 32; P50.10) (Fig. 3c, d), bees originating from weak colonies had a significantly lower relative transcript abundance than those from strong colonies (F5121.18; d.f. 1, 32; P,0.001) (Fig. 3c, d). This difference may partially explain the results reported in the literature (Gregory et al., 2005; Navajas et al., 2008; Yang & Cox-Foster, 2005), which could have been due to overlooked health conditions of the experimental populations. Host condition is an important factor that influences the bee response to any environmental challenge and the complex cross-talk between stress and immunity. An in-depth understanding at the molecular level of the stress impact on immunomodulation of latent pathogens is of key importance for shedding light on how different environmental factors can influence honeybee population stability. Collectively, our laboratory data show that: (i) Varroa mites are capable of transmitting IAPV in honeybees; (ii) there is a significant positive correlation between the rate of IAPV transmission and the density of Varroa mite; (iii) mite-to-mite indirect transmission is possible by cofeeding on the same bees of the virus-positive mites and virus-negative mites; (iv) Varroa mites are IAPV replication-competent; and (v) host-health conditions could alter outcomes of virus transmission and host vector virus interactions in a significant way. Based on this, we can conclude that Varroa mites provide a plausible route of IAPV transmission in the field, and may significantly contribute to the honeybee disease problems often associated with colony collapse. Fig. 3. Relative expression of apidaecin transcript in response to Varroa IAPV association in bees originating from strong colonies (a) and from weak colonies (b). Relative expression of eater transcript in response to Varroa IAPV association in bees originating from strong colonies (c) and from weak colonies (d). 154 Journal of General Virology 92

Varroa destructor is a vector of honeybee virus Acknowledgements We thank Dr Paolo Fanti, University of Basilicata (Potenza, Italy) for his help in statistical analysis. This work was supported by the Italian Ministry of Agriculture (project APENET: monitoring and research in apiculture ), and in part by the USDA-CAP grant (2009-85118- 05718). Disclaimer: Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. References Amdam, G.V., Aase, A. L. T. O., Seehuus, S.-C., Kim Fondrk, M., Norberg, K. & Hartfelder, K. (2005). Social reversal of immunosenescence in honey bee workers. Exp Gerontol 40, 939 947. Boncristiani, H. F., Prisco, G. D., Pettis, J. S., Hamilton, M. & Chen, Y. P. (2009). Molecular approaches to the analysis of deformed wings virus replication and pathogenesis in honey bees, Apis mellifera. Virol J 6, 221, doi: 10.1186/1743-422X-6-221. Bowen-Walker, P. L., Martin, S. J. & Gunn, A. (1999). The transmission of deformed wing virus between honey bees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J Invertebr Pathol 73, 101 106. Chen, Y. P., Pettis, J. S., Evans, J. D., Kramer, M. & Feldlaufer, M. F. (2004). Molecular evidence for transmission of Kashmir bee virus in honey bee colonies by ectoparasitic mite, Varroa destructor. Apidologie (Celle) 35, 441 448. Chen, Y. P., Higgins, J. A. & Feldlaufer, M. F. (2005). Quantitative real-time reverse transcription-pcr analysis of deformed wing virus infection in honeybee. Appl Environ Microbiol 71, 436 441. Cox-Foster, D. L., Conlan, S., Holmes, E., Palacios, G., Evans, J. D., Moran, N. A., Quan, P. L., Briese, T., Hornig, M. & other authors (2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283 287. Ertürk-Hasdemir, D. & Silverman, N. (2005). Eater: a big bite into phagocytosis. Cell 123, 190 192. Evans, J. D., Aronstein, K. A., Chen, Y., Hetru, C., Imler, J.-L., Jiang, H., Kanost, M., Thompson, G., Zou, Z. & Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol 15, 645 656. Evans, J. D., Chen, Y. P., Pettis, J. & Williams, V. (2009). Bee cups: single-use cages for honey bee experiments. J Apic Res 48, 300 302. Gregory, P. G., Evans, J. D., Rinderer, T. & de Guzman, L. (2005). Conditional immune-gene suppression of honey bees parasitized by Varroa mites. J Insect Sci 5, 7. Kocks, C., Cho, J. H., Nehme, N., Ulvila, J., Pearson, A. M., Meister, M., Strom, C., Conto, S. L., Hetru, C. & other authors (2005). Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335 346. Lanzi, G., de Miranda, J. R., Boniotti, M. B., Cameron, C. E., Lavazza, A., Capucci, L., Camazine, S. M. & Rossi, C. (2006). Molecular and biological characterization of deformed wing virus of honey bees (Apis mellifera L.). J Virol 80, 4998 5009. Maori, E., Lavi, S., Mozes-Koch, R., Gantman, Y., Peretz, Y., Edelbaum, O., Tanne, E. & Sela, I. (2007). Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra- and interspecies recombination. J Gen Virol 88, 3428 3438. Navajas, M., Migeon, A., Alaux, C., Cros-Arteil, S., Martin- Magniette, M. L., Robinson, G. E., Evans, J. D., Crauser, D. & Le Conte, Y. (2008). Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 9, 301. Neumann, P. & Carreck, N. L. (2010). Honey bee colony losses. J Apic Res 49, 1 6. Ongus, J. R., Peters, D., Bonmatin, J.-M., Bengsch, E., Vlak, J. M. & van Oers, M. M. (2004). Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J Gen Virol 85, 3747 3755. Rosenkranz, P., Aumeier, P. & Ziegelmann, B. (2010). Biology and control of Varroa destructor. J Invertebr Pathol 103, S96 S119. Shen, M., Yang, X. L., Cox-Foster, D. & Cui, L. W. (2005). The role of Varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342, 141 149. Simone, M., Evans, J. D. & Marla, S. (2009). Resin collection and social immunity in honey bees. Evolution 63, 3016 3022. vanengelsdorp, D., Underwood, R., Caron, D. & Hayes, J., Jr (2007). An estimate of managed colony losses in the winter of 2006 2007: a report commissioned by the Apiary Inspectors of America. Am Bee J 147, 599 603. Yang, X. & Cox-Foster, D. L. (2005). Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci U S A 102, 7470 7475. Yue, C. & Genersch, E. (2005). RT-PCR analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J Gen Virol 86, 3419 3424. Zar, J. H. (2009). Biostatistical Analysis, 5th edn. London: Pearson Education International. http://vir.sgmjournals.org 155