CHAPTER 5 PEDALING SYMMETRY AND POWER METERS THAT MEASURE BI-LATERAL POWER

Similar documents
Pedaling effectiveness. Jon Iriberri & Javier Sola WKO4

Vector. Pedal-based cycling power meter

Quick Guide. SGX-CA500 Cycle Computer SGY-PM Series Power Meters

REAL. Simple, Intuitive, Powerful Real.

Myths and Science in Cycling

Personal Bicycle Fitting Report Rider Information

PEDALING ANALYSIS Pedaling Analysis monitor the power output variations coordinated action the smoothness of the pedaling

Influence of Angular Velocity of Pedaling on the Accuracy of the Measurement of Cyclist Power

1. Zinn, L. (2009). Zinn and the Art of Road Bike Maintenance, 3rd Ed. Boulder, CO: Velo Press.

PowerStroke TM Operating Instructions. November 2015 PROTECTED BY ONE OR MORE OF THE FOLLOWING US PATENTS 7,387,029; 7,377,180; D528,451

VECTOR 3 AND VECTOR 3S. Owner s Manual

REVBOX MK7.0 INSTRUCTION MANUAL

HPA Power Transmission. Everardo Uribe

Create a road in your house

USA Track & Field Heptathlon Summit- November

Know your movement. Enhance your performance through biomechanics with Q RINGS & 2INpower

Coaching the Hurdles

KEVIN BATCHELOR :01 SITE FITTER

JOHN SHORTT :14. Personal Bicycle Fitting Report RIDER SITE BIKE FITTER SUMMARY OF SESSION. John Shortt Age: 57 Male

Available online at Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models

Hands should be positioned at approximately shoulder width with a comfortable grip.

Joint Torque Evaluation of Lower Limbs in Bicycle Pedaling

Positioned For Speed

Gait pattern and spinal movement in walking - A therapeutic approach in juvenile scoliosis

Biomechanics Sample Problems

Rehabilitation of Non-operative Hamstring Injuries

the Quick n Dirty on FIT THE BASICS 1)Saddle height 2) Saddle to bar distance 3) Fore-Aft saddle position

Cycling. Active Cyclist. 8 weeks. Cycling training with Kéo Power. Endurance cycling, Intervals

Positive running posture sums up the right technique for top speed

Normal and Abnormal Gait

12 Week Winter Maintenance Olympic Bridge to Half Ironman

COMPARISON DRIVO - DIRETO

-Elastic strain energy (duty factor decreases at higher speeds). Higher forces act on feet. More tendon stretch. More energy stored in tendon.

If you have a swimming background and you want to add distance or repetitions to the workouts, you are more than welcome to do that.

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006

Training Program. Definitions. Preparation for Training

Buying. c l e A Guide For Parents

BEGINNER /INTERMEDIATE OSWEGO TRIATHLON - SPRINT TRIATHLON PLAN

Effect of Pedaling Technique on Mechanical Effectiveness and Efficiency in Cyclists

Rules of Hurdling. Distance Between Hurdles

Assessments SIMPLY GAIT. Posture and Gait. Observing Posture and Gait. Postural Assessment. Postural Assessment 6/28/2016

Group Riding Techniques

INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING

400-Meter Hurdle Theory By Ralph Lindeman

PRODUCT INFO SHEET. NEO 2 Smart. PRODUCT INFO NEO 2 Smart T Box

Post-Op UCL Throwing Program for Pitchers

+ t1 t2 moment-time curves

Tracking of Large-Scale Wave Motions

1. Notice how horses move. 6. Ride in balance horse moves.

ARE YOU A SLOW- OR A FAST-TWITCH RUNNER?

Dynamic Warm up. the age of the athlete current physical condition and prior exercise experience

by Michael Young Human Performance Consulting

CHAPTER IV FINITE ELEMENT ANALYSIS OF THE KNEE JOINT WITHOUT A MEDICAL IMPLANT

Analysis of Movement

RIGGING INTRODUCTION ADJUSTMENTS

Optimization of an off-road bicycle with four-bar linkage rear suspension

Precision Rotary Ball Screw

Can Asymmetric Running Patterns Be Predicted By Assessment of Asymmetric Standing Posture? A Case Study in Elite College Runners

Mobility Lab provides sensitive, valid and reliable outcome measures.

Mechanical systems and control: investigation

Kiss Shoulder Pain Goodbye: Proper Technique - The Key to Preventing and Relieving Shoulder Pain

ibike Newton TM PowerStroke TM Operating Instructions Newton OS 3.0 and higher Isaac SW 2.0 and higher June 2013

UNDER 9 AND UNDER 12 PLAYER EVALUATION (fundamental and developmental stages)

Is Your Gym Program Destroying your Golf Swing?

Energy balance of the model as described in Theory and Model

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

3. Fit. 1 Owner s manual

Milford Tritons CC. Winter Turbo Training

Kinematics errors leading to Ski Injuries (2015) Haleh Dadgostar MD Sports Medicine Specialist Iran University of Medical Sciences

Effects of foot-pedal interface rigidity on high frequency cycling acceleration. John Romanishin

The Mechanics of Modern BREASTSTROKE Swimming Dr Ralph Richards

WHITE PAPER THE SCIENCE BEHIND NON-CIRCULAR CHAINRINGS

push your limits Trainer overview EN

Bicycle Fit Services

Equiculture Publishing

FIS YOUTH SEMINAR DUBLIN Injury prophylaxis for young athletes in ski racing. H. Hörterer

The Better Golfer s Guide to Strength Training

Validity and Reproducibility of the Garmin Vector Power Meter When Compared to the SRM Device

The amount of matter in an object.

Test Name Analysis Assessment Swing Correlation

T R A F F I C S K IL L S 101

Copyright Velocomp LLP 2006

MUSCULOSCELETAL EFFICIENCY IN CYCLING. Dr. Harald Böhm Orthopaedic Hospital for Children Aschau im Chiemgau, Germary

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher

THE INITIAL STAGE THE FINAL STAGE

Activity 2: The Swing of Things

The Three Swings of Wright Balance: Which One Are You?

8th Grade. Data.

Spinner Bike Description

Kungl Tekniska Högskolan

Centre for Autonomous Systems

Watson's Workouts. Supercharge. Your Cycling. By Lance Watson. Photographs by Scott Draper. triathlete.com 93

Dublin to Paris 12 Week Training Plan

ABOUT THE TEACHING OF THROWING EVENTS

THE IMPULSE-STEP IN THE JAVELIN THROW

Gears and Levers Investigations. Level A Investigations. Level B Investigations

ABSTRACT THE INFLUENCE OF BODY COMPOSITION ON CADENCE EFFICIENCY IN COMPETITIVE CYCLISTS. by Tate Bross Devlin

Dare2Tri Triathlon Training Plan 2018 Expectations and Explanation

Geezer Senior Focus - What?

The Hurdle Events. Jeff Martin IATCCC Clinic. Indianapolis, Indiana. 5 Myth s about Hurdling

Transcription:

1

INNOVATIONS IN POWER TRAINING New Pedaling Analytics GPR, GPA, Power Phase, Torque effectiveness, Torque efficiency, Pedaling smoothness, Net Power, Platform Center offset, tangential and radial forces. POWER METERS THAT HAVE TRUE LEFT AND RIGHT PowerTap Pedals Garmin Vector pedals Bepro Pedals Infocrank by Vervecycling Pioneer cranks Rotor Power cranks POWER METERS THAT HAVE PSEUDO LEFT AND RIGHT Quarq Power2max 2

CURRENT MEASURING CHALLENGES Current Power meters only have ability to measure one complete side at a time. - All data points from Left leg are averaged and this is Left Leg power. This gives the user a false sense of individual leg contribution. Current Power Balance measures the Left and Right legs and then calculates the percentage each contribute to the total and calls this Balance. For example if LEFT leg power is 150Watts and RIGHT leg power is 120Watts, the total is 270Watts with 55% coming from LEFT leg and 45% coming from the RIGHT leg. L/R CALCS Left Power is average of all forces from left leg. Right Power is the average of all forces from the right leg. Each is measured independently. 3

PEDALING SMOOTHNESS What is this? How is it calculated? Pavg/Pmax=Pedal Smoothness. A LOWER number means the rider has a larger Pmax in relation to the Pavg. For example: Pavg=200W, PMax=1500, so PS=13%. Big PEAKS of power in relation to a small average. An opposite would be: Pavg=350W, Pmax= 700W, so PS=50%. Is it important? Does it tell us anything? Helps to tell how much of a Stomper or a Smoother the rider is. Might be possible to use as a teaching tool to teach an athlete to become more even in their pedaling stroke. Can we change it? Does it matter? Change is possible with awareness of the issue. The hardest part about this kind of change is to prevent the rider from doing too much work to smooth the pedaling motion and overcorrecting. 11.3.1 Calculating Pedal Smoothness Pavg is the mean power averaged across 1 crank cycle and Pmax is the peak power applied during that cycle, as shown in Figure 11-2. These values can be used to calculate pedal smoothness, as defined as in Equation 10. The shape of the power curve and the resulting value of pedal smoothness will vary depending on the style of riding, and on whether the power is measured per crank arm (i.e. in left-right systems) or for the whole system. Figure 11-2. Values used to calculate Pedal Smoothness Pedal Smoothness = P avg P max 4

TORQUE EFFECTIVENESS What is this? How is it calculated? The sum of the positive power and the negative power over a single stroke divided by the positive power. For example: P+= 150W, P-=30W. TE=100*(150+-30)/150= 100*(120/150=80% P+=200W, P-=60W. TE=100*(140/200)=70% Does it mean anything? NO. Can you do anything about it? Irrelevant, bad math implementation. 11.2.1 Calculating Torque Effectiveness The Torque Effectiveness is calculated for each crank arm based on the positive (clockwise) and negative (anti-clockwise) torque applied to the crank over each revolution. Figure 11-1 shows a typical torque curve, where P+ represents the positive power applied to the bike and is the sum of the instantaneous power measurements. Similarly, P- is the sum of the negative instantaneous power measurements (i.e. power lost from the bike as negative torque is applied to the pedals). Figure 11-1. Instantaneous Power vs. Crank Angle Equation 9 derives Torque Effectiveness in terms of P + and P - (note that P - will be a negative value) Torque Effectiveness = 100 * ( P + = P - ) / P + Reflects the net effect of the positive and negative tangential (i.e., 90 deg to the crank arm) torques. Any radial torque (i.e., tending to stretch or compress the crank) is ignored. The assumption is that minimizing negative torque is a good thing. 5

CURRENT MEASURING CHALLENGES CONT. Most power meters do not have the ability to know when the crank arm is at TDC(top dead center) and BDC(bottom dead center). (Quarq and Power2max do) As we know, each leg opposes the other throughout the 360 degree circle. While the Left leg is moving forward and down the Right leg is moving backward and upward. Therefore the positive force of the LEFT leg is not opposed by the negative force of the LEFT leg, but is opposed by the negative force of the RIGHT leg. HOW BALANCE IS ACTUALLY PRODUCED The actual way we pedal is in a Phase. The legs do not act independently. The LEFT Positive is opposed by the right Negative forces. And Vice Versa. 6

REAL WORLD BALANCE 50-50 127W left(blue), 128W right(yellow) WE HAVE SOLVED A SIGNIFICANT CHALLENGE Because of the challenges this creates, it is better to analyze L/R pedaling metrics not within the current metrics of pedaling smoothness and torque effectiveness or Power balance. 7

NEW WKO4 PEDALING METRICS Gross power released (GPR) The gross (i.e., muscular + inertial + gravitational) power released by one leg (L or R), primarily during the down stroke. Gross power absorbed (GPA) The gross power absorbed by one leg (L or R), primarily during the upstroke. Kurtotic index (KI) A measure of the peakedness of the pattern of force/torque/power application during the power-producing phase. (how skewed?) GPR, GPA, AND KI DURING A TRAINER RIDE ZORRO CHART 8

9 NEW PEDALING / THINK DIFFERENT Ways to chart these and what they mean. NET POWER? Left Leg GPR-Right leg GPA=Net Power Released for Left Leg Phase. Right Leg GPR-Left Leg GPA=Net Power Released for Right Leg Phase. SHOULD NEGATIVE FORCES BE MINIMIZED? Power/Torque/Force is the sum of muscular, gravitational and inertial components. - Need to know mass of limbs and position in space to isolate negative forces. Higher cadences, muscular component is rarely negative. Negative power/force/torque means the cyclist si not pulling their foot up rapidly enough to get it completely out of the way of the rising pedal. THREE STUDIES HAVE SHOWN THAT: Elite cyclists actually pull up slightly less than non-elite cyclists. (Coyle et al,. Med Sci Sports Exerc 1991;23:93-107),2) Metabolic efficiency is negatively correlated with minimum power/torque/force generated during the pedal cycle, i.e., across cyclists those who pulled up more were less efficient. (Edwards et al., J Sports Sci 2009; 15:319-325) Deliberately modifying the pattern of force application during pedaling to emphasize pulling up reduces metabolic efficiency. (Koroff et al., Med Sci Sports Exerc 2007; 39:991-995)

USES FOR LEFT/RIGHT MEASUREMENT Incorrect or inefficient body positioning on the bicycle. Diagnose imbalances in muscular in-balances. For example, the hamstring on left leg could be weaker than the hamstring on the right. How power is released and absorbed in Standing vs. seated? Bike fit Poor bike fit can be diagnosed and corrected. Javier Sola case study. Rehabilitation for injury- Clearly demonstrates when one leg is different than the other. PEDALING ASYMMETRY TEST Each day you will complete three five-minute intervals at your VO2Max power (roughly 113-115% of your FTP). The first interval will be standing the entire time, the second will be seated the entire time, and the third interval will be alternating standing and seated: stand when you want to and sit when you want to. Pedaling Asymmetry Hill Climbing Test Day 1: Complete the test with no emphasis on either leg. Just climb naturally. Day 2: Emphasize the leg that releases less power to see if you can balance out the GPR/GPA. Day 3: Emphasize the left leg only for all efforts. Day 4: Emphasize the right leg only for all efforts. 10

CASE STUDY: BIKE FIT In the following images, we can see this cyclist is working with an imbalance of 46/54 percent. There is a net power of 73 watts from the left leg and 94 watts from the right. Case Study by Javier Sola SCATTER PLOT OF ANT+ BALANCE The scatter plot shows the pedaling balance at different watts and in most cases the right leg is above the left. 11

GPR/GPA Gross Power Released (GPR) for the right leg is higher than GPR for the left. We also can see that Gross Power Absorbed (GPA) for the left is sometimes higher than GPA for the right. All of this is a consequence of the asymmetry. This cyclist experienced pain in the pyramidalis and left hamstring muscles because they were so tight. 12

CHANGES TO FIT MADE Corrected saddle height and setback Adjusted cleat position Used insoles to provide stability to the feet Switched to a new saddle that stabilizes the pelvis Prescribed some exercises to strengthen the psoas muscles AFTER? The power balance improved from 46/54 to 48/52, and the net power completely changed to the opposite side! 13

ALMOST THERE GPR left and right were now almost symmetrical. There was still more GPA on the left than the right, which can be explained by the motor pattern; the cyclist tends to pull up more with the left leg because of his previous asymmetry. Our next task is to improve his pedaling technique to pull more equally with both legs. 14

INTERESTING IDEAS THAT NEED FURTHER EXPLORATION Holding one leg in reserve. It appears that some riders hold or rest one leg during lower intensities. This leg releases less power during lower intensities, but then when in higher intensities, it releases more. Case Study Smooth leg vs. the stomper leg. Most of us appear to have a leg that smoothes the power throughout the stroke and one leg that is more peaky, with more distinct pulses. Case Study Each person has a sub-optimal power and cadence location. Case study 15

DO SOME REST ONE LEG EXPLORATION 16

SMOOTH VS. STOMP 17

GPA WITH POWER AND CADENCE 18

BI-LATERAL PD CURVE Show which leg is smooth or stomper? Is there a different phenotype between legs? Which leg is stronger at short durations? Which leg should you start your sprint with? Which leg is the leg that is better at FTP? 19

UNIQUE CYCLING METRICS PowerTap App using P1 pedals. - Ability to view pedaling circle with tangential, radial and resultant forces. - The PowerTap app on a iphone connects via BlueTooth to the P1 pedals to giving live streaming data of your pedaling print. 20

POWERTAP APP Tangential and Radial forces displayed on the left. On the right, displays the resultant forces in colors to display where the range throughout the circle in which you create more or less power. 21

POWERTAP APP CONTINUED This view displays the resultant shape of your power production. Notice in this screenshot the right leg creates more force sooner at the top of the pedal stroke versus the left leg. 22

UNIQUE PEDALING METRICS Garmin Vector Pedals - Cycling Dynamics Standing vs. Seated Power Phase- Where cyclist starts and stops producing driving force Platform Center Offset-precise axial location of applied force Pioneer Cranks - Radial and Tangential forces 23

GARMIN CYCLING DYNAMICS Seated vs. Standing Uses: - Demands of event vs. training- Often we think we stand more than we actually do in races. - When Climbing, how many times do you stand and for how long? Compare to races vs. training. - When standing how does Power Phase change between legs? POWER PHASE Where the driving forces begin and end within the pedal stroke. Peak Fraction: the crank angle location and the distance in crank travel where this percentage of work is completed in the shortest crank rotation distance. - Shorter peak fraction = More distinct pulse in pedal stroke, greater Ppeak in the torque curve. - Longer peak fraction = smoother application of positive forces in pedal stroke. POWER PHASE USES: When correlated with pedaling smoothness, this could help a rider to initiate the release of power sooner on the pedal stroke. If Pedaling Smoothness is less than 20% AND Power Phase is less than 30%, this would be a strong indicator of a stomper. 24

PLATFORM CENTER OFFSET EXPLANATION & USES: Determines the precise axial location of the applied force throughout each pedal stroke. - Measured in mm from the CENTER of pedal platform. - Negative is closer to frame. - Positive is farther away from frame. Indicator of need for custom insoles. - A regular metric on one side or other indicates a need for a more centered application of power through the foot. A custom insole would allow a more even distribution of power across the foot. Indicator of need for bike fit or cleat adjustment. - Poor bike fit does not allow for the proper stacking of bones and joints above the pedal axle, resulting in poor economy in translation of muscular strength to axle. 25

PIONEER CRANKS 12 measurements per rpm. Measures tangential and radial forces. Calculates pedaling efficiency and pedaling smoothness. PIONEER PEDALING EFFICIENCY Fi: Resultant vector of force in the tangential direction and the radial direction Fxi: Force in tangential direction Fyi: Force in radial direction i: Direction from 0 to 11 o clock Pioneer s pedaling efficiency calculates mechanical efficiency. Compares the tangential and radial torques. The assumption here is that minimizing the radial torque is a good thing. However, much of the radial torque is actually due to gravity and inertia, and not due to active muscle contraction. Calculate the efficiency for entire stroke. It applies same equation down stroke and up stroke. The power applies backwards when on the upstroke. If you emphasize upstroke on purpose, Pioneer s pedaling efficiency displays improvement! 26

IN CONCLUSION Bi-Lateral Power meters add value. - Clear understanding of data allows for changes. - Testing protocols needed. - Capture of Normal and hard riding data needed. - GPR/GPA and KI help to better understand how the rider releases power. ATTENTION COACHES There are only two things you have to sell. Your Knowledge The access to your knowledge. That s it. 27

LOOKING FOR MORE? NEWSLETTER YOU TUBE VIDEOS FAQ CONTACT US When we re not gearing up for the next race, we re hard at work in Madison, WI. Call us to talk shop. Give us a call at 1-800-246-5975 Monday through Thursday from 8 a.m. 4:45 p.m. CST or 9 a.m. 4:45 p.m. CST Friday Or contact us at support@powertap.com PowerTap 5253 Verona Road Madison, WI 53711 FIND MORE ON OUR WEBSITE: Sponsorship Testimonials Coaches Service Centers Conciege 28

TESTED. TRUSTED. TRUE.