Risk assessment of hull fouling as a vector for marine non-natives in Scotland

Similar documents
Management options for vessel hull fouling: an overview of risks posed by in-water cleaning

Marine Pathway Plan. Frequently asked questions. Contents

Tracey Bates Adviser, Plants and Pathways Directorate Regulation and Assurance Branch New Zealand Ministry for Primary Industries

Regional Recreational Vessel Fouling Survey: Summer 2016/17. Top of the South Marine Biosecurity Partnership

Regional Recreational Vessel Hull Fouling Survey and Boater Questionnaire. Top of the South Marine Biosecurity Partnership

Appearance of a cryptogenic tunicate, a Didemnum sp. fouling marina pontoons and leisure craft in Ireland

Introduced species. in tropical waters. CURRENT STATE OF KNOWLEDGE March 2004

Regional Recreational Vessel Fouling and Marine Pest Survey 2017/18. Top of the South Marine Biosecurity Partnership

The Role of Marine Science in Supporting the Implementation of the Canadian Aquatic Invasive Species Regulations Thomas W.

Aquatic Invasive Species

Marine Biosecurity Planning for multiple stakeholders the Loch Creran Experience

USING BIOLOGICALLY IMPORTANT PHYSICAL CHARACTERISTICS OF ESTUARIES TO CLASSIFY AUSTRALIAN AND NEW ZEALAND ESTUARIES

Maryland Chapter Trout Unlimited Brook Trout Conservation Effort

Invasive Species Student Worksheet

URBANISING OUR OCEANS

Observed non-indigenous and cryptogenic species in the Baltic Sea

Invasive Species Student Worksheet

Official Journal of the European Union L 248/17

RESOLUTION MEPC.162(56) Adopted on 13 July 2007 GUIDELINES FOR RISK ASSESSMENT UNDER REGULATION A-4 OF THE BWM CONVENTION (G7)

AREAS BEYOND NATIONAL JURISDICTION: INDIAN OCEAN DEVELOPING COASTAL STATES TUNA MANAGEMENT WORKSHOP

A Combined Recruitment Index for Demersal Juvenile Cod in NAFO Divisions 3K and 3L

Version: 1.0 Last amendment: 16/01/2012. Contact Officer: Animal Welfare Officer

Contents Earthworms in North America Zebra Mussels in Western Europe and North America Canadian Waterweed in Europe

STOCK STATUS OF SOUTHERN BLUEFIN TUNA

Invasive Species Act, Jeremy Downe Invasive Species Program/Policy Advisor Ministry of Natural Resources and Forestry February 8, 2017

Factors influencing production

6/23/2010. Characteristics of Invasive Species

EU request to provide advice on fisheries-related anthropogenic impacts on eels in EU marine waters

Advice October 2014 Version 2, December-2014

5. purse seines 3 000

California State Lands Commission Marine Invasive Species Program Hull Husbandry Reporting Form. Part I: Reporting Form

University of Miami Rosenstiel School of Marine and Atmospheric Science. Billfish Research Program

EXECUTIVE SUMMARY. Argyll Marine Special Areas of Conservation

9.4.5 Advice September Widely distributed and migratory stocks Herring in the Northeast Atlantic (Norwegian spring-spawning herring)

MARINE INVASIVE SPECIES PROGRAM ANNUAL VESSEL REPORTING FORM

Predation on and Distribution of Orconectes Crayfish Species in Tenderfoot Lake, Wisconsin/Michigan

ASSESSMENT OF THE WEST COAST OF NEWFOUNDLAND (DIVISION 4R) HERRING STOCKS IN 2011

Chagrin River TMDL Appendices. Appendix F

General Guidance on the Voluntary Interim Application of the D1 Ballast Water Exchange Standard in the North-East Atlantic and the Baltic Sea

Whiting (Merlangius merlangus) in Division 6.a (West of Scotland)

Eastern Brook Trout. Roadmap to

Identification Guide. Invasive Non-Native Species in the Isle of Man

10.4 Advice May 2014

Sproat Lake Invasive Species

Hull Fouling s a Drag on Boats and Local Ecosystems

SCIENTIFIC COMMITTEE NINTH REGULAR SESSION August 2013 Pohnpei, Federated States of Micronesia

Zebra mussels DISCUSSING ENVIRONMENTAL ISSUES

Recent changes in invasive zebra mussel abundance in Gull Lake. Jeffrey D. White GLQO Annual Meeting 12 August 2014

Eastern and South Shore Nova Scotia Lobster LFAs The Fishery. DFO Atlantic Fisheries Stock Status Report 96/117E.

Climate and Fish Population Dynamics: A Case Study of Atlantic Croaker

5.1.2 Haddock Melanogrammus aeglefinus L. - hyse. General stock features

Firth of Clyde Marine INVASIVE Non-Native Species Identification Guide

N.H. Sea Grant Research Project Post Completion Report For time period 2/1/15 1/31/16

Delegation of Australia

Floodplain degradation and restoration in Northern Queensland: The response of the Alien Fish Pest Gambusia holbrooki

TITLE: Assessing the Hydrodynamic Performance of Fouling-Release Surfaces (ONR Research Contract # N WR )

Why Invasions Matter

Distribution of the Atlantic Bottlenose Dolphin (Tursiops truncatus) in the Chesapeake Bay Drainage in Virginia

Green crabs: invaders in the Great Marsh Featured scientist: Alyssa Novak from the Center for Coastal Studies/Boston University

SA New Trial Artificial Reef Project

Protect Our Reefs Grant Interim Report (October 1, 2008 March 31, 2009) Principal investigators: Donald C. Behringer and Mark J.

Herring in the North Sea, Exploitation and Conservation. Presentation by Dr Beatriz A. Roel

JIFSAN Good Aquacultural Practices Program Use of HACCP Principles to Control Antibiotic Residues in Aquacultured Products

Substrate Preference between two Caprellid species: Caprella mutica and Caprella drepanochir

Biocomplexity and fisheries sustainability. Ray Hilborn Tom Quinn Daniel Schindler School of Aquatic and Fishery Sciences University of Washington

WHALE SHARK (Rhincodon typus) RECOVERY PLAN

Scottish Natural Heritage Commissioned Report No Initial response to the invasive carpet sea squirt, Didemnum vexillum, in Scotland

IMPLEMENTATION. Argyll Marine Special Areas of Conservation

National Fish and Wildlife Foundation Closure Memo

Advice June 2014

COMMISSION OF THE EUROPEAN COMMUNITIES. Proposal for a COUNCIL REGULATION. establishing measures for the recovery of the stock of European Eel.

Developing a programme to make Taranaki predator-free

Catch per unit effort of coastal prawn trammel net fishery in Izmir Bay, Aegean Sea

The Protection of Vulnerable Marine Ecosystems in the Northwest Atlantic: NAFO Processes and Regulations

Innovation 2016 The first antifouling silicone in adhesive film without biocide. Press release

Significant Ecological Marine Area Assessment Sheet

Decadal scale linkages between climate dynamics & fish production in Chesapeake Bay and beyond

NASCO Guidelines for the Management of Salmon Fisheries

RESOLUTION MEPC.136(53) Adopted on 22 July 2005 DESIGNATION OF THE BALTIC SEA AREA AS A PARTICULARLY SENSITIVE SEA AREA

ATLANTIC STURGEON. Consultations on listing under the Species at Risk Act

Past environments. Authors

Capacity of transport infrastructure networks

"Recommended Improvements for the Next Pacific Salmon Treaty"

Management and Control of Asian Carps in the United States. Greg Conover Asian Carp Working Group, Chair USFWS, Carterville FRO

The presence of exotic species, such as zebra mussels, can often become problematic

Hunting in protected areas CEM Sustainable Use & Management of Ecosystems (SUME) SSC/CEESP Sustainable Use and Livelihoods (SULi)

LUTREOLA - Recovery of Mustela lutreola in Estonia : captive and island populations LIFE00 NAT/EE/007081

SAFETY MANAGEMENT MANUAL SOP-PRT-007N. Ballast Water Management Plan (Proteus)

BioInvasions Records (2014) Volume 3, Issue 2: The Author(s). Journal compilation 2014 REABIC

SMOOTH HAMMERHEAD SHARK (HHS)

Fishing and Marine Protected Areas: how can we best share the fish...?

The Herzliya Indices. National Security Balance The Civilian Quantitative Dimension. Herzliya Conference Prof. Rafi Melnick, IDC Herzliya

17-06 BFT RECOMMENDATION BY ICCAT FOR AN INTERIM CONSERVATION AND MANAGEMENT PLAN FOR WESTERN ATLANTIC BLUEFIN TUNA

Coastal fish nurseries: the need for a wide vision at habitat and ecological function scales

Eastern Shore Islands Area of Interest Community Newsletter

The History of Commercial Fishing in Prince Edward Island

Vulnerability in small-scale coastal fisheries from northern coast of Sao Paulo, Brazil, in face of global environmental change

Appendix 7: Fisheries Management

Section Purpose, Applicability, and Date of Implementation.

Freshwater Biodiversity Conservation. Focus often on genetically distinct populations, species, and species communities. Wetla nds

Transcription:

Aquatic Invasions (2006) Volume 1, Issue 4: 214-218 URL: http://www.aquaticinvasions.ru 2006 European Research Network on Aquatic Invasive Species Research article Risk assessment of hull fouling as a vector for marine non-natives in Scotland Gail Ashton 1 *, Karin Boos 1,2, Richard Shucksmith 1 and Elizabeth Cook 1 1 Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll, PA37 1QA, Scotland, Email: gail.ashton@sams.ac.uk 2 Alfred Wegner Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Post Box 180, 27483, Helgoland, Germany *Corresponding author Received 19 September 2006; accepted in revised form 6 November 2006 Abstract To determine the importance of recreational boating as a vector for distributing marine organisms, including non-native species, the extent of hull fouling species on recreational yachts in Scotland was assessed. In August 2006, up to 100 yachts in each of the ten largest marinas in Scotland were ranked using a fouling index. 23 yacht owners were asked a questionnaire to determine the importance of general characteristics of the yacht and its travel history in relation to the level of hull fouling. 59 % of the yachts surveyed were found to have macrofouling attached to their hulls, suggesting that recreational boating has a high potential for distributing marine species throughout Scotland. Increased age of the antifouling paint, as well as long stationary periods and reduced sailing activity increase the risk of macrofouling species attaching to hulls. Recreational boating must be considered as a high risk vector for non-native species in Scotland. Key words: Hull fouling, recreational boating, distribution, marine, non-natives, Scotland Introduction Hull fouling is a significant vector for the introduction of non-native species (Eno et al. 1997, Cohen and Carlton 1998, Hewitt et al. 1999, Gollasch 2002). Non-native species were identified in 98 % of samples taken from commercial ship hulls in the North Sea (Gollasch 2002). Traditionally, hull fouling has been studied on commercial tankers and container ships (e.g. Godwin 2001, Gollasch 2002, Coutts and Taylor 2004). Recreational vessels were considered less likely to support extensive fouling accumulations due to a frequent cleaning regime, their relatively fast speed, and those on long voyages were unlikely to reside for long periods of time (>30 d) in any single port (Carlton and Hodder 1995). However, recreational boating can be responsible for the spread of non-native species, especially on a local scale (Johnson and Carlton 1996, Johnson et al. 2001, Bax et al. 2002). It is the local, secondary spread within a country that will ultimately determine the extent of the economic and environmental impact of a non-native species (Lodge et al. 1998). The proliferation of marinas for recreational vessels over recent decades is a worldwide phenomenon (Minchin et al. 2006) and recreational vessels have become increasingly implicated in the spread of marine non-native species (e.g. Undaria pinnatifida (Harvey) Suringar 1872, Hay 1990; Mytilopsis sallei Recluz 1849, Field 1999). Fouling species are generally small-sized sedentary, burrow-dwelling or clinging species (Galil and Zenetos 2002), larger fouling species distributed outside of their native 214

range include the serpulid polychaete, Ficopomatus enigmaticus Fauvel 1923 (Zibrowius 1979) the bryozoan, Tricellaria inopinata d Hondt and Occhipinti-Ambrogi 1985 (Occhipiniti- Ambrogi and d'hondt 1994) and the non-native marine algae Codium fragile spp. tomentosoides (van Goor) Silva 1955 and Undaria pinnatifida (Harvey) Suringar 1872 (Bird et al. 1993; Fletcher and Farrell 1998). There has been no systematic survey along coastal areas of individual countries in the northern hemisphere to assess the importance of recreational boating in the distribution of marine non-natives. Although, a recent study by Minchin et al. (2006) lists several cases where small craft have been recorded or implicated in the introduction of non-indigenous species in the northern hemisphere. In New Zealand, Floerl et al. (2005) used quantitative screening techniques to assess the importance of ocean-going yachts in the transport of organisms. An ordinal rank scale was found to provide reliable indications of the abundance and diversity of fouling organisms. However, classification tree models explained comparatively little of the fouling variation, whereas the age of the antifouling toxic paint on yacht hulls was considered the principal risk factor for hull fouling. To date, four non-native species have been described from marinas in Scotland (Caprella mutica Schurin 1935, Codium fragile spp. tomentosoides, Sargassum muticum (Yendo) Fensholt 1955 and Styela clava Herdman 1882; Ashton et al. (2006). These species are most likely spread, and others potentially introduced on the submerged surfaces of recreational boats. The aim of this study was to use a ranking scale method and a boat-owners questionnaire based on the study by Floerl et al. (2005) to assess the importance of recreational boating as a vector for marine species in Scotland. Methods The ten largest marinas in Scotland were surveyed between the 21st and 24th August 2006 [see Ashton et al. (2006) for marina details]. In each marina, up to 100 yachts were ranked according to a fouling index (Table 1). A fouling rank of 2 or greater indicates the presence of macrofouling species, whilst rank 3 relates to the presence of at least one or more taxa occurring in patches on the hull. Ranks 4 and 5 relate to differences in the percentage coverage of more than one taxa (16-40 % and 41-100 %, respectively). The yacht hulls were ranked using surface observations which may not be a true indication of the extent of fouling on deeper, submerged surfaces, but was found to be a reliable indicator by Floerl et al. (2005). Table 1. Fouling index ranks according to Floerl et al. 2005 Rank 0 1 2 3 4 5 Description No visible fouling. Hull entirely clean, no biofilm on visible submerged parts of the hull. Slime fouling only. Submerged hull areas partially or entirely covered in biofilm, but absence of any macrofouling. Light fouling. Hull covered in biofilm and 1-2 very small patches of macrofouling (only one taxon). 1-5 % of visible submerged surfaces fouled. Considerable fouling. Presence of biofilm, and macrofouling still patchy but clearly visible and comprised of either one single or several different taxa. 6-15 % of visible submerged surfaces fouled. Extensive fouling. Presence of biofilm and abundant fouling assemblages consisting of more than one taxon. 16-40 % of visible submerged surfaces fouled. Very heavy fouling. Diverse assemblages covering most of visible hull surfaces. 41-100 % of visible submerged surfaces fouled. Where yacht owners were present, they were asked a series of questions relating to general information about the boat, including origin and hull material, vessel maintenance and travel history in the past 12 months. Questions were designed to detect variables which have been shown to influence hull fouling on commercial and private vessels (Coutts 1999, Floerl 2002). Twenty-three questionnaires were completed in total. Results and Discussion 59 % of yachts surveyed had a fouling rank of 2 or greater (Figure 1); these yachts had evidence of macrofouling species. Yachts of all ranks were found in the survey (Figure 1). A further 20 % of yachts were ranks 4 or 5, indicating extensive and heavy macrofouling with multiple species. Confirmation of the reliability of the surface 215

% of yachts 40 35 30 25 20 15 10 5 0 n = 315 n = 201 n = 135 n = 90 n = 83 n = 42 0 1 2 3 4 5 Fouling rank spread non-native species (Minchin et al. 2006). Fouling species have been shown to successfully spawn and recruit from boat hulls within marinas (Apte et al. 2000). Recreational boating may, therefore, be an important vector in the secondary spread of marine non-native species. Further investigation is required on the level of risk that this vector presents in the secondary spread of non-native species. Figure 1. Distribution of fouling ranks of surveyed yachts in ten Scottish marinas (n = 866) fouling rank as an indicator of the level of fouling on submerged yacht surfaces is still required in UK waters, although this method has proven reliable in New Zealand (Floerl et al. 2005); care must be taken to include sessile and motile species in this analysis (Gollasch 2002, Fofonoff et al. 2003). In New Zealand, only 15 % of yachts surveyed had fouling ranks of 2 or greater (Floerl et al. 2005); this may be due to the use of yachts from overseas in the New Zealand study compared to both international and domestic yachts surveyed in the present study. In order for international ships to arrive at New Zealand, they must cross oceanic waters where macrofouling organisms are likely to be dislodged, prevented from feeding, or are unable to survive changes in environmental conditions experienced during oceanic voyages (Pyefinch 1950, Carlton and Hodder 1995). It is also unlikely that the yachts remain in a single port for a period long enough to accumulate fouling species (Carlton and Hodder 1995). The origin of the majority of the yachts surveyed in the present study was within the UK (Table 2). While recreational yachts may not be important for dispersing non-natives over long distances, they are more likely to result in successful introductions at a local scale. 78 % of species identified on commercial ships were considered unlikely to succeed in North Sea habitats due to the difference in climatic conditions from their native habitat (source regions experiencing a warm-temperate or tropic climate; Gollasch 2002). Recreational yachts frequently travel short distances and there is a high probability, therefore, that the source and recipient areas will be within the same climatic region, and that the fouling species will survive in the receiving habitat if similar environmental conditions exist. There is strong variation, however, in the potential of domestic craft to Table 2. Results from questionnaire, grouped according to fouling rank (a rank of 2 indicates presence of macrofouling species). Rank <2, n = 16 2, n = 7 General information and vessel maintenance 1 Origin UK (1 from Sweden) UK 2 Hull material Fibreglass Fibreglass (1 wood) 3 Age of anti-fouling paint 4 Professional/ private cleaning 5 Manual hull cleaning? 6 Time since last manual clean 5.42±5.31(SD) 25% professional Travel history in last 12 months 7 Last port of call 8 Time in last port 9 Longest period stationary 10 Sailing activity (days) 9.14±7.84(SD) 36% yes 71% yes 6.48±4.29(SD) Within Scotland 2.10±1.83(SD) 1.95±1.84(SD) 52.7±66.6(SD) 43% professional 6.43±4.27(SD) Within Scotland (1 Ireland) 4.14±7.44(SD) 3.93±3.94(SD) 23.6±16.1(SD) The age of antifouling paint was on average higher in yachts with a fouling rank of 2 or greater (Table 2). The age of the antifouling application on yacht hulls is considered the principal risk factor for hull fouling; most paints will only prevent fouling for 9-18 months (Floerl et al. 2005). There were also differences in the vessel maintenance record between yachts with and without macrofouling. In a study of commercial ships arriving at Hawaii (Godwin 2001), the most 216

serious hull fouling vectors were vessels that were poorly maintained. The cleaning record was considered less important when explaining the variation in hull fouling of yachts in the present survey and that of Floerl et al. (2005). Travel history varied between yachts with different fouling ranks (Table 2). Yachts which had spent a long time in their most recent port of call, a long stationary period, and engaged in less sailing activity in the last 12 months were more likely to have macrofouling species. This is not considered a surprising result as there is more opportunity for settlement and establishment of fouling species on these stationary yachts. Non-native species have been found on yacht hulls on the west coast of Scotland (e.g. Caprella mutica, pers. obs.). Once introduced to a marina, there is a high probability that a species would be spread further via recreational yacht hulls; most likely to habitats of similar environmental conditions where the species can successfully establish. Both nationally and internationally, hull fouling is as yet an unmanaged vector and represents a significant risk for the introduction of non-native species (Minchin and Gollasch 2003, Hewitt et al. 2004). In New Zealand, hull cleaning guidelines have been introduced (http://www.biodiversity.govt.nz/seas/biosecurity) and developed. Australia has also implemented successful control procedures at man-made marinas and has protocols in place for the management of future non-natives (Bax et al. 2002). European coastal areas should be prepared to implement similar management procedures. Consideration of recreational boating as a vector for marine non-natives must be included in all proactive management plans for marine nonnative species. Acknowledgements We are grateful to all the marina officers who permitted access to their pontoon structures and to all boat owners who completed the questionnaire. This work was funded by Esmée Fairbairn Foundation Marine Aliens project (Reference EN/04-0395). References Apte S, Holland BS, Godwin LS and Gardner JPA (2000) Jumping ship: A stepping stone event mediating transfer of a non-indigenous species via a potentially unsuitable environment. Biological Invasions 2: 75-79 Ashton GV, Boos K, Shucksmith R and Cook EJ (2006) Rapid assessment of the distribution of marine non-native species in marinas in Scotland. Aquatic Invasions 1: 209-213 Bax N, Hayes K, Marshall A, Parry D and Thresher R (2002) Man-made marinas as sheltered islands for alien marine organisms: Establishment and eradication of an alien invasive marine species. In Veitch CR and Clout MN (Eds.) Turning the tide: the eradication of invasive species. IUCN SSC Invasive Species Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK Bird CJ, Dadswell MJ and Grund DW (1993) First record of the potential nuisance alga Codium fragile ssp. tomentosoides (Chlorophyta, Caulerpales) in Atlantic Canada. Proceedings of the Nova Scotia Institute of Science 40: 11-17 Carlton JT and Hodder J (1995) Biogeography and dispersal of coastal marine organisms: experimental studies on a replica of a 16th Century sailing vessel. Marine Biology 121: 721-730 Cohen AN and Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279: 555-558 Coutts ADM (1999) Hull fouling as a modern vector for marine biological invasions: investigation of merchant vessels visiting northern Tasmania. M.App.Sc. thesis. Australian Maritime College, Tasmania Coutts ADM and Taylor MD (2004) A preliminary investigation of biosecurity risks associated with biofouling on merchant vessels in New Zealand. New Zealand Journal of Marine and Freshwater Research 38: 215-229 Eno NC, Clark RA and Sanderson WG (Eds.) (1997) Nonnative marine species in British waters: a review and directory, Peterborough, Joint Nature Conservation Committee Field D (1999) Disaster averted? Black striped mussel outbreak in northern Australia. Fish Farming International 26: 30-31 Fletcher RL and Farrell P (1998) Introduced brown algae in the north east Atlantic, with particular respect to Undaria pinnatifida (Harvey) Suringar. Helgoländer Meeresuntersuchungen 52: 259-275 Floerl O (2002) Intracoastal spread of fouling organisms by recreational vessels. PhD thesis. James Cook University, Townsville, Australia Floerl O, Inglis GJ and Hayden BJ (2005) A risk-based predictive tool to prevent accidental introductions of nonindigenous marine species. Environmental Management 35: 765-778 Fofonoff P, Ruiz GM, Steves B and Carlton JT (2003) In Ships or on Ships? Mechanisms of transfer and invasion for nonnative species to the coasts of North America. In Ruiz GM and Carlton JT (Eds.) Invasive species: vectors and management strategies. Washington, Island Press Galil BS and Zenetos A (2002) A Sea Change: Exotics in the eastern Mediterranean. In Leppäkoski E, Gollasch S and Olenin S (Eds.) Invasive aquatic species of Europe: distribution, impacts and management. Kluwer Academic, Dordrecht, The Netherlands Godwin LG (2001) Hull fouling of maritime vessels as a pathway for marine species invasions to the Hawaiian Islands. 24th meeting of the Marine Facilities Panel (MPF) of the United States Japan Cooperative Program in Natural Resources (UJNR). Hawaii 217

Gollasch S (2002) The importance of ship hull fouling as a vector of species introductions in to the North Sea. Biofouling 18: 105-121 Hay CH (1990) The dispersal of sporophytes of Undaria pinnatifida by coastal shipping in New Zealand, and implications for further dispersal of Undaria in France. British Phycological Journal 25: 301-313 Hewitt CL, Campbell ML, Thresher RE and Martin JB (1999) Marine biological invasions of Port Phillip Bay, Victoria. CSIRO. Centre for Research on Introduced Marine Pests, Tech Rep No 20, 344 pp Hewitt CL, Willing J, Bauckham A, Cassidy AM, Cox CMS, Jones L and Wotton DM (2004) New Zealand marine biosecurity: delivering outcomes in a fluid environment. New Zealand Journal of Marine and Freshwater Research 38: 429-438 Johnson LE and Carlton JT (1996) Post-establishment spread of large-scale invasions: dispersal mechanisms of the zebra-mussel Dreissena polymorpha. Ecology 77: 1686-1690 Johnson LE, Ricciardi A and Carlton JT (2001) Overland dispersal of aquatic invasive species: a risk assessment of transient recreational boating. Ecological Applications 11: 1789-1799 Lodge DM, Stein RA, Brown KM, Covich AP, Bronmark C, Garvey JE and Klosiewski SP (1998) Predicting impact of freshwater exotic species on native biodiversity: Challenges in spatial scaling. Australian Journal of Ecology 23: 53-67 Minchin D and Gollasch S (2003) Fouling and ships' hulls: how changing circumstances and spawning events may result in the spread of exotic species. Biofouling 19: 111-122 Minchin D, Floerl O, Savini D and Occhipinti-Ambrogi A (2006) Chapter 6: Small craft and the spread of exotic species. In Davenport J and Davenport JL (Eds.) The Ecology of Transportation: Managing Mobility for the Environment. Springer, The Netherlands. Occhipiniti-Ambrogi A and D'hondt AA (1994) The invasion ecology of Tricellaria inopinata in the lagoon of Venice: morphological notes on larva and ancestrula. In Hayward PJ, Ryland, JS and Taylor PD (Eds.) Biology and Palaebiology of Bryozoans. Olsen and Olsen, Fredensberg, Denmark Pyefinch KA (1950) Notes on the ecology of ship-fouling organisms. The Journal of Animal Ecology 19: 29-35 Zibrowius H (1979) Serpulidae (Annelida Polychaeta) de l océan Indien arrivés sur des coques de bateaux à Toulon (France). Rapports et procès-verbaux des réunions, Commission internationale pour l Exploration scientifique de la mer Méditerranée 25/26: 133-134 218