Transcript of Ping Pong Ball Launcher Research and Design

Similar documents
Catapult Project. Even though we will be wearing safety glasses, the catapult must not have any sharp edges that could injure yourself or others.

The Academy of Model Aeronautics ALPHA: Potential Energy Background Information for the Teacher

1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar. bucket.

What s inside your experiment kit:

Kinematics-Projectiles

1. downward 3. westward 2. upward 4. eastward

TEACHER ANSWER KEY December 10, Projectile Review 1

Castle Ballistics T3 WJMS

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher

6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter.

Projectile Motion INTRODUCTION. Time-of-flight vs. Initial Velocity. Projectile Motion

Projectile Motion. Regardless of its path, a projectile will always follow these rules:

Helicopter & Launcher

Rocket Activity Foam Rocket

General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey

Experimental Procedure

Physics 122 Projectile Motion Unit

WONDERLAB: THE EQUINOR GALLERY. The science and maths behind the exhibits 30 MIN INFORMATION. Topic FORCES. Age

Today Mr. Happer told us to use the following physics vocabulary words and relate them to our experiment:

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

YEAR 10 SPORT SCIENCE QUIZ 3 - BIOMECHANICS. MULTIPLE CHOICE QUESTIONS (Circle the correct response)

Calculate the size of the force(s) acting on Sarah just after the take- off, in position 2 in the above diagram.

Physics Acceleration and Projectile Review Guide

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction.

2016 Physics Olympics Detailed Rules

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach?

You drop a package from a plane flying at constant speed in a straight line. Without air resistance, the package will:

Angle Projectiles Class:

Motion, Vectors, and Projectiles Review. Honors Physics

Acceleration= Force OVER Mass. Design Considerations for Water-Bottle Rockets

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions

TWO DIMENSIONAL KINEMATICS

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

Practice Test: Vectors and Projectile Motion

Unit 2 Review: Projectile Motion

Chapter 7. A) The ball B) The putty C) Both experience the same momentum change D) Cannot be determined from the information given

Page 2. Indicate with ticks ( ) in the table below which of the quantities are vectors and which are scalars. Velocity Speed Distance Displacement

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Page 1. ConcepTest Clicker Questions Chapter 4. Physics, 4 th Edition James S. Walker

Michael Antoine, Jack Connolly, Andrew Evans, Khalid Jebari. Intro to Engineering Design (ENGR 1500) Section 43. Ping Pong Ball Launcher.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

A tennis player hits a ball at a height of 2.4 m. The ball has an initial horizontal velocity.

LAB 7. ROTATION. 7.1 Problem. 7.2 Equipment. 7.3 Activities

Structure (Down plane)

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10.

Very Basic Design Considerations for Water-Bottle Rockets

PHYSICS 12 NAME: Kinematics and Projectiles Review

SF016: PAST YEAR UPS QUESTIONS

Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures.

Physics Final Exam Review Fall 2013

BIOMECHANICAL MOVEMENT

b. What is the x-distance from the foot of the cliff to the point of impact in the lake?

time v (vertical) time

So what is point footwork? And how is it used for attacking and monitoring our opponents?

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves

Flying High. HHJS Science Week Background Information. Forces and Flight

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following.

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Unit 3 ~ Learning Guide Name:

Anatomy of a Homer. Purpose. Required Equipment/Supplies. Optional Equipment/Supplies. Discussion

science-u.org How do you launch a rocket without using Air Pressure Rockets Directions You Will Need ESTIMATED TIME Minutes

(2) An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s.

Rube-Goldberg Device

Cutnell/Johnson Physics

How Feathered and Plastic Fletchings Affect the Control Of Arrows By Lucy Kiefer 7B

ConcepTest PowerPoints

Objective: To launch a soda bottle rocket, achieve maximum time of flight, and safely land a payload (tennis ball).

Finding the optimal trajectory for your driver

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

AP Physics 1 Fall Semester Review Problems 1-10 Due Thursday, Due Friday, Test on Monday

Exploring the relationship between the pressure of the ball and coefficient of restitution.

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009

Engineerathon (Wacky Sports Day) Investigation 5 - Forces. Teacher Information

THERE IS A PRELAB THIS WEEK! IT IS A SEPARATE DOCUMENT, DOWNLOAD AND PRINT IT FROM THE WEBSITE, AND DO IT BEFORE YOU COME TO LAB!

Appendix : Categorization Task. Instructions

Gravity: How fast do objects fall? Teacher Version (Grade level: 4 7)

THE BALLISTIC PENDULUM

Projectiles Shot up at an Angle

An exploration of how the height of a rebound is related to the height a ball is dropped from. An exploration of the elasticity of rubber balls.

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch

V mca (and the conditions that affect it)

EXERCISE AND INSTRUCTIONS

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

Friction occurs when surfaces slide against each other.

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

Exploring the relationship between the pressure of the ball and coefficient of restitution.

THE AIRCRAFT IN FLIGHT Issue /07/12

Level 2 Physics, 2012

Force, Motion and Energy Review

CHAPTER 3 TEST REVIEW

Fly Rocket Fly: Rocket Report. Hammerhead X 134

Qualitative Analysis of Jumping Standing Long Jump Goals Note: Standing Long Jump

Draw a graph of speed against time on the grid provided.

Conceptual Questions PM.notebook October 21, Projectile Motion Conceptual Questions

Two dimensional kinematics. Projectile Motion

End of Chapter Exercises

Design and Make a foam rocket

NEWTON S LAWS OF MOTION

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

How do waves transfer energy?

Transcription:

Transcript of Ping Pong Ball Launcher Research and Design Objective To construct a mechanism to launch a ping pong ball into a garbage bin 2, 4, 6, and 8 metres away from the launcher, with restrictions: *launcher must be placed on the floor *there must be a base for the launcher *size restriction of the launcher (12 x12 ) Ping pong balls are stiff, springy, air filled spheres made of celluloids, a class of plastics. Its material and light weight allows air resistance and its spin to have significant effects on its motion when airborne. Air resistance is the result of the projectile's leading surface colliding with air molecules, and it is affected by the velocity of the object and its cross sectional area. Specifically, a higher velocity and greater cross sectional area results in greater air resistance. Additionally, ping pong balls also bounce quite high when they strike a surface. Since the launcher will launch the ping pong ball so that it launches with a parabolic trajectory, the physics behind projectile motion comes into play. In a projectile, the only force is gravity, thus resulting in a downward acceleration. Gravity does not act in the horizontal direction, so the ping pong ball will theoretically travel at a constant horizontal velocity according to the law of inertia. Physics of Projectile Motion Traits of Ping Pong Balls

Collectively, traits of ping pong balls and the nature of projectile motion will have important effects on the launcher that must be considered to ensure that the launcher fulfills the expectations successfully. Because of the ping pong ball's light weight, it is very prone to missing the target as its flight in the air is easily affected by air resistance, drag, and if the ping pong ball spins. Therefore, a lower initial velocity of the launch and a way to keep the ping pong ball stable when it is being launched will reduce the chance of these factors affecting its trajectory. Additionally, a ping pong ball's tendency to bounce must be considered when it is launched, for a greater vertical distance will mean that the force of gravity will cause the ball to accelerate to a higher velocity in the downward direction. The higher the velocity, the more potential energy the ping pong ball acquires, thus the greater the force of the impact of the ball with the target bin. Furthermore, the hard surface of the target bin does not absorb much energy from the impact since the plastic is not very elastic and springy, which in addition to the hard and light weight celluloid of the ping pong ball, means a large fraction of the potential energy of the ball upon impact will convert back into kinetic energy, resulting in the ball bouncing, perhaps out of the target bin! If this occurs, a solution would be to minimize the vertical distance the ball travels in the parabolic trajectory by lengthening the arm of the launcher. However, the vertical distance must be, at the very minimum, slightly higher than the height of the target bin so it can actually go into the bin, thus this will prove to be a challenge when figuring out the ideal angle of the launch and the length of the launching arm.

Ping Pong Ball Launcher considerations for ping pong balls as the object being launched types of catapults which is best? the variable: target distance additional features to allow for adjustments of the launcher to aim for different targets proposed design Topics Researched and Discussed Ping Pong Balls Types of Catapults Considering the restrictions of the assignment and the far distances the ping pong ball must be launched, a strong catapult would be suitable to complete the task, especially since there are a wide variety that can be made with readily available materials. Ballista The ballista is one of the first Medieval catapults that utilized torsion, a type of elasticity, stored in twisted ropes and sometimes bending wood to launch the projectile. It has a distinct crossbow like design. Since this is an earlier model of catapults in history, there are better designs that were developed later that are more durable when made on a smaller scale, like for this assignment, that also happen to be a lot easier to build.

Trebuchet The trebuchet was constructed after the ballista, using a weighted beam to swing a projectile located in a sling at the opposite end of the beam. Unfortunately, for the purpose of this assignment, a trebuchet may not be the best design to use. The sling may not provide the most accurate launch to get the ping pong ball in the target; additionally, the trebuchet must be adjustable to account for the different distances of the four targets, and the exact mass of the counter weight to provide enough power to launch the projectile 8 metres may be hard to achieve exactly with inexpensive, readily available materials. Overall, there are other catapult designs that are much easier to build and less complicated, such as the mangonel. Mangonel The mangonel was constructed after the trebuchet and it can be a very effective catapult for this assignment. It is torsion powered with many ropes twisted in a figure 8 formation around one end of the beam, with the projectile in a bucket at the other end to be launched. Mousetrap Catapult A catapult that uses the trapping mechanism of a mousetrap is a common and very effective design for a catapult to build at home. The mousetrap uses the distortion of the metal spring to trap mice, but this elastic force is definitely strong enough to power a catapult to launch a ping pong ball 8 metres using the mechanism of the mouse trap, removing the holding bar and catch pad. This video briefly shows exactly how to turn a mousetrap into a simple catapult; obviously, a more substantial design would have to be constructed so that the launching distance can be adjusted to hit each target. Additionally, since rat traps tend to be

larger, it would probably be able to provide more power to launch the ping pong ball even farther, so this can be used as well. How to Wrap the Rope for a Torsion Powered Catapult It can be very powerful and accurate since it is built with almost entirely wood (save for the ropes for torsion). As well, it is very easy to adjust the catapult to aim for the different targets by changing the catapult's arm length, and/or the proximity of the beam at the front of the catapult parallel to the ground (circled in the diagram to the left). These factors will be further explored later in this presentation. Overall, the torsion powered mangonel and the mousetrap catapult appear to be the most suitable to build for this assignment, as they allow for easy adjustments to hit targets at different distances, and can be made with readily available and inexpensive materials that will not degrade or lose effectiveness over a short period of time (i.e. rubber bands). by Sarah Wong Features to Adjust for Different Target Distances This video shows what adjustments can be made to a torsion powered catapult (and any catapult with a similar design) to launch at different horizontal and vertical lengths. Since mouse traps are so powerful, it would launch the ping pong ball at too fast of an initial velocity. As well, the spring may wear out after repeated use, and thus lose

effectiveness. Therefore, torsion in twisted ropes is the easiest yet sufficiently powerful way to launch the ping pong balls. *Diagram is not to scale. Actual dimensions are thus not included as they are subject to change. Screws are not included as well to maintain clarity of design. The round bucket will decrease the amount of movement of the ping pong ball before being launched, therefore the ping pong ball will not spin as much in its trajectory. (not visible in diagram) The cross bar is adjustable to change the angle that the launching arm stops at, changing the angle of the trajectory to aim for targets at different distances. The ropes are twisted in a figure 8 structure (as described in the diagram and video provided under the "Types of Catapults" section. It will be twisted tightly to give the catapult even more power. The knob at the top allows the launching arm to be pulled down for the launch without disturbing the ping pong ball itself.