Impact of low energy helium irradiation on plasma facing metals

Similar documents
Users days 20&21 october 2011 In situ TEM investigation of helium bubble evolution in SiC at high-temperature under displacing irradiation

Molecular Dynamics and Density Functional Simulations of Tungsten Nanostructure Formation by Helium Plasma Irradiation

Journal of Nuclear Materials

Discovering Key Unknowns for Tungsten- Hydrogen-Helium Plasma Material Interactions Using Molecular Dynamics

Particle Control under Wall Saturation in Long-pulse High-density H-mode Plasmas of JT-60U

A Fusion Development Facility to Test Divertor and PFC Solutions for DEMO

Using Experimental Procedure to Improve the Efficiency of the Two Stand Reversing Cold Mill

SCANNING ELECTRON MICROSCOPY ANALYSIS OF ELASTOMERIC O-RINGS AND SPRING SEALS FRACTURED DURING RAPID GAS DECOMPRESSION.

APPLICATION OF A CHANNEL PLATE IN FIELD-ION MICROSCOPY

TOTAL-IONIZING-DOSE RESPONSE OF 65 nm MOSFETS IRRADIATED TO ULTRA- HIGH DOSES. GIULIO BORGHELLO

Introduction of Vacuum Science & Technology. Diffusion pumps used on the Calutron mass spectrometers during the Manhattan Project.

Effective Mixing Method for Stability of Air Content in Fresh Mortar of Self-Compacting Concrete in terms of Air Diameter

Experimental measurement methods and data on irradiation of functional design materials by helium ions in linear accelerator

1 SE/P-02. Experimental and Analytical Studies on Thermal-Hydraulic Performance of a Vacuum Vessel Pressure Suppression System in ITER

Development of Fluid-Structure Interaction Program for the Mercury Target

FOUP material influence on HF contamination during queue-time

Quartz etch process to improve etch depth linearity and uniformity using Mask Etcher IV

Optical measurement in carbon nanotubes formation by pulsed laser ablation

Influence of HALO and drain-extension doping gradients on transistor performance

Visual Observation of Nucleate Boiling and Sliding Phenomena of Boiling Bubbles on a Horizontal Tube Heater

CFD SIMULATIONS OF GAS DISPERSION IN VENTILATED ROOMS

COMPRESSION SET Description: The seal exhibits a flat-sided cross-section, the flat sides correspoding to the mating seal surfaces.

The Experts in Vacuum Solutions

IUVSTA WORKSHOP WS-63 Surface Phenomena Limiting Pressure in Vacuum Systems REPORT TO IUVSTA. prepared by JOSÉ L. DE SEGOVIA

Reflux Condensation with Various Non-Condensable Gases

LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS

Modification of the CNS Helium Injection Logic

The JET Gas Baking Plant for DT Operation and Analysis of Tritium Permeation and Baking Gas Activation in DTE1

Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline Kun Huang 1,a Yan Xian 2,b Kunrong Shen 3,c

Application of Simulation Technology to Mitsubishi Air Lubrication System

SIMULATION OF ENVIRONMENTAL FLIGHT CONDITIONS

HEALTH AND SAFETY EXECUTIVE HM NUCLEAR INSTALLATIONS INSPECTORATE

Experimental Verification of Integrated Pressure Suppression Systems in Fusion Reactors at In-Vessel Loss-of -Coolant Events

Barrier Development and Evaluation Methodology. D.S. Musgrave 1 1 Thermal Visions, Inc., Granville, USA

Development of underwater laser cutting technique for steel and zircaloy for nuclear applications

Helium Management of the ESS Target and Monolith Systems

R.Maingi, G.L. Jackson, M.R. Wade,? M.A. Mahdavi, P.K.Mioduszewski,?

EXPERIMENTAL STUDY OF HOT INERT GAS JET IGNITION OF HYDROGEN-OXYGEN MIXTURE

An underwater explosion is an explosion where the point of detonation is below the surface of the water.

Heat Transfer Research on a Special Cryogenic Heat Exchanger-a Neutron Moderator Cell (NMC)

Vacuum Science and Technology in Accelerators

Effects of deep reactive ion etching parameters on etching rate and surface morphology in extremely deep silicon etch process with high aspect ratio

CFD Simulation and Experimental Validation of a Diaphragm Pressure Wave Generator

Deborah Houssin-Agbomson, Jean-Yves Letellier, Philippe Renault, Simon Jallais

Investigation of Quasi-detonation Propagation Using Simultaneous Soot Foil and Schlieren Photography

Chapter 2. Turbulence and the Planetary Boundary Layer

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

Ventilated marine propeller performance in regular and irregular waves; an experimental investigation

On the Use of Superheated Bubble Detectors on Space Missions

LASER INDUCED FLUORESCENCE MEASUREMENTS OF CARBON DIOXIDE DISSOLUTION IN WAVE-BREAKING TURBULENCE

Contamination Removal of EUVL masks and optics using 13.5-nm and 172-nm radiation

Wave Setup at River and Inlet Entrances Due to an Extreme Event

Improvements in the Reliability, Costs and Processing of WLP/RDL Circuits

MASSIVE GAS INJECTION SYSTEMS FOR DISRUPTION MITIGATION ON THE DIII-D TOKAMAK

Citation Journal of Thermal Science, 18(4),

HYPERVELOCITY IMPACT AND OUTGASSING TESTS ON ETHYLENE- CO-METHACRYLIC ACID IONOMERS FOR SPACE APPLICATIONS

Vacuum and Surface Contamination Problems in Experiments with Ultracold Neutrons

Fatigue Life Evaluation of Cross Tubes of Helicopter Skid Landing Gear System

Concentration profile of jet gas in the feed injection zone of a FCC riser

Review of fundamental photon dosimetry quantities

TOWARD MORE ACCURATE PREDICTION OF DAMAGE DUE TO STRONG WINDS

FLUKA Simulations of Radiation Field in Second Accelerator Tunnel

Yasuyuki Hirose 1. Abstract

Available online at Procedia Engineering 00 2 (2010) (2009)

Development of High-speed Gas Dissolution Device

Atmospheric Pressure. Conceptual Physics 11 th Edition. Atmospheric Pressure. Atmospheric Pressure. The Atmosphere

HOT TOPIC REPORT OF BOTTOM HEADER DEFECTED,YGN PLANT 5 IN 2003 KOREA HYDRO AND NUCLEAR POWER COMPANY

EXPERIMENTAL STUDY OF HEAT, MASS AND MOMENTUM TRANSFERS IN A SPRAY IN THE TOSQAN FACILITY

EXPERIMENTAL STUDY OF HEAT, MASS AND MOMENTUM TRANSFERS IN A SPRAY IN THE TOSQAN FACILITY

CubeSat Balloon Drag Devices: Meeting the 25-Year De-Orbit Requirement

A07 Surfactant Induced Solubilization and Transfer Resistance in Gas-Water and Gas-Oil Systems

Relative Dosimetry. Photons

STUDY ON TSUNAMI PROPAGATION INTO RIVERS

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

CNS In-Pool Assembly Mechanical Design for OYSTER Project

ANNUAL GROUND TEMPERATURE MEASUREMENTS AT VARIOUS DEPTHS

QUALIFICATION OF SUB-ATMOSPHERIC PRESSURE SENSORS FOR THE CRYOMAGNET BAYONET HEAT EXCHANGERS OF THE LARGE HADRON COLLIDER

Novelty of Mechanical Surface Aerator Using Flexible Beam to Generate Dissolved Oxygen in Water

Matching Vacuum Pump to Process

SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DECK WITH CENTRAL SLOT

STS Advanced Oxide Etch DRIE System Trends

EFFECTS OF SIDEWALL OPENINGS ON THE WIND LOADS ON PIPE-FRAMED GREENHOUSES

Development of a Non-Destructive Test Machine for Testing Tunnel Lining Concrete

HYDROGEN FAST FILLING TO A TYPE IV TANK DEVELOPED FOR MOTORCYCLES

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT

THE development of more advanced techniques in radiotherapy,

WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION

Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters. Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi

Dynamic and static deuterium inventory in ASDEX Upgrade with tungsten first wall

Available online at ScienceDirect. Physics Procedia 67 (2015 )

The Advanced Test Reactor Irradiation Facilities and Capabilities

Effect of Nozzle Twisted Lance on Jet Behavior and Spitting Rate in Top Blown Process

Acoustic Emission Testing of The Shell 0f Electromagnetic Valve

Oxygen mass transfer in a bubble column with non-newtonian fluids

Numerical simulation on down-hole cone bit seals

Jefferson Lab Bubble Chamber Experiment Update and Future Plans. C(a,g) 16 O. Claudio Ugalde

Deep Sludge Gas Release Event Analytical Evaluation Terry L. Sams Washington River Protection Solutions

The Stability of Air-Void Systems in Fresh Concrete. Tyler Ley, PhD, PE Assistant Professor Oklahoma State University

High Density FPGA Package BIST Technique

Transcription:

Journal of Nuclear Materials 337 339 (2005) 946 950 www.elsevier.com/locate/jnucmat Impact of low energy helium irradiation on plasma facing metals N. Yoshida *, H. Iwakiri, K. Tokunaga, T. Baba Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan Abstract Effects of helium ion irradiation for tungsten and other metals have been studied extensively as functions of ion energy, temperature and fluence, for a wide range of burning plasma conditions, using not only ion accelerators, but also large-sized plasma confinement devices such as TRIAM-1M and LHD. In this paper, recent results on blistering, erosion and many other irradiation effects such as internal damage evolution, change of mechanical properties and heat load resistance, and synergetic effects with neutron irradiation, are comprehensively reviewed for better understanding of the performance of tungsten under helium plasma bombardment. It is emphasised that helium irradiation is a serious issue for tungsten as a plasma facing material under burning plasma condition. Ó 2004 Elsevier B.V. All rights reserved. PACS: 52.40.H; 61.80 Keywords: Tungsten; Helium; Bubbles; Plasma facing materials; Radiation effects 1. Introduction Under burning plasma conditions, plasma-facing materials (PFM) suffer irradiation of helium in addition to that of hydrogen isotopes. Sputtering and blistering by helium ions with energy above a few kev were studied extensively many years ago [1]. More recently, the effects of helium ion irradiation on tungsten and other metals have been studied for reactor relevant plasma conditions as functions of ion energy (evs to kevs), temperature (300 3000 K) and fluence (1 10 19 1 10 27 He + /m 2 ), using both accelerators and large-sized plasma confinement devices such as TRIAM-1M and LHD. In * Corresponding author. Tel.: +81 92 583 7716; fax: +81 92 583 7690. E-mail address: yoshida@riam.kyushu-u.ac.jp (N. Yoshida). these studies, not only blistering and erosion, but also many other irradiation effects were examined such as internal damage evolution, change of mechanical properties and heat load resistance, retention and desorption of gas, etc. In this paper we review recent results to gain a better understanding of the performance of metallic PFMs under helium plasma bombardment relevant to burning plasma conditions. The main focus will be on tungsten. 2. Radiation effects by low energy helium ions 2.1. Distinctive features of helium irradiation effects The behaviour of helium in metals is characterized by its fast thermal migration through the lattice and very strong attractive interaction with defects such as 0022-3115/$ - see front matter Ó 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jnucmat.2004.10.162

vacancies, vacancy clusters, impurity atoms and even themselves. In the case of irradiation by helium with kev range energy, the number of helium atoms implanted into the material is comparable to the number of radiation induced point defects (vacancies and interstitials). Moreover, the helium implantation and the resultant displacement damage are localized in the subsurface region of about some 10 nm or less. The radiation induced defects and helium atoms are accumulated there by cluster formation. 2.2. Fundamental defect possesses under helium ion irradiation N. Yoshida et al. / Journal of Nuclear Materials 337 339 (2005) 946 950 947 If the energy of the incident helium is higher than the threshold value for the displacement damage (0.5 kev for tungsten), interstitials and vacancies with the same number are formed in the narrow projected range beneath the surface. Due to the very low migration energy (0.08 ev for tungsten) the interstitials migrate thermally even at room temperature and form interstitial type dislocation loops at the start of the irradiation. Continuing the irradiation, the loops grow further and the less mobile vacancies are highly accumulated in the narrow damaged area. The majority of vacancies trap helium atoms. The behaviour of the vacancies and the vacancy-helium complexes depends on the specimen temperature, i.e., at low temperatures where thermal migration of the vacancies and the vacancy-helium complexes are scarcely expected, very dense fine helium bubbles (about 1 nm in diameter) are formed by absorbing more and more helium. On the other hand, large helium bubbles are formed at high temperatures where vacancies and helium bubbles can migrate thermally [2]. Radiation damage also occurs for irradiation with very low energy helium (less than about 0.5 kev for tungsten), where displacement damage is not expected to occur due to the absence of the required knock-on energy. Helium atoms, once injected into the material, aggregate by themselves and grow as bubbles by pushing out the host atoms from their lattice sites (formation of interstitials) and/or interstitial loops. We note that preexisting vacancies are not necessary for the formation of the helium bubbles. Of course, a supply of vacancies (radiation induced vacancies and thermal vacancies) is very helpful for bubble formation. Details of defect formation processes under helium ion irradiation are discussed in [2]. Such type of damage accumulation for the sub-threshold energy condition has not been observed in electron beam irradiations and hydrogen ion irradiations at relatively low fluxes [3]. 2.3. Temperature dependence of internal damage Formation of helium bubbles in tungsten at elevated temperatures was examined for impact energies of Fig. 1. Temperature dependence of bubble formation in tungsten due to 0.25 kev He + irradiation. 0.25 kev and 8 kev, corresponding to cases with and without displacement damage, respectively [2]. Fig. 1 shows TEM micrographs of damage accumulation at different temperatures for 0.25 kev He + (flux: 10 18 He + /m 2 s; fluence: 10 21 He + /m 2 ). Though the efficiency of damage accumulation is lower for 0.25 kev due the absence of vacancies supply, the fundamental damage processes are similar. Fine bubbles of about a few nanometer in diameter are formed densely at room temperature. The phenomenon does not change much up to 873 K, where thermal migration of vacancies is still inactive. The temperature range below 873 K is noted here as Ôlow temperature regimeõ. In contrast, the number of bubbles decreases but the individual bubbles grow larger at temperatures where sufficient thermal migration of vacancies is expected (1073 K and 1273 K). This temperature range is noted here as Ôhigh temperature regimeõ. It was found by Nishijima et al. [4] that large bubbles of 2 lm in diameter were formed at 2600 K by a very low energy helium plasma (10 s ev). In the high temperature regime, coalescence of bubbles through the thermal migration process plays a major role for the growth of the bubbles. A similar phenomenon was dynamically observed by TEM in a Fe Cr Ni alloy under helium irradiation at high temperatures [5]. Due to very high binding energy with helium [6], the bubbles can survive even at such high temperatures. This type of bubble formation in the high temperature regime has not been observed for very high fluence irradiations with hydrogen plasmas [7] and hydrogen ions [8]. We note that the formation of bubbles in a wide temperature range is a distinctive phenomenon of helium irradiation.

948 N. Yoshida et al. / Journal of Nuclear Materials 337 339 (2005) 946 950 2.4. Correlation between internal damage and surface structure Blistering by He + irradiation at relatively high energies (> a few kev) was extensively studied about 20 30 years ago [1], and it was well established that inter-bubble cracking through the highly pressurized fine bubbles formed at or near the projected range of the incident ions causes blistering in the low temperature regime. Recent helium glow discharge studies in LHD showed that blistering occurred even by helium ions with only 200 ev, less than the threshold energy for displacement damage. In addition to blistering, very heavy damage was accumulated in the sub-surface region; see Fig. 2 [9]. Various size bubbles (1 25 nm diameter) were formed together with dense dislocation loops. The TEM images also indicate the formation of nano-size cracks. It is considered that some of the cracks link the bubbles to the surface. After erosion by blistering at around 10 2122 He + /m 2, erosion due to sputtering and the formation of bubbles progressed continuously. With increasing fluence, a thick damage layer is formed as steady state which is reached by balancing sputtering erosion and helium injection. In the case of SUS316L, the thickness of the layer was about 45 nm, which is much deeper than that of the projected range of the incident helium (1 nm). Some of the bubbles appear at the surfaces as holes caused by sputtering and some are linked to the surface through nano-cracks. Because of the formation of holes and cavities the effective surface area will increase. In fact, the highly damaged layer may act as good trapping sites for gas such as helium, hydrogen, oxygen, etc., and may play an undesired role for particle control of the plasma. Details of helium and hydrogen trapping in the damage layer have been discussed in [10] and [11], respectively. The relation between the surface morphology and the internal damage in the high temperature regime is com- Fig. 3. Surface modification and underlying internal damage formed by 8 kev He + irradiation at 1273 K at a fluence of 1.5 10 22 He + /m 2. (a) and (b) image of surface taken with atomic force electron microscopy; (c) TEM image. pletely different. Migration and growth of bubbles play essential roles. Fig. 3 shows the surface morphology and corresponding internal damage of tungsten irradiated at 1273 K with 8 kev He + to the fluence of 1.5 10 22 He + /m 2. Comparable size surface bulges (a, b) and bubbles inside the specimen (c) indicate that the bulges are formed by the bubbles directly underneath. It is expected that such type of surface modification may change not only the optical properties such as reflection coefficient but also the thermal conductivity at the surface. It was reported that cyclic heat loads with 14 kev He + cause a peculiar morphology [12]. The surface, reaching 2600 K at each cycle, is fully covered with small projections just as the inner surface of the small intestine. It is clear that migration and coalescence of the helium bubbles play an essential role for the formation of such peculiar structure. 2.5. Influence on mechanical properties and heat load resistance Fig. 2. Bubbles formed in SUS316L and W at room temperature irradiated by LHD helium glow discharge plasma of 200 ev at a fluence of 4 10 22 He + /m 2. Formation of helium bubbles brings changes in hardness at the sub-surface region [13]. Fig. 4 shows the surface hardening of tungsten irradiated by He + at 300 K and 873 K. Once the helium bubbles are formed the hardness increases remarkably. The hardness becomes

N. Yoshida et al. / Journal of Nuclear Materials 337 339 (2005) 946 950 949 the narrow ion range but expand much deeper. It is likely that the helium diffused far beyond the projected range, causing embrittlement of a rather thick sub-surface area, which then exfoliated by thermal shock. 2.6. Synergistic effects with neutron irradiation Fig. 4. Surface hardening by He + irradiation at room temperature and 873 K. more than 4 times higher than that of the un-irradiated material at a fluence of 2 10 22 ions/m 2. It was also reported that surface erosion by high heat loads was greatly affected by helium pre-injection [14]. Fig. 5 shows the temperature and erosion of the surface of helium pre-injected tungsten for a heat load of 13 MW/m 2 for 30 s as a function of helium fluence. The pre-injection was done at room temperature with 8 kev He +. Once the helium bubbles and blisters are formed, the surface temperature increases due to the reduction of thermal conductivity at the surface. The weight loss at 1 10 22 He + /m 2 is about 0.3 mg, corresponding to an estimated erosion depth of 0.8 lm, based on the specimen size. This value is about 10 times larger than the helium ion range, indicating that the irradiation effects at very high fluence are not restricted in Some of the injected helium, which can successfully evade the trapping sites such as vacancies and bubbles localized in the damaged zone, will migrate into the bulk until it gets trapped. For the simulation of radiation damage of plasma-facing materials in reactors, accumulation of helium and point defects under simultaneous irradiations by helium and neutrons has been calculated based on rate theory by considering the diffusion of the point defects and helium. The probability that one vacancy located deep in the material meets with a helium atom diffusing from the incident surface is comparable to the probability of interstitials and vacancies produced homogeneously by the neutron irradiation meeting [15]. This means that the behaviour of the vacancies, which result in void swelling and radiation hardening for example, must be strongly controlled by the helium from the plasma. Fig. 6 is an example showing the synergistic effect of diffusing helium. In case of (a), tungsten was irradiated at 1073 K by only Cu 2+ at 2.4 MeV for 3 dpa, while in (b) it was simultaneously irradiated by Cu 2+ and He + at 0.25 kev (1 10 22 He + / m 2 ); here 0.25 kev He + ions cannot form displacement damage. Both dense interstitial loops (black images) and fine voids (white images) were formed in (a) but only sparse interstitial loops are seen in (b). The absence of visible voids in (b) indicates that the vacancies cannot form the voids, because they become immobile by absorbing helium. Though this is only one example demonstrating a synergistic effect, it is likely that other synergistic effects may change the scenario of neutron irradiation damage of the plasma-facing materials. Fig. 5. Effects of helium irradiation on heat load resistance (indicated by surface temperature rise) and surface erosion measured by weight loss. Fig. 6. Comparison of damage by (a) irradiation with high energy Cu + only, and (b) simultaneous irradiation with high energy Cu + and low energy He +.

950 N. Yoshida et al. / Journal of Nuclear Materials 337 339 (2005) 946 950 3. Damage in large-size plasma confinement devices To further study the phenomena of plasma-wall interactions in large-size plasma confinement devices, metallic specimens were exposed to helium plasma discharges in the scrape-off layer in TRIAM-1M [16]. Remarkable formation of dislocation loops and dense fine bubbles was observed in tungsten facing the core plasma after being exposed for only 125 s. It was concluded that the defects are formed mainly by the bombardment of charge- exchanged helium neutrals ejected from the core plasma. According to recent experiments in LHD, interaction with the divertor helium plasma causes serious blistering for tungsten [17]. 4. Summary The most distinctive irradiation effect of helium in tungsten is the formation of helium bubbles for very wide conditions, i.e., above a few 10 ev, from very low dose about 10 19 He + /m 2 and up to very high temperatures near the melting point. It is remarkable that self-aggregation results in bubble formation without pre-existing vacancies such as radiation induced ones. Dense and fine bubbles and dislocation loops are formed at low temperatures, where thermal migration of vacancy-helium complex and bubbles are rather low. They form the thick damaged layer beneath the surface and change the retention of gaseous atoms very much. The helium bubbles induce serious hardening and reduction of thermal conductivity which enhances erosion under high heat load. At high temperatures, internal structure such as large bubbles determined the wavy and peculiar morphology of the specimen surface. It was also pointed out that the synergistic irradiation effects of neutrons and helium plasma would play important roles for radiation damage of the plasma facing materials. These recent results indicate that helium irradiation is a serious issue for tungsten as a plasma facing materials in the burning plasma condition. Acknowledgment This study was supported by Grant-in-Aid for Science Research from Ministry of Education, Science and Culture, Japan. References [1] S.K. Das, M. Kaminsky, Radiation effects on solid surface, in: M. Kaminsky (Ed.), Advanced in Chemistry Series, 158, American Chemical Society, Washington, DC, 1976, p. 112. [2] H. Iwakiri, K. Yasunaga, K. Morishita, N. Yoshida, J. Nucl. Mater. 283 287 (2000) 1134. [3] R. Sakamoto, T. Muroga, N. Yoshida, J. Nucl. Mater. 220 222 (1995) 819. [4] D. Nishijima, M.Y. Ye, N. Ohno, S. Takamura, J. Nucl. Mater. 313 316 (2003) 97. [5] K. Ono, K. Arakawa, M. Oohashi, et al., J. Nucl. Mater. 283 287 (2000) 210. [6] D.J. Reed, Radiat. Eff. 31 (1977) 129. [7] M.Y. Ye, S. Takamura, N. Ohno, J. Nucl. Mater. 241 243 (1997) 1242. [8] T. Shimada, H. Kikuchi, Y. Ueda, A. Sagara, M. Nishikawa, J. Nucl. Mater. 313 316 (2003) 204. [9] M. Miyamoto, M. Tokitani, K. Tokunaga, et al., J. Nucl. Mater. 329 333 (2004) 742. [10] M. Tokitani, M. Miyamoto, K. Tokunaga, et al., J. Nucl. Mater. 329 333 (2004) 761. [11] H. Iwakiri, K. Morishita, N. Yoshida, J. Nucl. Mater. 307 311 (2002) 135. [12] K. Tokunaga, S. Tamura, N. Yoshida, et al., J. Nucl. Mater. 329 333 (2004) 757. [13] H. Iwakiri, H. Wakimoto, H. Watanabe, N. Yoshida, J. Nucl. Mater. 258 263 (1998) 873. [14] K. Tokunaga, O. Yoshikawa, K. Makise, N. Yoshida, J. Nucl. Mater. 307 311 (2002) 130. [15] Q. Xu, N. Yoshida, T. Yoshiie, Mater. Trans., JIM, submitted for publication. [16] N. Yoshida, K. Tokunaga, H. Iwakiri, H. Wakimoto, T. Fujiwara, TRIAM Group, Nucl. Fus. 43 (2003) 655. [17] M. Tokitani, M. Miyamoto, D. Koga, et al., LHD Experimental Group, J. Nucl. Mater., these Proceedings. doi:10.1016/j.jnucmat.2004.07.054.