WINDING HOLES towards a specification for the ideal turning place

Similar documents
SINGLE LONG TERM MOORING AGAINST PRIVATE RESIDENTIAL LAND

CORPS FACTS. Harbor Dredging U.S. ARMY CORPS OF ENGINEERS BUILDING STRONG

Boating Essentials Getting started

Responses to Mooring properly your views Boaters Update 15 Jan 2016

Standedge Tunnel Customer Guidelines

Topics covered. File location/file Name (including version)/author Initials/Support Initials/Date

NAUTICAL TERMINOLOGY

The group discussed the draft proposal and agreed the following recommendations.

Chapter 5. General Site and Building Elements

WELCOME TO THE MILLENNIUM RIBBLE LINK

DEPARTMENT OF THE ARMY GALVESTON DISTRICT, CORPS OF ENGINEERS P.O. BOX 1229 GALVESTON, TEXAS CESWG-CDR (1145)

Rule Conduct of vessels in restricted visibility

Road Safety Audit training course. Motorways - safety issues of the motorway design

ROYAL VANCOUVER YACHT CLUB

MEWP - Boom Note: It is recommended that you read the Supporting Information page before you read this factsheet.

Broadly speaking, there are four different types of structures, each with its own particular function:

Appendix 12 Parking on footways and verges

3 Star Open Canoe Assessment Notes

word definition Vocabulary Matching Cards Some ideas for using the cards with partners or at a station.

BookletChart. Intracoastal Waterway Matecumbe to Grassy Key NOAA Chart A reduced-scale NOAA nautical chart for small boaters

Existing conditions of each bridge and repair plan are presented in Table

REQUIREMENTS FOR NEW AND EXISTING DOMESTIC SWIMMING POOLS

Pilotage Directions 2017

Rugby to Snarestone Ashby Canal

General Rules. Substitutions. Restarts

CROSS COURSE INSTRUCTION DOCUMENT

Mr. Barry Dragon, March 16, 2015 Commander, Seventh Coast Guard District (dob) Brickell Plaza 909 S.E. 1st Ave. Miami, FL

BYLAW NUMBER

3-13 UFC - GENERAL PROVISIONS AND GEOMETRIC DESIGN FOR ROADS, STREETS, WALKS, AND OPEN

BUDE CANAL REGENERATION

Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments

APPENDIX J HYDROLOGY AND WATER QUALITY

Port Sections Guide Section 01

Gold Coast Barges-Vessel Information Sheet Vessel Name: 'ICEBREAKER'

Wexford Harbour. Yachting Guide. Navigation

C C S Technical Information

City of Pittsfield HARBORMASTER RULES AND REGULATIONS on docks

Section V Sailing off the wind

Note to Shipbuilders, shipowners, ship Managers and Masters. Summary

PORTS AUSTRALIA. PRINCIPLES FOR GATHERING AND PROCESSING HYDROGRAPHIC INFORMATION IN AUSTRALIAN PORTS (Version 1.5 November 2012)

Installation and Training Manual

Components of a Barrage

Safety barriers surrounding a swimming pool area at 60A Goldflats Lane, Coatesville, Rodney

Appendix A Type of Traffic Calming Measures Engineering Solutions

London Assembly Investigation into Waterway Moorings

APPENDIX IV DEVELOPMENT AND MEASUREMENT RULES OF THE INTERNATIONAL TEN SQUARE METER SAILING CANOE

RE-PRICING OF 12 MONTH MOORING PERMITS 2015 MOORINGS AREA REPORT FOR GLOUCESTERSHIRE & WORCESTERSHIRE

Stevpris installation

(Revised February,2005) CULVERTS, BRIDGES, AND FORDS

CR 914 Class Rules. Revised July 15, 2000 See also CR-914 Class Rule Interpretations

Beany Block Combined Kerb and Drainage System

10 (Racing) TIPS FOR PATIN SAILORS

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2018

SULAYMANIYAH INTERNATIONAL AIRPORT MATS

Civil Air Patrol Auxiliary of the United States Air Force

MEWP - Scissor Note: It is recommended that you read the Supporting Information page before you read this factsheet.

BoatWasher Swede, , MS Float

A5.1 Permitted activities

Birmingham and return from Worcester

On a calm day in open water check how the boat reacts at low speed. quick burst

14 NOISE AND VIBRATION

Designing Pedestrian Facilities for Accessibility. Module 3 Curb Ramps & Blended Transitions

Sterling Stairlifts. Lifting expectations

Integrated Waterway Management of the Danube in Austria

DEAD-ENDCHANNELFLUSHINGINHARBORS

Figure 1 Figure 1 shows the involved forces that must be taken into consideration for rudder design. Among the most widely known profiles, the most su

F4. Coastal Mooring Zone and moorings outside the Coastal Mooring Zone

PTV OBSTACLES The following PTV obstacles are approved for use in Affiliated BHS TREC events

CHAPTER 5: GENERAL SITE AND BUILDING ELEMENTS

CITY OF TORONTO. BY-LAW No

Review of Guidelines for Cycleway Safety Fencing

Hawkesbury Canal Junction. (Sutton Stop) Near Coventry.

PLACEMENT OF SIGNS RECOMMENDED PRACTICES SUB-SECTION

A Quick Guide to the. Rules of Golf

GATES, CATTLE GUARDS AND PASSAGEWAYS. This factsheet looks at various options for allowing passage through fences for livestock, wildlife and people.

Paper 20 Economising mooring and guiding constructions at lock approaches in inland waterways the Dutch experience.

Field guide for Accessible Public Rights-of-Way Edition

Berkeley Island Marine Pre-Rental Instructions. If you do not have a

The LA/LB Harbors handle more than 5,500 commercial vessel arrivals per year (excluding local coastwise and Catalina Island traffic).

Harbourmaster s Office Tamaki River. Navigation Safety Operating Requirements 2014

Issues at T junctions:

Condition of Improvements 30 December 2014 Wrangell Harbors, Alaska (CWIS No , )

Cruising Map. Main Line (Restoration Proposed) Crumlin Arm (Restoration Proposed) Newport and River Usk. including. Route 75M3 Map Issue

New Locks Alignment at the Pacific Side. Alignment PMD

How To Read Road Signs - Roundabouts

TOWNSHIP OF DOURO-DUMMER BY-LAW NO

METHODS EMPLOYED IN LOCATING SOUNDINGS

Engineering Surveying - II CE313. Hydrographic Survey Lecture 06 Muhammad Noman

GUIDANCE FOR THE CREATION OF ARTIFICIAL SETTS

Creamer Media Pty Ltd

Mooring Solutions for Yachts

Mooring Systems for Yachts

Competency Framework for Advanced Deckhand-Fishing. Competency Framework for Advanced Deckhand-Fishing

BRIEF(S) SUBMITTED BY APPELLANT(S)

Watermanship And Safety

Large container ships Builder s and operational risks John Martin, Managing Director, Gard (Singapore) Pte Ltd. 12 January 2016

Canals. All About. These notes are designed to help you with homework and other projects. canalriverexplorers.org.uk

A future cycle route network for North Staffordshire mb/08/16 Need for a strategy. Existing cycle route network

JUNEAU SECOND CHANNEL CROSSING WATERWAY USER SURVEY RESULTS

VISUAL SIGNALS (MARKING) ON VESSELS

Transcription:

WINDING HOLES towards a specification for the ideal turning place Introduction The term winding hole is normal in the narrow canal network, and on adjoining broad canals, for a space in which to turn a boat. Nearer the coast and on navigable rivers, nautical terms such as swinging area, turning space or just wide, are found. On rivers, turning space varies a great deal, often boats can turn anywhere along the main course of the channel, or at the confluence of tributaries, etc. A designated turning space to one side of a canal or navigable channel should provide for the longest and widest boat likely to be navigating the particular section of waterway. Because some of these features (together with junctions to arms etc) have been lost or restricted over the years, the following notes describe the basic minimum requirements when considering future provision. River navigations vary a great deal and the shape or naming of turning spaces will not be the same as on artificial canals; however, where a river navigation authority deems a turning space to be an excavated or dredged facility, the minimum requirements of shape would appear to be very similar to that described for canals, although it is admitted that some boatyards might have only sought provision for a limited range (e.g. for boats in their fleet). Canals: The usual requirement on a canal is a vee-shaped indent in one bank to provide the required width of channel, equal to or preferably slightly greater than the length of the longest boat. The vee should offer a total angle of at least 90 degrees, in order to allow ease of approach and exit. In order to avoid getting the bow wedged in the corner of the vee, a radiused corner would be preferred, and this radius should be at least as large as the beam of the boats which would use it. This offers a smooth curve on which to touch the bow if required, when turning in stages. The corners of the vee shape with the main channel should also be curved, to avoid too much damage to craft accidentally touching them. On the narrow canal system the principal dimension that should be observed is the minimum width at the turning space, measured perpendicular to the line of the channel, of 72 feet (22m) plus a margin of clearance. On the broad canals, the basic requirements are similar, bearing in mind that the width of the channel may already be wider on these canals, but in some cases can carry longer (or shorter, in some canals) boats. A larger radius at the point of the vee would also be a good idea, together with slightly higher bank or piling, to reflect the larger boats likely to be found. Opposite side curve: In cases where a limited land area is available for a winding hole on the off-side, a curved indent in the towpath-side is sometimes found, which complements the perpendicular indent of the vee end of the winding hole itself. Depth: Winding holes are usually provided on the off side of a canal i.e. the other side from the towing path. This is because as boats are usually steered from or near to the stern, 1 www.waterways.org.uk

the boat can be manually turned easily if required by steering towards the vee and crew or steerer stepping off onto the path if necessary to pull the boat round (this also saves energy and time). To ensure any boat s ease of manoeuvrability and safety of crew, the entire vee area should be constructed and dredged to the full depth of the canal, because sometimes it will be found easier to put the stern into the vee e.g. to allow the wind or current (where there s a flow) to move the bow round to complete the turn. Frequency of provision: Traditionally, winding holes would have been provided either side of any wharf, yard or terminus facility for the trading boats in use, unless such a facility was a large enough basin for unrestricted use. Today winding hole use is not perhaps exploited so much by the privately owned boats as by hired boats, where time restraints calls for a turnround on a single route half-way to get the boat back to base without incurring late penalties; or even perhaps after mistakes in navigation. Also, passenger carrying boats and day-boats require a variety of lengths of cruise to suit limited available route-time, for example a there and back cruise of two hours would require a suitable turning point after one hour from base. The few trading boats on our present canals, offering fuel or other provisions on restricted lengths, as well as maintenance boats, can also benefit from a selection of possible turning places and these too are likely to be of a full-size type of craft. Marina entrances: In many cases, a marina entrance, wharf space, old arm of a canal (sometimes marked by a bridge for the towpath crossing), etc, can offer space for turning. In some cases however, especially where moored craft suggest that extreme care is needed, signs or chains have been erected to prevent or at least dissuade use for turning. Whilst this is regrettable, it also emphasises the need for adequate turning provision elsewhere. Signage: whilst remote winding holes are often left unsigned, where any congestion is likely it is important that no mooring is allowed opposite such a facility, so suitable signs should generally be in use. Conclusions The maintenance of winding holes both in number and in condition is important for users. Any loss of a former winding hole is therefore to be regretted, and hopefully a subject for restoration. The possibility of introducing new sites to turn the boats described above would widen the choices for commercial applications e.g. hire and trip types, to encourage expansion of these trades, as well as providing more choice for private owners and any carrying and maintenance craft operating. Opportunities such as marina entrances and tributary or junction design and retention, and provision of bank protection methods, should be encouraged to provide and maintain the necessary frequency and quality of winding holes. Some illustrations follow, after which an appendix includes drawings and greater detail on the above theme. Existing examples: 2 www.waterways.org.uk

Winding hole with generously wide vee angle (Langley Green, BCN) Friendly marina entrance (Droitwich Marina, Worcs.) Unfriendly winding hole concrete, sharp corners Note damage to edge imagine damage to boats! (Llangollen Canal) Appendix Drawings General 3 www.waterways.org.uk

It would appear that the ideal minimum plan shape for convenient turning of the largest craft on a given waterway would be as follows: Fig. 1. Where: L t = max. boat length for canal, plus a margin of clearance. R = radius equal to at least max. beam. R p = preferred radius at corners, i.e. at least similar to R. Narrow Canal Provision The extensive narrow canal system dates from the late 18 th century, on which the largest boats are about 72 feet by 7 feet beam (say 22m x 2.2m). (Although some longer boats were used in restricted lengths of the Wolverhampton level of the BCN, they could not pass through locks, and none survive in use). Therefore, the minimum perpendicular dimension should be 22m or preferably a metre or so longer than this to allow some clearance, and therefore reduction in water turbulence. The radii, both at the point of the vee and the corners could quite usefully be equal to or greater than the beam or 2.2m min. 4 www.waterways.org.uk

Broad Canal Provision The basic requirement is usually the same, but the radius at the vee should be twice the size of that above, in order that wider boats can turn without experiencing a tight-spot on their bows. It is worth mentioning that on broad canals such as the G.U. main line and S.U. broad section, the nominal width of channel is greater than on narrow canals but the maximum boat length is similar. Some canals (e.g. the Huddersfield Broad Canal) have a shorter L dimension. In these cases the amount of land required for the vee will be less than that required on the equivalent narrow canal BUT where larger locks are encountered, larger boats will be found, and each waterway section should be considered individually. Broad canal Narrow canal Fig. 2. Showing comparative land area used on broad and narrow canals (assuming respective nominal widths of channel). Turning Spaces on Rivers As mentioned earlier, rivers vary a great deal and the shape and terms used for turning spaces will be individual; however, the minimum requirements of shape are very similar to that described above. Most probably, it will be on the off side to any river-side path, will have no foot-access to the bank, and will provide for the maximum size of boat expected on that navigation and will require similar depths to the main channel. 5 www.waterways.org.uk

Provision of Extra Space opposite the Winding Hole In cases where a limited land area is available for a winding hole on the off-side, a curved indent in the towpath-side is sometimes made, which complements the perpendicular indent of the vee. The radius of the tow-path curve should be taken from the radius in the vee, which should of course total L t, as before, to allow for the turning boat. Fig. 3. Showing complementary curve in opposite bank, if required. Truncated vee v radius It can be seen that using the angular shape of a truncated vee uses more land area than if the vee is radiussed, as the perpendicular dimension would remain the same. Fig.4. Showing the geometry of the radius, as opposed to a truncated triangular form. 6 www.waterways.org.uk

New Winding Hole provision In addition to ensuring restoration and maintenance of existing turning places, the need to consider conservation of water resources suggests ensuring that boats can turn either side of lock flights, and at either end of summit pounds in order to reduce unnecessary lock usage. Going through a lock (or several), just to turn, is clearly a waste of water but this is the case in several places (e.g. Oxford Canal). This can sometimes be met through new marina entrances, if written into access agreements, but otherwise new winding holes could be beneficial to both the navigation authority and commercial and private boating interests. This suggestion could be combined with other initiatives for water-saving such as greater depth on summit pounds, restoration of side-ponds (after the good Droitwich Canal example), restoration of duplicated locks, e.g Trent & Mersey Canal in Cheshire, and of course, marina and arm entrances mentioned earlier (which also add to water area in a level, and therefore storage). Impact of Winding Holes on Water quality and environment It has to be said that when a boat of full size for a winding hole is turned, there is often considerable disturbance of silt as the propeller passes the tight-spot by the towpath. This is usually because of insufficient, or previously disturbed dredging, but it can also be because of an encroachment into the winding hole point by falling soil or rubbish, or just accumulation of silt preventing the bow touching the full extent of the intended space. This can sometimes be exacerbated if a stream enters at the point, as in a few cases (e.g. on the Caldon Canal, Llangollen, and others). The inclusion of an element of clearance in the length L t will help to ensure space for the propeller and rudder to work correctly, and to obviate too much turbulence and erosion on the tow-path bank. The longer-term advantage is that less turbulence will ensure clearer water, and a healthier water environment, for fish etc., as well as less frequent dredging required. The bank protection, whether steel piling, concrete or masonry, usually provides some stability to the form of the winding space, and around the arc of the radius, must be strong enough for the bows to rest against it, while the engine is used to power the turning operation. A suitable height of such protection is also necessary for the typical craft of the canal or frequent use could cause more wear and therefore silt, and damage to boats, than intended. David W. Struckett, on behalf of IWA Navigation Committee October 2014 7 www.waterways.org.uk