Mid InfraRed Instrument (MIRI) Cooler Cold Head Assembly Acceptance Testing and Characterization

Similar documents
A Numerical Study of the Performance of a Heat Exchanger for a Miniature Joule-Thomson Refrigerator

Vibration-Free Joule-Thomson Cryocoolers for Distributed Microcooling

JT Micro Compressor Test Results

Influence of Ambient Temperature on Performance of a Joule-Thomson Refrigerator

Thermal Testing of an EM Two-Stage Coaxial Pulse Tube Cold Finger for Earth Observation Missions

Performance Characterization of the ABI Cryocooler

3-Stage ADR for the SXS Instrument on the Astro-H Mission

Development of a Two-Stage High -Temperature Pulse Tube Cooler for Space Applications

Heat Pump Connections and Interior Piping

Reliability Growth of Stirling-Cycle Coolers at L-3 CE

Recuperative Cooling Capability of Miniature Thermoacoustic Expanders (MTAEs) around 77 K

AC : MEASUREMENT OF HYDROGEN IN HELIUM FLOW

Dynamic Operation of a 4 K Pulse Tube Cryocooler with Inverter Compressors

An Investigative and Synoptic Review on Helium Liquefaction Using a Commercial 4 K Gifford- McMahon Cryocooler

Development of High Efficiency 4K Two-Stage Pulse Tube Cryocooler

Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler

Experimental Investigation on Stirling type Thermally Coupled Three Stage Pulse tube Cryocoolers with U type Configuration

Oil-Lubricated Compressors for Regenerative Cryocoolers Using an Elastic Membrane

Cryogenics The Basics. Lesson 2 D. Kashy

Helium-Liquefaction by Cryocooler for High-Field Magnet Cooling

Design Features. General Description

AC : ACCURATE CRYOCHAMBER FOR A SMALL LABORATORY WITH SMALL BUDGET

AN EXPERIMENTAL INVESTIGATION ON HELIUM LIQUEFACTION USING TWO-STAGE GIFFORD McMAHON CRYOCOOLER

Schedule of Requirements THERMODYNAMICS LABORATORY- CHEMICAL ENGINEERING DEPARTMENT

Job Sheet 1. Geothermal Energy

Cooling Characteristics of GM-type Pulse Tube Refrigerator with Neon as Working Gas

Earlier Lecture. In the earlier lecture, we have seen Kapitza & Heylandt systems which are the modifications of the Claude System.

Modeling and Optimization of a Mixed-Gas Joule-Thomson Cryoprobe System

Two-stage pulse tube refrigerator with step displacer as phase shifter

Magnet and RF Cavity Test Stand Design. Tom Peterson, SLAC USPAS January, 2017

Performance Testing of a High Capacity Compressor for a 20K 20W Cryocooler

University of Cincinnati

Development of a 2K Joule-Thomson Closed-Cycle Cryocooler

University of Cincinnati

EXPERIENCE WITH A PRE-SERIES SUPERFLUID HELIUM TEST BENCH FOR LHC MAGNETS

Continuously Variable Inertance Tubes for Pulse Tube Refrigerators

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay

Open Cycle Joule-Thomson Cryocooling by Mixed Coolant

Closed-Cycle Dilution Refrigerator for LTD in Space Astrophysics

SPIRIT III Radiometer Saturation Effect

Successful Completion of the JWST OGSE2 Cryogenic Test at JSC Chamber-A while Managing Numerous Challenges

Gas Vapor Injection on Refrigerant Cycle Using Piston Technology

DEVELOPMENT OF A FLEXIBLE MODELING TOOL FOR PREDICTING OPTIMAL OFF-DESIGN PERFORMANCE OF SIMPLE AND RECOMPRESSION BRAYTON CYCLES

BIMA cryogenics (Dick Plambeck, 18jan2007)

Chapter 10: Bidirectional Flow Controls

Lab 1c Isentropic Blow-down Process and Discharge Coefficient

JANIS OPERATING INSTRUCTIONS FOR SUPERCONDUCTING MAGNET CRYOSTATS

Short Introduction to Cryo-Pumps and Refrigerators. Dr Graham Rogers Leybold UK Ltd.

Helium Management of the ESS Target and Monolith Systems

Figure 1 Schematic of opposing air bearing concept

Customer Responsibilities

Over 20,000 Strain Gage Target flowmeters installed since 1952.

3. Real-time operation and review of complex circuits, allowing the weighing of alternative design actions.

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006

Thomas Jefferson National Accelerator Facility Newport News, Virginia, 23606, USA

GFM. Typical Aluminum GFM Mass Flow Meter NIST MASS FLOW METERS. Principles of Operation. Design Features

Current Leads for Cryogenic Systems

A NEW PROCESS FOR IMPROVED LIQUEFACTION EFFICIENCY

(12) United States Patent (10) Patent No.: US 9.261,295 B1

Pump out insert (condenser and still lines) overnight with turbo pump

Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

4m Blanco Glycol Chiller system: history, recent events, present status and plans

SPECIFICATION FOR AN MRBR 9.4 TESLA/310MM/AS CRYO-COOLED MAGNET SYSTEM

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles

IMECE IMECE2011-6

CFD Simulation and Experimental Validation of a Diaphragm Pressure Wave Generator

RC102 & RC110 Sample in Vacuum Continuous Flow Cryogenic Workstation Cryostats

CONTROL and INSTRUMENTATION

Armfield Distillation Column Operation Guidelines

Automated Mass Handling for High Performance Pressure Balances

INSTRUCTION MANUAL. process. Ultrasonic Flowmeter Range

AFC. SDPROC and AFC Analog Mass Flow Controller ANALOG MASS FLOW CONTROLLERS. Principles of Operation. Design Features

Oxford Instruments Austin, Inc.

Digital Vacuum Regulator

Proposal for the Cryogenic Supply of a Single TTF / FEL - Cryomodule Test Bench

Oxford Instruments Austin, Inc.

Helium Loop Karlsruhe (HELOKA) large experimental facility for the in-vessel ITER and DEMO components

An Experimental Performance Study of Vortex Tube Refrigeration System

mhhhhee 15 DEVELOPMENT OF A LOW NOISE ilk JT REFRIGERAYON SYSTEM In1

Smart Energy Compact Chiller for Helium Compressors

Cryocoolers for infrared Missile Warning Systems

SALT RSS-NIR MID-TERM REVIEW MAY 20 & 21, 2009 THERMAL SYSTEM DESIGN

Load Responsive Multilayer Insulation Performance Testing

S-CO 2 Brayton Recompression Loop Design and Control

Status on the DFBXF commissioning

Variable Temperature Storage Dewar Mount Inserts

Supercritical CO 2 Power Cycles: Design Considerations for Concentrating Solar Power

Mass Flow Controller (MFC) for Gases

Microscopy Cryogenic WORKSTATION. Performance by Design

Comparison of Methods and Devices for High Pressure Vessel Passivation B. Zitouni (1), L. Denies (1),M. Peukert (1)

UltraLo 1800 Alpha Particle Counter

Environmental Petrochemical, Pharmaceutical, Foods & Flavors, Chemicals, Personal Care, Forensics,...and more!

FAILURE SCENARIOS AND MITIGATIONS FOR THE BABAR SUPERCONDUCTING SOLENOID

PERFORMANCE SPECIFICATION PROPELLANT, HYDROGEN

Operation of Compressors Through Use of Load Stands

Specifications for the CMI 2409 Magnetocardiograph

Development of a Passive Helium Heat Switch for Fast Cool Down by Two-Stage Cryocooler

The HumiSys. RH Generator. Operation. Applications. Designed, built, and supported by InstruQuest Inc.

System Optimization &

Influencing Factors Study of the Variable Speed Scroll Compressor with EVI Technology

Transcription:

1 Mid InfraRed Instrument (MIRI) Cooler Cold Head Assembly Acceptance Testing and Characterization M. Petach, M. Michaelian Northrop Grumman Aerospace Systems Redondo Beach, CA 90278 USA ABSTRACT The Cooler Subsystem for the Mid InfraRed Instrument (MIRI) of the James Webb Space Telescope (JWST) utilizes a remotely mounted Cold Head Assembly as the final cooling stage of the pre-cooled Joule-Thomson cooler. The cooler s Cold Head Assembly recently completed its acceptance testing. This paper describes the Cold Head Assembly and summarizes the cryogenic refrigeration performance results. These results are compared with theory and program requirements. These results are also compared to the test results from the flight-like model which preceded it, which was used in the JWST ISIM Cryo-Vac#1 testing. INTRODUCTION The Mid InfraRed Instrument Cooler Subsystem (MIRI Cooler) is a closed cycle helium Joule-Thomson (JT) cryocooler pre-cooled by a three-stage pulse tube cryocooler. The basic architecture and design parameters of this cooler have been described previously [1,2,3,4,5]. The MIRI Cooler consists of four major subassemblies which are integrated into the spacecraft separately and then interconnected. These four subassemblies (Figure 1) are: The Cryocooler Electronics Assembly (CCEA) The Cryocooler Compressor Assembly (CCA) The Cryocooler Tower Assembly (CTA) The Cold Head Assembly (CHA) This paper focuses on the Cold Head Assembly (CHA), which is the remote JT cold head that resides within the JWST observatory s Integrated Science Instrument Module. The CHA consists of the JT restriction (which provides the pressure drop of JT cooling), the remote recuperator (which provide the thermal isolation between the 6K and the 18 K gas), the Optical Module heat exchanger (OMHX) (which conducts heat from the instrument into the cold helium gas), as well as bypass valves (which reroute helium flow for bypass operation as opposed to JT cooling operation).

2 1 1 (CCEA) (CCA) (CTA) Cold Head Assembly (CHA) Figure 1 Block diagram indicating the flight components under test. The MIRI Cooler Subsystem Block Diagram from reference [5] has the flight components. SH HX indicated the OM shield heat exchanger. JT stands for Joule-Thomson, CCE stands for Cryocooler Control Electronics, RSA stands for Relay Switch Assembly, RLDA stands for Refrigerant Line Deployment Assembly, and BPV stands for Bypass Valve. HSA REC is the lowest temperature recuperator, and OMS HX is the low temperature heat exchanger which removes the load from the MIRI optical bench and its focal plane modules. The cryocooler s Flight Model Cold Head Assembly (FM CHA) (Figure 2) has recently completed its acceptance testing, including refrigeration performance testing. COOLER SUBSYSTEM PERFORMANCE TESTING Refrigeration performance testing of the FM CHA was performed in a fashion similar to that used to demonstrate the Development Model (DM) Cooler, as described in Reference 5. Performance testing was conducted in a complete end-to-end cooler configuration, with Development Model components used in place of flight components everywhere except the Figure 2 Acceptance test configuration used to verify the refrigeration performance of the flight Cold Head Assembly.

Flight Model Coldhead Assembly. The DM Pulse Tube pre-cooler, the DM pre-cooler recuperator, the helium tubing representing the length of the CTA tubing, and the Flight Model remote Cold Head Assembly were all tested within a 36 inch bell-jar vacuum chamber. This chamber included cooled shields to simulate the cold environment inside the Integrated Science Instrument Module (ISIM) (Figure 2). The rejected heat was removed from the compressor flight interfaces using conventional laboratory recirculating chillers. 3 The test facility and the hardware under test were extensively instrumented. The electrical power required by the compressors was measured with laboratory digital power meters. Resistive heaters were used to apply the explicit heat loads and simulate the parasitic loads that are required for the flight operation of the instrument. Laboratory grade voltage and current measurements of these heaters was used to determine heat loads. Temperatures at various locations along the JT flow circuit were monitored using Cernox temperature sensors. The helium mass flow was measured with conventional laboratory equipment. The helium pressures were measured at the JT compressor ports and the supply and return ports of the CHA, using conventional laboratory pressure gauges. This extensive instrumentation allowed subassembly performance to be assessed, as well as overall refrigeration performance. The instrumentation layout along the JT helium flow circuit is shown in Figure 3. Cooling lift at the OM heat exchanger was measured as a function of temperature, both in the initial cool-down, or bypass mode where the pre-cooled helium gas bypasses the Joule- Thomson restriction and passes directly through the OM heat exchanger, and in the Joule- Thomson mode. The equivalent of 475 W of bus power is supplied to the cooler during the cooldown, and the equivalent of 400 W is supplied when data is taken around the steady state temperature. The thermal rejection temperature of the pre-cooler compressors is controlled with an actively controlled liquid cooled heat exchanger. The required 18 Kelvin and refrigerant line heat loads are applied to the resistive heaters in close thermal contact with the refrigerant lines and the HSA structure. The electrical power applied to the OM HX is then adjusted to achieve the desired OM HX temperature. From this data the maximum OM heat exchanger load at full bus power, both at the pinch point and at steady state, was measured. Figure 3 Instrumentation of Temperature, Pressure, mass flow, and applied load at various location along the JT cooler flow path. Triangles indicated temperature measurement, squares indicate heaters, circles indicate pressure measurements; the larger rectangle indicates a mass flow measurement location. These measured parameters are used to check cooler performance against predictions, and to define subassembly interface requirements.

4 Figure 4 Measured refrigeration performance data points, compared to the program requirements. Data from three different hardware sets are plotted: a) FM HSA and FS 6K HX tested in ATP1a b) FL HSA and FM 6K HX tested in ATP1c, and c) DM HSA and DM 6K HX Cooler in the DM Test. Data for refrigeration lift vs. temperature for the three operating modes of the cooler (bypass mode cool down, pinch point traverse, and steady state operation) is shown. RESULTS AND ANALYSIS The measured refrigeration lift at the OM HX as a function of the OM HX temperature is shown in Figure 4. In addition to the refrigeration at the OM HX, the cooler also simultaneously lifts 18K line loads, equivalent to the sum of the flight required loads from the ISIM s actively cooled shield and from the parasitic load on the refrigeration line as they traverse the spacecraft. The power to the compressors is equivalent to the allocated power allowed by the flight requirements, and the reject temperature at the compressor interfaces is the maximum as defined by the flight requirements. The conditions corresponding to the operating modes in Figure 4 are summarized in Table 1. The measured data for the FM CHA is plotted in Figure 4 along side with the data from the DM CHA [5] and the data from the flight like CHA configuration. The flight like CHA has flight pedigree components everywhere except in the bypass valve, which is a non-flight early generation valve, and the decontamination valve, which is not present. The three CHA configurations for the three hardware instances tested and plotted in Figure 4 are summarized in Table 2. Table 1 Bus power, reject temperature and 3 rd stage loads applied during the measurement of cooler s refrigeration performance at the OM HX Bus Power Allocation Reject temperature 3 rd stage heat load on the 18K lines Cooldown 475 Watts DC 315K 203 mw Steady State 400 Watts DC 315K 232 mw

Test configuration Table 2 The three CHA hardware instances and their configurations as tested. CCEA CCA CTA CHA CHA Refrigerant HSA lines DM Lab Elec DM Simulated Simulated DM ATP1c Lab Elec DM Simulated Simulated FL FM ATP1a Lab Elec DM Simulated Simulated FM FS CHA OM HX 5 The lift vs. temperature characteristic of the cooler spans three operating modes. The first of these is the initial cool down, which is done in by circulating cold helium from the precooler while bypassing the remote recuperator and the JT restriction. In this bypass mode cool down mode the OM HX lift vs. temperature has the characteristic linear decrease in lift with temperature of the Pulse tube precooler. When the temperature is well below the JT inversion temperature of approximately 30 K (typically at approximately 16K-18K), the helium is sent through the JT recuperator and restriction. The additional refrigeration provided via the Joule- Thomson effect causes the refrigeration to increase as the temperature drops. Once the OM HX has reached the requisite 6.2K the cooler switches to the third, steady state mode. In steady state mode the cooler s input power is reduced to meet the steady state science power allocation, which reduces the refrigeration lift. Figure 5 Expanded view of the measured cooler performance in the steady state (science acquisition) temperature region as measured on three instances of the CHA hardware. Again, data from the following are plotted: a) FM HSA and FS 6K HX tested in ATP1a is shown for two different helium fill pressures. Red triangles are the measured data points for a return pressure of approx 4.02 bar, with a dashed blue line connecting these points simply to guide the eye. Green squares are the measured data points for a return pressure of approx 4.57 bar, with a solid orange line connecting these points simply to guide the eye. b) FL HSA and FM 6K HX tested in ATP1c: The blue circle is the measured data point c) DM HSA and DM 6K HX Cooler in the DM Test: Unfilled blue triangles are the measured data points with a dashed red line connecting these points simply to guide the eye.

6 Figure 6 Comparison of measured refrigeration to ideal lumped theory using helium properties from NIST Refrop 8 and Refrop 9. The required minimum lift at the OM HX is shown in Figure 4 as the horizontal line. The lift in all hardware instances and in all cooler modes is seen to meet the requirement. The data in the steady state science mode is shown again in Figure 5, with the scales expanded so that the data points corresponding to the three different hardware instances can be identified. In this figure, as in Figure 4, the lines connecting the data points are purely to guide the eye. The measured data in steady state can be compared with a simple lumped thermodynamic model in order to determine how effective the CHA is compared to an ideal system. The simple lumped model consists of a lumped recuperator with an effectiveness of e followed by an isenthalpic restriction and an ideal heat exchanger. The recuperator effectiveness [Reference 6], is defined as the ratio of the actual enthalpy exchange between the high and low pressure gas streams to the maximum possible enthalpy exchange between them, e=dh actual /dh max. Note that which one of the two streams has the limiting heat capacity changes depending upon the pressures of operation, so the limiting dh max must be ascertained for each operating point. The enthalpies at the state points labeled 1 and 5 in Figure 3 are determined from the known Figure 7 Comparison of measured refrigeration to theory using helium Properties from NIST Refrop 8. Recuperator effectiveness of 99.85% provides best match of theory to data.

temperatures and pressures and the NIST published values for helium enthalpy as a function of temperature and pressure [7,8]. The ideal refrigeration based on the CHA s incoming helium gas temperature and pressure, and its return gas pressure can then be determined using an effectiveness of e=1, which is compared to the measured data for steady state operation at two different fill pressures (Figure 6). Since there was a significant change in the published helium properties in the region of temperature and pressure that the CHA operates, which occurred [7,8] during the time frame of these tests, Figure 6 shows the comparison against both versions of the published helium properties. The actual effectiveness (which in this case includes not only the effectiveness of the recuperator but all the potential heat transport through the bypass circuit) which results in the lumped model best matching the data ranges from e=99.70% to e=99.85% depending on whether NIST properties from 2007 [7] or 2013 [8] are used. This indicates that the combined recuperator and valve effectiveness is very near the ideal limit. 7 CONCLUSION The measurements reported here demonstrate the ability of the MIRI Cooler s Coldhead Assembly to meet the MIRI cooling requirements within the allocated power and thermal rejection constraints. The end-to-end cooler performance as a function of helium fill pressure was characterized, providing a basis for determining the optimal fill pressure for the flight cooler. The comparison between the DM, the FL-HSA, and the FM HSA Cold Head Assemblies shows that the design and manufacturing techniques are well understood and captured. The comparison of the measured refrigeration performance to a simple 4 port thermodynamic model indicates that the refrigeration performance is near ideal and is well understood. ACKNOWLEDGMENT This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the United States Government under a Prime Contract between the California Institute of Technology and NASA. REFERENCES 1. D. Durand, J. Raab, R. Colbert, M. Michaelian, T. Nguyen, M. Petach, and E. Tward, NGST Advanced Cryocooler Technology Development Program (ACTDP) Cooler System, Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference CEC, vol. 51, edited by J. G. Weisend II (2006), pp. 615-622. 2. D. Durand, R. Colbert, C. Jaco M. Michaelian, T. Nguyen, M. Petach, and E. Tward, " NGST Advanced Cryocooler Technology Development Program (ACTDP) Cooler System in the 14th International Cryocooler Conference," Cryocoolers 14, ICC Press, Boulder, Colorado (2007), pp. 21-29. 3. D. Durand, R. Colbert, C. Jaco M. Michaelian, T. Nguyen, M. Petach, and J. Raab, Mid InfraRed Instrument (MIRI) Cooler Subsystem Prototype Demonstration, Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference CEC, vol. 53, edited by J. G. Weisend II (2008), pp. 807-814. 4. D. Durand, D. Adachi, D. Harvey C. Jaco, M. Michaelian, T. Nguyen, M. Petach, and J. Raab, "Mid InfraRed Instrument (MIRI) Cooler Subsystem Design in the 15th International Cryocooler Conference Cryocoolers 15, ICC Press, Boulder, Colorado (2009), pp. 7-12. 5. M. Petach, D. Durand, M. Michaelian, J. Raab, and E. Tward, "MIRI Cooler System Design Update" Cryocoolers 16, ICC Press, Boulder, Colorado (2011), pp. 9-12 6. B. Maytal, J. M. Pfotenhauer, "Miniature Joule-Thomson Cryocooling Principles and Practice International Cryogenics Monograph Series, Springer, New York (2013) 7. E.W. Lemmon, M.O. McLinden, M.L. Huber, NIST standard reference database 23: REFPROP: Reference fluid thermodynamic and transport properties, (8.0), National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2007.

8. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2013. 8