Situated 250km from Muscat in

Similar documents
RMAG, Snowbird, UT, October 6-9, Michael Holmes, Antony M. Holmes, and Dominic I. Holmes, Digital Formation, Inc.

Basic Well Log Interpretation

Chapter 8: Reservoir Mechanics

Coal Bed Methane (CBM) Permeability Testing

New power in production logging

CHDT Cased Hole Dynamics Tester. Pressure testing and sampling in cased wells

W I L D W E L L C O N T R O L FLUIDS

W I L D W E L L C O N T R O L PRESSURE BASICS AND CONCEPTS

Flow Scanner. Production logging in multiphase horizontal wells

4 RESERVOIR ENGINEERING

Squeeze Cementing. Brett W. Williams Cementing Technical Advisor January 2016 Tulsa API Meeting

HRLA High-Resolution Laterolog Array Tool. Improving the accuracy of Rt

PITFALLS OF RUNNING CONVENTIONAL PRODUCTION LOGGING IN HORIZONTAL/HIGHLY DEVIATED WELLS: A CASE STUDY

Oil Mobility in Transition Zones

Advanced Applications of Wireline Cased-Hole Formation Testers. Adriaan Gisolf, Vladislav Achourov, Mario Ardila, Schlumberger

COPYRIGHT. Production Logging Flowmeter Survey Solution Guide

RESERVOIR DRIVE MECHANISMS

GeoNeurale. Testing, Testing 1,2,3. GeoNeurale. by Gene Ballay PART 1. Lichtenbergstrasse Munich Garching

Cased-Hole Logging Environment

COPYRIGHT. Reservoir Rock Properties Fundamentals. Saturation and Contacts. By the end of this lesson, you will be able to:

FORMATION TESTER MOBILITY. Lachlan Finlayson, Chief Petrophysicist Petrofac Engineering & Production Services Engineering Services Consultancy

Extended leak off testing

Drilling Efficiency Utilizing Coriolis Flow Technology

Along-string pressure, temperature measurements hold revolutionary promise for downhole management

GEOTHERMAL WELL COMPLETION TESTS

EXAMINER S REPORT AND RECOMMENDATION STATEMENT OF THE CASE

Chapter 5 HORIZONTAL DRILLING

International Journal of Petroleum and Geoscience Engineering Volume 03, Issue 02, Pages , 2015

Petroleum Development

OIL AND GAS DOCKET NO

Enbridge G & P (East Texas) LP EXAMINER S REPORT AND PROPOSAL FOR DECISION STATEMENT OF THE CASE

APPENDIX A1 - Drilling and completion work programme

OP CHECKLIST FOR 1D CONSOLIDATION LABORATORY TEST

Assessment of Residual Hydrocarbon Saturation with the Combined Quantitative Interpretation of Resistivity and Nuclear Logs 1

GAS CONDENSATE RESERVOIRS. Dr. Helmy Sayyouh Petroleum Engineering Cairo University

Accurate Measurement of Steam Flow Properties

EXPERIMENTAL STUDY ON BEESWAX USING WATERJET DRILLING

WILD WELL CONTROL WARNING SIGNS OF KICKS

Mobeetie Resource Dev LLC EXAMINER S REPORT AND RECOMMENDATION STATEMENT OF THE CASE

Kerry A. Pollard Texstar Midstream Utility, LP Gallon E. Gray Phillip Zamzow EXAMINER S REPORT AND RECOMMENDATION STATEMENT OF THE CASE

Perforating Center of Excellence TESTING SERVICES OVERVIEW

Simposium Nasional dan Kongres X Jakarta, November 2008 Makalah Profesional IATMI

Modern Perforating Techniques: Key to Unlocking Reservoir Potential

ECD Reduction Tool. R. K. Bansal, Brian Grayson, Jim Stanley Control Pressure Drilling & Testing

Tool Weight Analysis An Engineering Approach to Optimize Pressure Temperature and Spinner Data Acquisition

Testing Services Overview

Instrumentation & Data Acquisition Systems

DISCHARGE OF GEOTHERYAI, WELLS

Hard or Soft Shut-in : Which is the Best Approach?

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

SUPPLEMENT Well Control for Drilling Operations Workover & Completion for Drillers Core Curriculum and Related Learning Objectives

IMPROVING THE ASSESSMENT OF RESIDUAL HYDROCARBON SATURATION WITH THE COMBINED QUANTITATIVE INTERPRE- TATION OF RESISTIVITY AND NUCLEAR LOGS

SPE Copyright 2001, Society of Petroleum Engineers Inc.

OCEAN DRILLING PROGRAM

Reserve Estimation Using Volumetric Method

Innovating Gas-Lift for Life of Well Artificial Lift Solution. The Unconventional Solution!

Well Test Design. Dr. John P. Spivey Phoenix Reservoir Engineering. Copyright , Phoenix Reservoir Engineering. All rights reserved.

THE BALLISTIC PENDULUM

Agenda. REGIONAL REVIEW WELL RESULTS EAST FLANK PLAY FAIRWAY PROSPECTS and LEADS 3D SEISMIC SURVEY NINKY PROSPECT FUNDING ECONOMICS CONCLUSIONS

The Time Has Come For Coiled Rod. Reprinted from Well Servicing magazine

New generation of solid expandable liners help give operators a jump on trouble zones

Charlton 30/31 Field Development Project

COAL SEAM METHANE - EXPLORATION AND PRODUCTION

SPE The paper gives a brief description and the experience gained with WRIPS applied to water injection wells. The main

Worked Questions and Answers

Oil Well Potential Test, Completion or Recompletion Report, and Log

Well Testing and Modelling of Discharging Big Bore and Super Big Bore Wells

Perforating Options Currently Available in Horizontal Shale Oil and Gas Wells. Kerry Daly, Global BD Manager- DST TCP

A VALID APPROACH TO CORRECT CAPILLARY PRESSURE CURVES- A CASE STUDY OF BEREA AND TIGHT GAS SANDS

DEVELOPMENT OF A ROBUST PUSH-IN PRESSUREMETER

August 21, Deepwater MPD / PMCD

Applied Technology and Best Practices in CEE. Conference

Practice Exam IADC WellSharp Driller and Supervisor

Comparative temperature measurements in an experimental borehole heat exchanger. Vincent Badoux 1, Rita Kobler 2

LIMITED ENTRY CLUSTER PERFORATING SYSTEM IMPROVES FRACTURING EFFICIENCY IN HORIZONTAL WELLS

PHYS 101 Previous Exam Problems

SUPPLEMENT Well Control for Drilling Operations Workover & Completion for Supervisors Core Curriculum and Related Learning Objectives

Compositional Grading Theory and Practice

Distributed Acoustic Sensor for Oil and Gas

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio

Dynamic Underbalance (DUB)

PowerDrive X6. Rotary Steerable System for high-performance drilling and accurate wellbore placement

Next Generation Quartz Pressure Gauges

Effect of Implementing Three-Phase Flow Characteristics and Capillary Pressure in Simulation of Immiscible WAG

Evaluation of CO2 storage actuarial risk: defining an evidence base

Measurement of Velocity Profiles in Production Wells Using Spinner Surveys and Rhodamine WT Fluorescent Tracer; Geothermal Field (California)

RAPTOR TOOL Case Studies from a Next Generation Pulsed Neutron Tool

PROPELLANT ASSISTED STIMULATION SUCCESS IN INDIA (using StimGun TM ) A CASE STUDY

Understanding pressure and pressure

Equation 1: F spring = kx. Where F is the force of the spring, k is the spring constant and x is the displacement of the spring. Equation 2: F = mg

Fully coupled modelling of complex sand controlled completions. Michael Byrne

ANALYSIS OF WATER FLOWBACK DATA IN GAS SHALE RESERVOIRS. A Thesis HUSSAIN YOUSEF H. ALDAIF

Perforation Design for Well Stimulation. R. D. Barree Barree & Associates LLC

Introduction to Relative Permeability AFES Meeting Aberdeen 28 th March Dave Mogford ResLab UK Limited

PNN Annual Conference 2006

Fundamentals Of Petroleum Engineering PRODUCTION

The Challenge of Wave Scouring Design for the Confederation Bridge

Fig. 3.1 (not to scale)

Optimized Gas Injection Rate for Underground Gas Storage; Sensitivity Analysis of Reservoir and Well Properties

Completions & Workovers Module 1.9

Transcription:

CYAN MAGENTA YELLOW BLACK GRAVITY GAINS A novel method of determining gas saturation has proved successful in Oman s Natih Field where conventional methods were giving anomalous results in difficult conditions. Stephen Adams and Johann van Popta of Shell describe how, for the first time in the Middle East, sensitive MOMENTUM Situated 250km from Muscat in Northern Oman, the Natih Field produces oil from a highly fractured limestone reservoir (figure 1.1). Since production started the primary method of recovery has relied on gas/oil gravity drainage (GOGD). The physics behind this method is simple. Gas is injected above the oil into a secondary gas cap, which developed as the reservoir pressure declined. This controlled injection prevents any further reduction in pressure and, critically for the GOGD process, lowers the gas-oil contact (GOC) in this dual permeability reservoir (figure 1.2). The (lighter) gas flushes the (heavier) oil out of the reservoir rock into the fracture system, lowering the gas-oil contact. Some of the gas mixes with the oil held in the rock matrix, encouraging flow into the fracture system where gravity drainage then takes over. This drainage is a slow process - a foot or two per year of vertical displacement. borehole gravity measurements, interpreted as density logs, have been compared with traditional Fig. 1.1: Location of the Natih Field. density readings or previous borehole gravity measurements to derive a quantitative estimate for Gulf of Oman gas saturation changes. Contributor: Richard Piggin, EDCON. Ibri Natih Muscat 0 200km 6 Middle East Well Evaluation Review

Producing Monitoring Injecting Gas cap Transitional zone Oil Water Original reservoir Key: OOWC - original oil-water contact FOWC - fracture oil-water contact MOWC - matrix oil-water contact MGOC - matrix gas-oil contact FGOC - fracture gas-oil contact Primary depletion MGOC OOWC FGOC Continuing production MGOC FOWC MOWC OOWC Fig. 1.2: TRUE LIFE STORY: At discovery, the Natih Field had no gas cap. Through primary depletion the FGOC moved down and the FOWC moved up. Oil was left above the FGOC and below the FOWC in the matrix blocks. Finally, with gas injection, the oil rim in the fracture system is pushed down. This exposes the maximum possible amount of rock to the gravity drainage process. Oil is produced at controlled rates from the oil rim in the fracture system. FOWC / MOWC OOWC FGOC Number 12, 1992 7

CYAN MAGENTA YELLOW BLACK The effectiveness of the gravity drainage process depends on a uniform and complete gas-oil contact being maintained in the fracture system. To find out how well the process had been working in the Natih Field, Petroleum Development Oman (PDO) launched a gas saturation monitoring campaign four years ago using conventional and pulsed neutron capture measurements. Readings were taken through production tubings and in workover wells. The estimated secondary gas saturations were not only lower than predicted by material balance calculations but were inconsistent - even within a single well (figure 1.3). As the blocks of reservoir rock between the fractures are relatively impermeable, it is believed that the shallow-reading neutron devices could not see beyond the mud filtrate trapped in the rock surrounding the borehole, giving rise to pessimistic estimates of gas flushing and variable results. Because of this doubt over the validity of the gas saturation results, an alternative method had to be found for evaluating the reservoir s gas saturation. Research by Shell in The Netherlands indicated that the Borehole Gravimeter (BHGM) might be the answer. This is a deep-reading tool which the research team believed would see beyond the invaded zone and could be used to quantify gas saturations (see box right). Extensive modelling studies were conducted at Shell s research laboratories in Rijswijk, The Netherlands. The study findings confirmed that bad hole conditions, invasion of drilling fluid, poor cement bonds, the presence of perforations and previously acidized intervals would have a negligible effect on the gravity readings. Two factors stood out as being critical in achieving accurate gas saturation measurements from the BHGM: A clear knowledge of the porosity around the well, derived from openhole logs. An accurate depth measurement for the tool at each recording station. Consequently, the four wells selected for BHGM surveys in the Natih Field were chosen not only for their structural position above the fracture GOC and the completion status but also for the quality of their open-hole porosity logs. Depth control was achieved using a combination of wellhead, manual and downhole measurements. A special odometer was mounted on the wellhead and a casing collar locator log was calibrated with a casing tally. In addition, the length of cable run down the borehole between measuring stations was checked manually using a steel tape and a high-precision pressure gauge was included in the tool string. This last gauge was added because it was assumed the tool movement downhole could be estimated directly from the difference in wellbore pressure - the borehole being filled with brine, Depth (mss) rather than weighted drilling fluid. Each of the three depth measurements were examined in conjunction with the gravity measurement and an optimum depth determined for each BHGM measurement. The provision of a stable borehole environment is essential to ensure good quality gravity readings with such sensitive equipment. In the depleted fractured carbonate reservoirs of North Oman, heavy fluid losses are encountered when a formation is open to the borehole. 500 525 550 575 600 625 0 0.2 0.4 0.6 0.8 1.0 Gas saturation (frct) Fig. 1.3: CONSTANT CONFUSION: Gas saturation from Pulse Neutron logs gave inconsistent results - even within individual wells. 8 Middle East Well Evaluation Review

THEORY OF BHGM Adjusting screw r At equilibrium: mgd = rt g = rt md Where: m =mass of weight g =gravitational acceleration d =distance between hinge and mass r =distance between hinge and spring T =tension of spring Fig. 1.5: Density of an infinite horizontal slab. d T Fig.1.4: MAGIC MOMENTS: The sensor within the BHGM is simply a spring balance. The tension necessary to maintain the mass and beam in a horizontal position is directly related to the gravitational acceleration. mg EDCON s gravity meter (manufactured by LaCoste & Romberg) is fundamentally a very sensitive spring balance in which the weight of a hinged beam with a small mass on its free end is balanced by the tension of a spring (figure 1.4). As the gravitational acceleration - and hence the weight of the mass - changes, the spring tension must be changed to hold the beam in a stationary horizontal position. The spring tension is calibrated in gravity units. Essentially, the BHGM can be used to quantify hydrocarbon saturations by reinterpreting the results to produce a density log. To do this, the earth is modelled as a layered cake with infinite horizontal slabs (figure 1.5). The change in gravity between the top and bottom of each slab is proportional to the slab s density and thickness. The density of each slab is made up of the matrix (rock) density, plus the fluid density. As oil is replaced by gas, the fluid density decreases. This density log from the BHGM can then be compared with the original openhole density measurements. In the Natih Field, where there was no initial gas cap, any differences between the two measurements can be directly attributed to fluid movement and thus gas saturation. Under normal conditions, measurements can be repeated to within a standard deviation of about 3µgal (three parts in 10 9 of the Earth s gravitational field). -2πGρ z 2πGρ z ρ z g = -4πGρ z ρ = 1 g 4πG z Where:G= universal gravitational constant ρ = density Number 12, 1992 9

CYAN MAGENTA YELLOW BLACK 700 Prior to running the surveys, three of the four wells in the Natih Field were being worked over, thus all existing perforations were closed with cement. This prevented fluid movement distorting the results. In the remaining wells, the surveys were carried out before perforating. As a result of the co operation agreement between Schlumberger and EDCON, the surveys were conducted using EDCON's Deep Density BHGM sonde in combination with Schlumberger's gamma ray and highprecision pressure gauge tools. Each survey took readings at the geological sub-unit boundaries, producing an average gas saturation for each layer. Typically, 15 to 20 gravity stations were selected in each well from 20m below the GOC in the fracture system to 20m above the reservoir. Before each reading the tool had to be left to stabilize for several minutes. Readings at some stations were repeated in order to improve the precision of gravity and depth measurements and to provide monitoring of gravimeter drift. Overall, the logging time varied between 15 hours and 30 hours. Using a BHGM to determine gas saturation is an innovative use of the tool based on theoretical considerations and experience in sandstone reservoirs in Texas, USA. To ensure the validity of the results in complex fractured carbonate reservoirs, a control test was planned in two new development wells over a gas-bearing formation in the nearby Yibal Field (figure 1.6). The estimates produced by the new tool were compared with gas saturations calculated using resistivity logs. Figure 1.7 shows the similarity of the results produced by the two techniques. Confidence in the tool is further increased by comparing the BHGMderived formation densities and the open-hole density log for Natih-48 (figure 1.8). In this example, the calibration intervals above the reservoir and below the fracture GOC show good agreement. The discrepancies between 585m and 601m can be attributed to the gas-filled formation s influence on the BHGM. Depth (mss) Gas saturation from BHGM (frct) 725 750 775 800 825 Gas saturation from resistivity log BHGM min gas saturation BHGM max gas saturation 850 0 0.2 0.4 0.6 0.8 1.0 1.0 0.8 0.6 0.4 0.2 Gas saturation Fig. 1.6: Results from one of the calibration surveys run in the Yibal gas reservoir. This shows that the maximum and minimum gas saturations derived from the BHGM straddle the estimates from the resistivity log over the complete interval tested. Best fit line 90% confidence interval 90% prediction interval 0 0 0.2 0.4 0.6 0.8 1. 0 Gas saturation from resistivity (frct) Fig. 1.7: Comparing the results from the BHGM and resistivity logs for both the Yibal calibration wells. The line of best fit indicates the similarity of the results. 10 Middle East Well Evaluation Review

570 Top reservoir Depth (mss) 590 610 630 650 BHGM Corrected density log Fracture GOC 1.95 2.15 2.35 2.55 2.75 2.95 Density (g/cc) Fig. 1.8: A comparison between BHGM -derived densities and the shale corrected open-hole density log shows excellent correlation above the reservoir and below the GOC. 500 Gas saturations around the Naith Field have been estimated based on BHGM measurements. When plotted with gas saturation values derived from earlier pulsed neutron measurements the BHGM estimates show consistently higher gas saturation. This ties in with the neutron tool being affected by drilling fluid trapped around the borehole (figure 1.9a and b). Secondary gas saturations estimated for the Natih Field using the BHGM are now similar to predictions from reservoir simulation studies, according to Shell. Gas/oil gravity drainage will continue to be the primary recovery mechanism in the Natih Field, as will the use of the BHGM for gas saturation monitoring. 525 500 Figs 1.9 (a) and ( b): Comparison of gas saturations predicted by the BHGM and PNL for two different subunits show that an envelope created through the BHGM results completely encompasses the PNL figures. This is consistent with the latter figures being influenced by drilling fluid trapped in the rock matrix adjacent to the well. Depth (m) 550 575 Pulsed neutron BHGM 600 625 0 0.2 0.4 0.6 0.8 1.0 Saturation 525 Depth (m) 550 575 600 Pulsed neutron BHGM 625 0 0.2 0.4 0.6 0.8 1.0 Saturation Number 12, 1992 11