Growth hormone and testosterone interact positively to enhance protein and energy metabolism in hypopituitary men

Similar documents
Growth Hormone & Somatotropin are an Ergogenic Aid

Growth Hormone s Impact as a Safe Ergogenic Aid to Increase Body Size

TESTOFEN HUMAN CLINICAL TRIAL GENCOR PACIFIC, INC. Copyright 2006 by Gencor Pacific, Inc.

Supplement Performance By Anssi Manninen, MHS. Bodybuilding Supplements: Best of Research

Issues. What is a low testosterone? Who needs testosterone therapy? Benefits/adverse effects of testosterone replacement Treatment options

UnitedHealthcare Pharmacy Clinical Pharmacy Programs

LEUCINE. - A major driving force for Muscle Protein Synthesis

HARVARD PILGRIM HEALTH CARE RECOMMENDED MEDICATION REQUEST GUIDELINES

The Science of. NUTRICULA Longevity Journal

HYPNOS. - A quality pre-sleep protein. Casein. An article by Professor Don Maclaren, 2017

Enhanced Linear Growth Responses in Hypopituitary Dwarfs Treated with Growth Hormone Plus Androgen versus Growth Hormone Alone

Nutrition, supplements, and exercise

Chapter 5. General discussion

Testosterone Topical/Buccal/Nasal

UCLA Nutrition Noteworthy

LIFETIME FITNESS HEALTHY NUTRITION. UNIT 2 Lesson 14 FLEXIBILITY LEAN BODY COMPOSITION

SELECT WHEY SOME THOUGHTS ON WHY WHEY PROTEIN CONTINUES TO BE CLINICALLY IMPORTANT

The ICL Insider. Lab Testing: Testosterone. In This Issue. The Debate

Secrets of Abang Sado : Effects of testosterone therapy. Azraai Nasruddin

What is the difference with Whey, Casein, BCAA's, Glutamine, NO products?

Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in and yr olds

Training Tip of the Week. MILK: It does the body builder good!

Insight into male menopause'

MONKEY ASSIMILATE STUDY 1

TESTOFEN. Anabolic & Androgenic Activity GENCOR PACIFIC, INC. Fenugreek Extract standardized for FENUSIDE TM. Copyright 2005 by Gencor Pacific, Inc.

Androgenes and Antiandrogenes

Updates on Anti-doping and TUE Management in Paralympic Sport

Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise

Monitoring of performance an training in rowers

Health Products Regulatory Authority

Development of a Clinical Research Method for the Measurement of Testosterone. Dihydrotestosterone

HGH for Sale Natural Anti-Aging Human Growth Hormone

Robert Perlstein, M.D. Medical Officer. Center for Drug Evaluation and Research. U.S. Food & Drug Administration

Performance Enhancing Drugs in Sports

Associate Professor Geoff Braatvedt

Original Research Declining testicular function in aging men

Icd-10 low levels of testosterone

PRODUCT INFORMATION TESTOVIRON DEPOT. (testosterone enanthate)

Adverse effects of anabolic androgenic steroids abuse on gonadal function, glucose homeostasis and cardiovascular function

Testosterone Hormone Replacement Drug Class Prior Authorization Protocol

Female testosterone level chart

Monitoring Hormone Therapy Mark Newman, M.S. President of Precision Analytical Inc.

Drug Class Monograph

Androgens and Anabolic Steroids Prior Authorization with Quantity Limit - Through Preferred Topical Androgen Agent

Relationship between Aerobic Training and Testosterone Levels in Male Athletes

The importance of (dairy) protein for maintenance of muscle mass during aging & rehabilitation

CHAPTER XVI PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.

TREATMENT OPTIONS FOR MALE HYPOGONADISM

Transsexuals and competitive sports

Use of Performance Enhancing Substances Good Chemistry Gone Bad. Evan M. Klass, M.D., F.A.C.P.

Reproductive DHT Analyte Information

Skin metabolism of steroid hormones as endogenous compounds?

Protein: Nutrient Timing & Distribution MATT CARLIN & MELANIE MARSHALL

Testosterone Use and Effects

SIMPLE, EFFICIENT AND SIMULTANEOUS DETERMINATION OF ANABOLIC STEROIDS IN HUMAN URINE

Formulating With Whey In A Fully Transparent Market. Chris Lockwood, PhD President May 22-23, 2018

Testosterone prevents protein loss via the hepatic urea cycle in human

Gynaecomastia. Benign breast conditions information provided by Breast Cancer Care

Assessment of an International Breaststroke Swimmer Using a Race Readiness Test

Testosterone Hormone Replacement Drug Class Prior Authorization Protocol

Donald W. Morrish, MD, PhD, FRCPC Presented at Mountain Man: Men's Health Conference, May Terry s Testosterone

Anavar For Sale Oxandrolone

Copyright 2009 by UniScience Group Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form.

ELIGIBILITY REGULATIONS FOR THE FEMALE CLASSIFICATION (ATHLETES WITH DIFFERENCES OF SEX DEVELOPMENT) EXPLANATORY NOTES/Q&A

M0BCore Safety Profile. Pharmaceutical form(s)/strength: 5 mg SE/H/PSUR/0002/006 Date of FAR:

WADA Technical Document TD2014EAAS. Endogenous Anabolic Androgenic Steroids Measurement and Reporting

RESPIRATORY REGULATION DURING EXERCISE

PRODUCT INFORMATION PRIMOTESTON DEPOT. (testosterone enantate)

PRODUCT INFORMATION PROVIRON

Biochemical Applications of Computational Chemistry

Clinical impact of type I and type II 5 alpha-reductase inhibition in prostatic disease: review and update 아주대학교김선일

See Important Reminder at the end of this policy for important regulatory and legal information.

Natural Hair Transplant Medical Center, Inc Dove Street, Suite #250, Newport Beach, CA Phone

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Introduction to the Doping Problem

SUMMACARE COMMERCIAL MEDICATION REQUEST GUIDELINES TESTOSTERON. Generic Brand HICL GCN Exception/Other ROUTE MISCELL.

Pre-Lab. 1. What do people mean when they say teenagers have raging hormones?

MI Androgen Deficiency Hypogonadism

Affirming Care of the Transgender Patient

Jeremiah Murphy, MD Mercy Urology Clinic. October 21, 2017

Testosterone Effects in Transmen

7 COMMON MISCONCEPTIONS ABOUT WHEY PROTEIN

Copyright Strengthworks International Publishing. All rights are reserved. Updated egor 1: GUIDE

The impact of freediving on psychomotor performance and blood catecholamine concentration

significant length of time without producing both anabolic

Calcium and Protein Kinetics in Prepubertal Boys Positive Effects of Testosterone

Creatine. Travis Harvey, PhD, CSCS

Dietary supplements and nutrition in sports and exercices performance

THE BEST JUST GOT BETTER PRODUCT BROCHURE

Are Steroids Worth the Risk?

Antiduretic Hormone, Growth. Hormone & Anabolic Steroids

Changes in a Top-Level Soccer Referee s Training, Match Activities, and Physiology Over an 8-Year Period: A Case Study

MALE HORMONE THERAPY OPTIONS

Clinical Policy: Testosterone Reference Number: AZ.CP.PHAR.02 Effective Date: Last Review Date: Line of Business: Arizona Medicaid

Month/Year of Review: September 2013 Date of Last Review: December 2009

Human skeletal muscle contains no detectable guanidinoacetic acid

Use of biotechnology to improve muscle growth in aquaculture species: Preliminary results on the use of myostatin in tilapia

Extend the time window for the detection of low level anabolic androgenic steroids and their metabolites

1.) Take an alcohol swab to the stopper of both your peptide vial and the vial of the dilutent.

Anabolic Androgenic Steroids

Transcription:

Am J Physiol Endocrinol Metab 289: E266 E271, 2005. First published February 22, 2005; doi:10.1152/ajpendo.00483.2004. Growth hormone and testosterone interact positively to enhance protein and energy metabolism in hypopituitary men James Gibney, 1 Troels Wolthers, 1 Gudmundur Johannsson, 1 A. Margot Umpleby, 2 and Ken K. Y. Ho 1 1 Pituitary Research Unit, Garvan Institute of Medical Research and Department of Endocrinology, St. Vincent s Hospital, Sydney, Australia; and 2 Dept. of Diabetes and Endocrinology, Guy s, King s and St. Thomas School of Medicine, St. Thomas Hospital, London, United Kingdom Submitted 11 October 2004; accepted in final form 18 February 2005 Gibney, James, Troels Wolthers, Gudmundur Johannsson, A. Margot Umpleby, and Ken K. Y. Ho. Growth hormone and testosterone interact positively to enhance protein and energy metabolism in hypopituitary men. Am J Physiol Endocrinol Metab 289: E266 E271, 2005. First published February 22, 2005; doi:10.1152/ajpendo.00483.2004. We investigated the impact of growth hormone (GH) alone, testosterone (T) alone, and combined GH and T on whole body protein metabolism. Twelve hypopituitary men participated in two studies. Study 1 compared the effects of GH alone with GH plus T, and study 2 compared the effects of T alone with GH plus T. IGF-I, resting energy expenditure (REE), and fat oxidation (F ox) and rates of whole body leucine appearance (R a), oxidation (L ox), and nonoxidative leucine disposal (NOLD) were measured. In study 1, GH treatment increased mean plasma IGF-I (P 0.001). GH did not change leucine R a but reduced L ox (P 0.02) and increased NOLD (P 0.02). Addition of T resulted in an additional increase in IGF-I (P 0.05), reduction in Lox (P 0.002), and increase in NOLD (P 0.002). In study 2, T alone did not alter IGF-I levels. T alone did not change leucine R a but reduced L ox (P 0.01) and increased NOLD (P 0.01). Addition of GH further reduced L ox (P 0.05) and increased NOLD (P 0.05). In both studies, combined treatments on REE and F ox were greater than either alone. In summary, GH-induced increase of circulating IGF-I is augmented by T, which does not increase IGF-I in the absence of GH. T and GH exerted independent and additive effects on protein metabolism, F ox and REE. The anabolic effects of T are independent of circulating IGF-I. insulin-like growth factor I; protein turnover GROWTH HORMONE (GH) AND TESTOSTERONE are potent anabolic hormones. There is strong evidence in children that both hormones interact positively to enhance growth and body composition (2, 22, 35). The mechanistic basis of this interaction is poorly understood. Testosterone enhances the growth of boys with hypogonadism and those with hypopituitarism during GH treatment (2, 35). However, the effect of testosterone on somatic growth is poor in boys with hypopituitarism without concomitant GH treatment (2, 35). In hypopituitary adults who are not receiving GH replacement, testosterone exerts no effect on circulating IGF-I (18). These collective observations suggest that the growth promoting and anabolic effects of testosterone may be dependent on GH and possibly mediated in part by IGF-I. How GH and testosterone interact to regulate protein metabolism in adult life is also poorly understood. There is evidence that both hormones are necessary to exert an optimal effect. Even after adequate androgen replacement, lean body mass is reduced in GH-deficient men (15). The observation that the effects of GH replacement are more marked in men than in women (9) provides further evidence that testosterone might enhance the anabolic effects of GH. The anabolic effects of GH are mediated by IGF-I, but whether IGF-I also plays a role in mediating the anabolic effects of testosterone is unknown. The aim of the study was to investigate how GH and testosterone interact to regulate anabolism by studying the independent and combined effects of these two hormones on IGF-I and protein metabolism. SUBJECTS AND METHODS Subjects. Twelve hypopituitary men with GH deficiency and hypogonadotropic hypogonadism were recruited from the Endocrine Outpatient Clinic at St. Vincent s Hospital, Sydney, Australia. The clinical characteristics of these patients are shown in Table 1. Two studies were undertaken; the first compared the effects of GH alone with GH plus testosterone, and the second compared the effects of testosterone alone with GH plus testosterone. A three-period crossover study design was originally planned to investigate the effects of GH, testosterone, and combined (GH plus testosterone) treatment. However, the demands and logistics precluded the adoption of such a design, as many of the subjects were frail and lived outside Sydney. Instead, a design comprising two interrelated studies was adopted. GH deficiency was confirmed by a peak GH response to insulin-induced hypoglycemia of 3 ng/ml (14), and hypogonadotropic hypogonadism was defined as serum testosterone measured in a morning sample 4 nmol/l, accompanied by low serum luteinizing hormone level. The duration of hypopituitarism was 1 yr. All subjects were receiving stable hormone replacement for other deficiencies throughout and during the study periods. The Research Ethics Committee of St. Vincent s Hospital approved the studies. Written informed consent was obtained from all subjects. Study design. Both studies were of open-label randomized crossover design and together allowed comparison of the individual and combined effects of testosterone and GH while taking time-dependent effects into consideration. Before commencement of each study, subjects underwent a 6-wk run-in period, when testosterone and GH were withdrawn. During this time and throughout the studies, they were instructed to follow their usual diet and habitual activities. In both studies, GH (Humatrope, Lilly Australia) was administered at a dose of 0.5 mg daily by self-injection at 8 PM, and testosterone enanthate (Primoteston) was administered as 250 mg intramuscularly 2 wk before measurement. The dose and timing of the testosterone injection were based on known pharmacokinetics of testosterone enanthate and aimed to expose subjects to physiological plasma testosterone levels during the 2 wk preceding the metabolic studies. Address for correspondence: K. K. Y. Ho, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia (e-mail: k.ho@garvan.org.au). The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. E266 0193-1849/05 $8.00 Copyright 2005 the American Physiological Society http://www.ajpendo.org

Table 1. Characteristics of hypogonadal GH-deficient patients EFFECTS OF TESTOSTERONE AND GH ON PROTEIN METABOLISM E267 Subject No. Study Age, yr Diagnosis Height, cm Weight, kg BMI, kg/m 2 Treatment Hormone Replacement 1 1, 2 66 Pituitary macroadenoma 1.65 83.2 30.6 S/X A, T, G 2 1, 2 61 Rathke s cyst 1.67 61.9 22.2 S A, T, G, D 3 1, 2 50 Pituitary macroadenoma 1.87 114.7 33.0 S G 4 2 60 Pituitary macroadenoma 1.85 75.4 22.0 S G 5 2 50 Craniopharyngioma 1.73 111.0 37.1 S/X A, T, G 6 1, 2 66 Pituitary macroadenoma 1.75 85.9 28.0 S A, T, G 7 1, 2 46 Pituitary macroadenoma 1.78 84.8 26.8 S A, T, G 8 1, 2 47 Pituitary macroadenoma 1.71 90.4 30.9 S A, T, G 9 1 77 Pituitary macroadenoma 1.69 68.6 24.0 S G 10 1 33 Craniopharyngioma 1.60 60.6 23.7 S/X A; T, G 11 1 39 Pituitary macroadenoma 1.76 99.7 32.2 S T, G, D 12 1, 2 66 Pituitary macroadenoma 1.71 88.4 30.2 S T, G BMI, body mass index; S, surgery; X, irradiation; A, adrenal replacement; T, thyroid replacement; G, gonadal replacement; D, [deamino-cys 1,D-Arg 8 ] vasopressin. In the first study (study 1), GH was administered daily for 6 wk. Testosterone was administered either at baseline (group A, n 5) or week 4 (group B, n 5) of the study. Investigations were carried out at baseline, after 2 wk and 6 wk so that the effects of testosterone were assessed 2 wk after administration. Thus studies were carried out when subjects were not receiving GH or testosterone replacement, during replacement with GH alone, and during GH plus testosterone replacement (Fig. 1). In the second study (study 2), testosterone was administered at week 2 and week 6 of the study. GH was administered either during the first 4 wk (group A, n 5) or the second 4 wk (group B, n 4) of the study. Investigations were carried out at baseline, after 4 wk, and after 8 wk. Thus studies were carried out when subjects were not receiving GH or testosterone replacement, during replacement with testosterone alone, and during combined GH plus testosterone replacement (Fig. 1). At each visit, all subjects underwent measurements of plasma IGF-I and whole body protein turnover using [1-13 C]leucine tracer, as previously described (16, 34), and assessment of resting energy Fig. 1. Study 1 was designed to compare effects of growth hormone (GH) alone with combined treatment of GH testosterone (T). Ten patients were randomized to either group A or group B. T was administered as 250 mg of testosterone enanthate im at week 0 in group A and week 4 in group B.GHwas administered as daily bedtime sc injections of 1.5 IU/day for 6 wk. Study 2 was designed to compare T alone with combined treatment with T GH. Nine patients were randomized to either group A or group B. The same doses of GH and T were administered as for study 1. T was administered at weeks 2 and 6 in both groups. GH was administered from week 0 to week 4 in group A and from week 4 to week 8 in group B. Arrows indicate time points of measurements. expenditure and fat and carbohydrate oxidation by use of indirect calorimetry (25). All subjects were studied at 8 AM after an overnight fast. Study techniques. Whole body protein turnover was undertaken using a primed constant infusion of [1-13 C]leucine. The technique has been extensively validated (1, 3, 10, 17, 27, 32) and has proved highly reproducible in our hands (12, 16, 28, 29, 34). NaH 13 CO 3 (99%) was obtained from Cambridge Isotope Laboratories (Woburn, MA), and 99% [1-13 C]leucine was obtained from MassTrace (Woburn, MA). Solutions of each were prepared under sterile conditions using 0.9% saline. Subjects were studied in the Clinical Research Facility, Garvan Institute of Medical Research, after an overnight fast. At 0800, cannulae were inserted into both antecubital veins, one for isotope infusion and the other for blood sampling. A 0.1 mg/kg priming dose of NaH 13 CO 3 was followed immediately by [1-13 C]leucine (prime, 0.5 mg/kg; infusion, 0.5 mg kg 1 h 1 ). Blood and breath samples were collected before ( 10, 0 min) and at the end of a 3-h infusion (140, 160, and 180 min), at which time we and others have previously demonstrated a physiological and isotopic steady state (7, 12, 16, 21, 30, 34). Blood was placed on ice, and plasma was separated and stored at 80 C until analysis. O 2 and CO 2 production rates were undertaken with an open circuit, ventilated hood system (Deltatrac monitor, Datex Instrumentation, Helsinki, Finland). The monitor was calibrated against standard gases before each study. Measurements were averaged over 20 40 and 160 180 min. The coefficient of variation for energy expenditure was 4.2%, and for substrate oxidation was 4% (24). Calculation of whole body protein turnover. Rates of appearance (R a) of leucine, nonoxidative leucine disposal (NOLD), and leucine oxidation were calculated as previously described (16, 34). Isotopic enrichment of plasma -ketoisocaproic acid (KIC), which is believed to reflect intracellular leucine enrichment more closely than the isotopic enrichment of plasma leucine, was measured. Because leucine represents 8% of total body protein, or 590 mol of leucine represents 1 g of protein, rates of protein turnover may be estimated using these constants (21, 26). Calculation of energy expenditure and substrate oxidation. Energy expenditure (EE) and substrate oxidation were calculated from the following equations: EE 3.91 V O2 1.10 V CO2 0.53 protein oxidation; fat oxidation 1.67 V O2 1.67 V CO2 0.31 protein oxidation; and carbohydrate oxidation 4.55 V CO2 3.21 V O2 0.46 protein oxidation (11). Carbohydrate, lipid, and protein oxidation are expressed as grams per minute. V O2 represents O 2 consumption, and V CO2 represents CO 2 production in liters per minute. Analytic methods. KIC was extracted by the method of Nissen et al. (23). As previously described (16, 34), KIC enrichment was measured

E268 EFFECTS OF TESTOSTERONE AND GH ON PROTEIN METABOLISM as the butyldimethylsilyl derivative by gas chromatography (model 5890, Hewlett-Packard, Palo Alto, CA)-mass spectrometry (MSD 5971A, Hewlett-Packard), with selective monitoring of ions 302 and 303 (31). CO 2 enrichment in breath was measured on a SIRA Series II isotope ratio mass spectrometer (VG Isotech, Cheshire, UK). Statistics. Nonnormally distributed data were logarithmically transformed before analysis. Repeated measures ANOVA was used in each study to determine treatment effect, and paired t-tests were used to compare different time points. Results are expressed as means SE, and statistical significance was set at an -level of 0.05. RESULTS There were no baseline differences between subjects who took part in the two studies. Both treatments alone and in combination were well tolerated, and no sequence effect was detected in either study. IGF-I and testosterone. Mean IGF-I levels and testosterone concentrations in hypopituitary subjects from both study groups were subnormal (reference range for IGF-I: 15 35 nmol/l; testosterone: 12 30 nmol/l). In study 1, treatment with GH alone significantly increased IGF-I but did not alter plasma levels of testosterone, which remained in the hypogonadal range in all subjects (Table 2). Addition of testosterone to GH increased testosterone into the normal range in all subjects and resulted in a further uniform increase in plasma IGF-I levels (Table 2). In study 2, treatment with testosterone alone increased testosterone into the normal range but did not alter mean plasma levels of IGF-I (Table 2). Compared with testosterone alone, treatment with GH plus testosterone did not result in any further change in plasma testosterone but increased IGF-I into the normal range (Table 2). In summary, treatment with testosterone plus GH normalized plasma levels of testosterone and IGF-I, respectively, but testosterone increased IGF-I only during concomitant administration of GH. Leucine turnover. In study 1, leucine R a at baseline (147 11 mol/min) was not significantly different from that observed during GH treatment (148 8 mol/min) or combined treatment with testosterone (145 11 mol/min; Fig. 2). GH alone significantly reduced (P 0.05) leucine oxidation from 41 3to35 2 mol/min, and the addition of testosterone reduced leucine oxidation further (P 0.05) to 27 2 mol/min (Fig. 2, left). When expressed as percent R a, this corresponded to a fall in leucine oxidation from 29.2 2% at baseline to 24.2 2% with GH and to 19 1% with combined treatment (Fig. 2, right). There was a trend toward an increase of NOLD with GH treatment (106 10 to 111 8 mol/min) and toward a further increase with combined treatment (118 10 mol/min), although the changes did not reach statistical significance. However, when expressed as a fraction of R a, the changes for NOLD were significant (P 0.05) for each intervention, increasing from 71 2to76 2% with GH and rising further to 81 1% of R a. These results did not differ when expressed in relation to body weight. In study 2, leucine R a during testosterone (172 11 mol/ min) treatment alone or during combined treatment with GH (160 8 mol/min) was not significantly different from baseline (164 11 mol/min). Testosterone alone significantly reduced (P 0.05) leucine oxidation from 43 3to 31 3 mol/min and the addition of GH reduced leucine oxidation further (P 0.05) to 29 2 mol/min (Fig. 2, left). When expressed as percent R a, this corresponded to a fall in leucine oxidation from 25 1% at baseline to 19 1% with GH and to 17 1% with combined treatment (Fig. 2, right). The absolute values for NOLD at baseline (129 6 mol/ min), with testosterone (128 6 mol/min), and with combined treatment (135 10 mol/min) were not significantly different. However, when expressed as a proportion of R a, NOLD increased significantly (P 0.05) from 75 1to80 1% with testosterone, rising further to 83 1% of R a (P 0.05) with combined treatment. These results did not differ when expressed in relation to body weight. Resting EE and substrate metabolism. In study 1, GH alone induced an increase in resting EE, which narrowly failed to reach statistical significance (P 0.07), but the addition of testosterone resulted in a cumulative increase that was significant (P 0.05; Table 3) compared with baseline. GH alone increased fat oxidation, although the change did not reach statistical significance, whereas the addition of testosterone resulted in a further increase that was significant compared with GH alone and to baseline (P 0.05). In study 2, testosterone alone significantly increased REE (P 0.05), whereas combined treatment with testosterone and GH induced a further rise in REE that was significant compared with baseline (P 0.05). Testosterone alone significantly increased fat oxidation, whereas the addition of GH resulted in a further increase that was significant compared with GH alone and with baseline (P 0.05). In summary, combined treatment induced the greatest changes in REE and fat oxidation, whereas the effects of GH plus testosterone alone were intermediate. DISCUSSION These two open-label, randomized crossover studies demonstrate that testosterone increases circulating IGF-I in hypopituitary men during GH treatment but has no effect on circulating IGF-I in the absence of GH. GH and testosterone independently and additively increased resting energy expen- Table 2. Plasma levels of IGF-I and testosterone in hypogonadal GH-deficient subjects at baseline and after treatment with GH alone and GH with testosterone (study 1) and at baseline and after treatment with testosterone alone and GH with testosterone (study 2) Study 1 Study 2 Baseline GH GH testosterone Baseline Testosterone GH testosterone IGF-I (nmol/l) 8.4 0.9 28.4 3.2* 30.1 2.9 11.9 1.1 11.9 1.1 37.5 4.3 Testosterone (mmol/l) 2.6 0.6 1.8 0.7 12.2 1.9* 2.0 0.5 14.8 1.9* 14.0 2.9* Values are means SE. *P 0.05 vs. baseline. P 0.05 vs. baseline and vs. growth hormone (GH) only. P 0.05 vs. baseline and vs. testosterone only.

EFFECTS OF TESTOSTERONE AND GH ON PROTEIN METABOLISM E269 diture and fat oxidation. Neither hormone affected protein breakdown, but each exerted independent and additive effects in suppressing protein oxidation and in stimulating protein synthesis. These are the first data to demonstrate that testosterone and GH interact positively to regulate energy expenditure, fat metabolism, and protein anabolism. Taken together, Fig. 2. Absolute rates of appearance (R a) and oxidation of leucine and nonoxidative leucine disposal (NOLD; left) and percentage rates of leucine oxidation and NOLD (right) in hypogonadal GH-deficient subjects at baseline, after treatment with GH alone, and after GH T(study 1) and at baseline, after treatment with T alone, and after GH T(study 2). *P 0.05 vs. baseline; P 0.05 vs. baseline and vs. GH only; #P 0.05 vs. baseline and vs. T only. the data provide a mechanistic explanation for recent observations that the effects of combined GH and testosterone supplementation on body composition and muscle strength in elderly men are greater than those of GH or testosterone alone (4, 8). Studies in children have provided strong evidence for a positive interaction between GH and androgens in growth and Table 3. REE, PR ox,f ox, and CH ox in hypogonadal GH-deficient subjects at baseline, following treatment with GH alone and GH with testosterone (study 1), and at baseline and after treatment with testosterone alone and GH with testosterone (study 2) Study 1 Study 2 Baseline GH GH testosterone Baseline Testosterone GH testosterone REE, kcal/24 h 1558 91 1626 92 1692 106* 1595 83 1710 95 1830 116 PR ox, mg/min 73.3 6.3 62.6 3.1* 47.3 3.8 77.4 5.2 56.0 7.0* 51.5 4.4* F ox, mg/min 62.0 6.0 67.1 7.6 84.5 7.4 59.0 9.1 74.9 4.8* 86.0 7.9 CH ox, mg/min 86.3 8.9 92.5 10.3 69.9 10.5 99.2 15.4 86.9 10.7 84.5 17.1 Values are means SE. REE, resting energy expenditure; PR ox, protein oxidation; F ox, fat oxidation; CH ox, carbohydrate oxidation. *P 0.05 vs. baseline. P 0.05 vs. baseline and vs. GH only. P 0.05 vs. baseline and vs. testosterone only.

E270 EFFECTS OF TESTOSTERONE AND GH ON PROTEIN METABOLISM development. Testosterone stimulates growth of prepubertal and hypogonadal children (35). As it is well established that testosterone increases GH release (33), greater GH secretion is one mechanism through which growth is augmented. However, the observation that androgens also accelerate growth in hypopituitary boys receiving a constant GH dose strongly suggests that these effects are independent of GH secretion (2). There is also evidence that in addition to its effects on growth and anabolism, GH augments other biological effects of testosterone. The development of secondary sexual characteristics in hypopituitary boys is modest unless GH is administered concurrently (35). In hypopituitary men, Blok et al. (5) observed that androgen-dependent hair growth is increased by GH in hypopituitary men receiving stable androgen replacement, despite unchanged or even reduced androgen levels. In the present study, plasma levels of IGF-I were greater during combined treatment with GH and testosterone than during treatment with GH alone, indicating that testosterone enhances GH-induced IGF-I production. Because the liver is an androgen-responsive organ and is also the major source of circulating IGF-I (20), it is likely that testosterone increased hepatic production of IGF-I by GH. To our knowledge, this is the first study to address the effect of testosterone on IGF-I levels in hypogonadal GH-deficient subjects during GH replacement. Testosterone does not change IGF-I in hypogonadal GH-deficient subjects who are not receiving GH replacement (18) but increases plasma IGF-I levels in normal subjects (13, 33). This effect is at least partly due to increased pituitary GH secretion and is dependent on aromatization to estrogen (33). Interestingly, studies in which testosterone and GH have been administered together and in combination to healthy older subjects have shown no additional effect of combined testosterone and GH to increase IGF-I compared with GH alone (4, 8). Differences between these observations and those in the present study might reflect the difference between augmenting low-normal testosterone in healthy subjects and normalizing testosterone in profoundly hypogonadal subjects. Although plasma testosterone levels were at the lower end of the normal range at the time of the metabolic studies, in view of the known pharmacokinetic profile of intramuscular testosterone enanthate, it is likely that subjects were exposed to higher testosterone levels over the preceding 14 days. The finding that testosterone alone exerted significant protein anabolic effects was surprising in view of the observation that the growth response of hypopituitary children to androgens is very poor unless GH is replaced (6). This observation suggests that the anabolic effects of androgens are dependent on the presence of GH. Testosterone alone also significantly stimulated resting energy expenditure and fat oxidation in our hypopituitary subjects. These findings have important clinical and physiological implications. The observation that the metabolic effects of GH are enhanced during concomitant testosterone administration explains why sex steroid-replaced hypopituitary men are more responsive to GH replacement than hypopituitary women (9). Testosterone is probably not the sole determinant of this effect, however, as there is also evidence that orally administered estrogen reduces the metabolic effects of GH (34). The observation that GH and testosterone exert additive effects on protein metabolism and fat oxidation implies that administration of testosterone or GH alone may not maximize these processes; thus, in hypopituitary men, treatment with GH or testosterone alone is unlikely to normalize body protein or fat mass. In addition to the clinical implications of this finding, there are also economic implications. GH replacement therapy is expensive, and the cost is directly dependent on the dose used. The findings of the current study indicate that the effect of GH to stimulate protein anabolism is approximately doubled when testosterone is coadministered, suggesting that optimizing of concurrent androgen replacement will reduce GH dose requirements, providing a significant cost saving. The findings also have wider relevance in the context of normal human aging. The decline in endogenous GH and testosterone production rates with increasing age (19) might contribute to some of the effects of aging, including reduced muscle mass and increased body fat. However, studies in which testosterone or GH have been administered in isolation to elderly subjects have demonstrated little or no clinically significant effect. Because our findings show that the optimization of the effects of GH and testosterone requires administration of both hormones simultaneously, there is a rationale for future studies to address the effects GH and testosterone administered in combination as well as or instead of in isolation. Results from clinical trials of combined treatments are encouraging (4, 8). In summary, testosterone replacement in hypopituitary adults increased circulating IGF-I only during concomitant administration of GH. Testosterone and GH exerted independent and additive effects to reduce irreversible oxidative protein loss and increase protein synthesis. These findings suggest that testosterone enhances the anabolic effects of GH through IGF-I but exerts protein anabolic effects that are independent of GH action. Concurrent administration of testosterone and GH in GHD subjects is likely to be both physiologically and economically important. Further studies are needed to delineate the molecular mechanisms by which these effects occur. ACKNOWLEDGMENTS We thank Dr. Andrea Attanasio for valuable input into the planning of these studies. We are most grateful to Maria Males, Bronwyn Heinrich, and Olivia Wong for clinical assistance, and Nicola Jackson and Nathan Doyle for excellent technical assistance. We also thank Dr. George Smythe and Anne Poljack, Bioanalytical Mass Spectroscopy Facility at the University of New South Wales for analytic GC-MS support. GRANTS Eli Lilly and the National Health and Medical Research Council of Australia supported this work. The Swedish Society of Medicine and the Novo Nordisk Foundation supported Dr. Johannsson. REFERENCES 1. Ahlman B, Charlton M, Fu A, Berg C, O Brien P, and Nair KS. Insulin s effect on synthesis rates of liver proteins. A swine model comparing various precursors of protein synthesis. Diabetes 50: 947 954, 2001. 2. Aynsley-Green A, Zachmann M, and Prader A. Interrelation of the therapeutic effects of growth hormone and testosterone on growth in hypopituitarism. J Pediatr 89: 992 999, 1976. 3. Barazzoni R, Meek SE, Ekberg K, Wahren J, and Nair KS. Arterial KIC as marker of liver and muscle intracellular leucine pools in healthy and type 1 diabetic humans. Am J Physiol Endocrinol Metab 277: E238 E244, 1999. 4. Blackman MR, Sorkin JD, Munzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, Jayme J, O Connor KG, Christmas C, Tobin JD, Stewart KJ, Cottrell E, St Clair C, Pabst KM, and Harman SM.

EFFECTS OF TESTOSTERONE AND GH ON PROTEIN METABOLISM E271 Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA 288: 2282 2292, 2002. 5. Blok GJ, de Boer H, Gooren LJ, and van der Veen EA. Growth hormone substitution in adult growth hormone deficient men augments androgen effects on the skin. Clin Endocrinol (Oxf) 47: 29 36, 1997. 6. Bourguignon JP. Linear growth as a function of age at onset of puberty and sex steroid dosage: therapeutic implications. Endocr Rev 9: 467 488, 1988. 7. Bowes SB, Umpleby M, Cummings MH, Jackson NC, Carroll PV, Lowy C, Sonksen PH, and Russell-Jones DL. The effect of recombinant human growth hormone on glucose and leucine metabolism in Cushing s syndrome. J Clin Endocrinol Metab 82: 243 246, 1997. 8. Brill KT, Weltman AL, Gentili A, Patrie JT, Fryburg DA, Hanks JB, Urban RJ, and Veldhuis JD. Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men. J Clin Endocrinol Metab 87: 5649 5657, 2002. 9. Burman P, Johansson AG, Siegbahn A, Vessby B, and Karlsson FA. Growth hormone (GH)-deficient men are more responsive to GH replacement therapy than women. J Clin Endocrinol Metab 82: 550 555, 1997. 10. Caso G, Ford GC, Nair KS, Garlick PJ, and McNurlan MA. Aminoacyl-tRNA enrichment after a flood of labeled phenylalanine: insulin effect on muscle protein synthesis. Am J Physiol Endocrinol Metab 282: E1029 E1038, 2002. 11. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism 37: 287 301, 1988. 12. Healy ML, Gibney J, Russell-Jones DL, Pentecost C, Croos P, Sonksen PH, and Umpleby AM. High dose growth hormone exerts an anabolic effect at rest and during exercise in endurance-trained athletes. J Clin Endocrinol Metab 88: 5221 5226, 2003. 13. Hobbs CJ, Plymate SR, Rosen CJ, and Adler RA. Testosterone administration increases insulin-like growth factor-i levels in normal men. J Clin Endocrinol Metab 77: 776 779, 1993. 14. Hoffman DM, O Sullivan AJ, Baxter RC, and Ho KKY. Diagnosis of growth hormone deficiency in adults. Lancet 343: 1064 1068, 1994. 15. Hoffman DM, O Sullivan AJ, Freund J, and Ho KKY. Adults with growth hormone deficiency have abnormal body composition but normal energy metabolism. J Clin Endocrinol Metab 80: 72 77, 1995. 16. Hoffman DM, Pallasser R, Duncan M, Nguyen TV, and Ho KKY. How is whole body protein turnover perturbed in growth hormonedeficient adults? J Clin Endocrinol Metab 83: 4344 4349, 1998. 17. Horber FF, Horber-Feyder CM, Krayer S, Schwenk WF, and Haymond MW. Plasma reciprocal pool specific activity predicts that of intracellular free leucine for protein synthesis. Am J Physiol Endocrinol Metab 257: E385 E399, 1989. 18. Ip TP, Hoffman DM, O Sullivan AJ, Leung KC, and Ho KKY. Do androgens regulate growth hormone-binding protein in adult man? J Clin Endocrinol Metab 80: 1278 1282, 1995. 19. Lamberts SW, Van den Beld AW, and van der Lely AJ. The endocrinology of aging. Science 278: 419 424, 1997. 20. LeRoith D, Bondy C, Yakar S, Liu JL, and Butler A. The somatomedin hypothesis: 2001. Endocr Rev 22: 53 74, 2001. 21. Matthews DE, Motil KJ, Rohrbaugh DK, Burke JF, Young VR, and Bier DM. Measurement of leucine metabolism in man from a primed, continuous infusion of L-[1-13 C]leucine. Am J Physiol Endocrinol Metab 238: E473 E479, 1980. 22. Mauras N, Rini A, Welch S, Sager B, and Murphy SP. Synergistic effects of testosterone and growth hormone on protein metabolism and body composition in prepubertal boys. Metabolism 52: 964 969, 2003. 23. Nissen SL, Van Huysen C, and Haymond MW. Measurement of branched chain amino acids and branched chain alpha-ketoacids in plasma by high-performance liquid chromatography. J Chromatogr 232: 170 175, 1982. 24. O Sullivan AJ, Crampton LJ, Freund J, and Ho KKY. The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women. J Clin Invest 102: 1035 1040, 1998. 25. O Sullivan AJ, Kelly JJ, Hoffman DM, Baxter RC, and Ho KKY. Energy metabolism and substrate oxidation in acromegaly. J Clin Endocrinol Metab 80: 486 491, 1995. 26. Rennie MJ, Edwards RH, Halliday D, Matthews DE, Wolman SL, and Millward DJ. Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin Sci (Lond) 63: 519 523, 1982. 27. Rodriguez N, Schwenk WF, Beaufrère B, Miles JM, and Haymond MW. Trioctanoin infusion increases in vivo leucine oxidation: a lesson in isotope modeling. Am J Physiol Endocrinol Metab 251: E343 E348, 1986. 28. Russell-Jones DL, Bowes SB, Rees SE, Jackson NC, Weissberger AJ, Hovorka R, Sonksen PH, and Umpleby AM. Effect of growth hormone treatment on postprandial protein metabolism in growth hormone-deficient adults. Am J Physiol Endocrinol Metab 274: E1050 E1056, 1998. 29. Russell-Jones DL and Umpleby M. Protein anabolic action of insulin, growth hormone and insulin-like growth factor I. Eur J Endocrinol 135: 631 642, 1996. 30. Russell-Jones DL, Weissberger AJ, Bowes SB, Kelly JM, Thomason M, Umpleby AM, Jones RH, and Sonksen PH. The effects of growth hormone on protein metabolism in adult growth hormone deficient patients. Clin Endocrinol (Oxf) 38: 427 431, 1993. 31. Schwenk WF, Berg PJ, Beaufrere B, Miles JM, and Haymond MW. Use of t-butyldimethylsilylation in the gas chromatographic/mass spectrometric analysis of physiologic compounds found in plasma using electronimpact ionization. Anal Biochem 141: 101 109, 1984. 32. Toffolo G, Albright R, Joyner M, Dietz N, Cobelli C, and Nair KS. Model to assess muscle protein turnover: domain of validity using amino acyl-trna vs. surrogate measures of precursor pool. Am J Physiol Endocrinol Metab 285: E1142 E1149, 2003. 33. Weissberger AJ and Ho KKY. Activation of the somatotropic axis by testosterone in adult males: evidence for the role of aromatization. J Clin Endocrinol Metab 76: 1407 1412, 1993. 34. Wolthers T, Hoffman DM, Nugent AG, Duncan MW, Umpleby M, and Ho KKY. Oral estrogen antagonizes the metabolic actions of growth hormone in growth hormone-deficient women. Am J Physiol Endocrinol Metab 281: E1191 E1196, 2001. 35. Zachmann M and Prader A. Anabolic and androgenic affect of testosterone in sexually immature boys and its dependency on growth hormone. J Clin Endocrinol Metab 30: 85 95, 1970.