More female red foxes Vulpes vulpes on bait sites in spring

Similar documents
MODULE 2. Conservation needs of cheetah and wild dogs and related threats to their survival. Notes:

Major threats, status. Major threats, status. Major threats, status. Major threats, status

Life history Food Distribution Management... 98

Canon Envirothon Wildlife Curriculum Guidelines

2009 Update. Introduction

Biologist s Answer: What are your goals? Deer Management. Define goals, objectives. Manager s Question: Should I cull or shoot spikes?

Population Parameters and Their Estimation. Uses of Survey Results. Population Terms. Why Estimate Population Parameters? Population Estimation Terms

ALTERNATIVE DEER MANAGEMENT PLAN FOR GAME MANAGEMENT UNITS. 12A, 12B, 13A, 13B, 16A, 45A, 45B, 45C, and White-tailed Deer Units

Wildlife Management. Wildlife Management. Geography 657

Job Title: Game Management, Subsection B Game Management Mountain Lion

IMPROVING POPULATION MANAGEMENT AND HARVEST QUOTAS OF MOOSE IN RUSSIA

A Review of Mule and Black-tailed Deer Population Dynamics

Size and spatial distribution of the blue shark, Prionace glauca, caught by Taiwanese large-scale. longline fishery in the North Pacific Ocean

ANTLER MALFORMATION PRODUCED BY LEG INJURY IN WHITE-TAILED DEER 1

EXECUTIVE SUMMARY Feasibility Study on the Reintroduction of Gray Wolves to the Olympic Peninsula

Status Report on the Yellowstone Bison Population, August 2016 Chris Geremia 1, Rick Wallen, and P.J. White August 17, 2016

Monitoring Amur Leopards in Southwest Primorskii Krai, Russia

White-tailed Deer: A Review of the 2010 Provincially Coordinated Hunting Regulation

Status and management of large carnivores in. Estonia. Peep Männil Nature Department Estonian Environment Agency. Photo: Toomas Tuul

LUTREOLA - Recovery of Mustela lutreola in Estonia : captive and island populations LIFE00 NAT/EE/007081

West Coast Rock Lobster. Description of sector. History of the fishery: Catch history

Regulated hunting re-shapes the life history of brown bears

Ecology and Environmental Impact of Javan Rusa Deer (Cervus timorensis russa) in the Royal National Park

SUBJ: Supporting document for March PWC staff mountain lion presentation

Michigan Predator-Prey Project Phase 1 Preliminary Results and Management Recommendations. Study Background

CHEETAH PROJECT Cheetah Conservation Fund. Interviewers name Date

[USP5655] [USP5650] [USP5653] [USP5649] [USP5654] [USP5648] 121 [USP5652] grazers 33. predator grazers 124 [USP5647]

Job Title: Game Management, Subsection B Game Management Mountain Lion. SPECIES: Mountain Lion

Job Title: Game Management, Subsection B Game Management Mountain Lion. SPECIES: Mountain Lion

IUCN Guidelines for THOPHY HUNTING to promote conservation. Sandro Lovari

Mammal Management and Diseases In Delaware

Furbearer Management Newsletter

Stakeholder Activity

Findings and Guidelines Wednesday, March 12, 2003 Page 1

BROWN BEAR MANAGEMENT IN SLOVENIA. Marko JONOZOVIČ, B.Sc. Slovenia Forest Service Head of Wildlife & Hunting Department

Summary of Research within Lamlash Bay No-Take Zone - Science report for COAST July

Demography of three populations of American mink Mustela vison in Europe

THE MANAGEMENT AND CONSERVATION OF

Influence of nutritional condition on migration, habitat selection and foraging ecology of elk (Cervus elaphus) in western Wyoming

2017 LATE WINTER CLASSIFICATION OF NORTHERN YELLOWSTONE ELK

AN INCIDENTAL TAKE PLAN FOR CANADA LYNX AND MINNESOTA S TRAPPING PROGRAM

COSEWIC Assessment and Status Report for Grizzly Bear Western population (Ursus arctos) in Canada SUMMARY

Republic of Malawi. Country Profile. Giraffe Conservation Status Report. Sub- region: Southern Africa

USING THE CAMERA ESTIMATE METHOD FOR POPULATION ESTIMATES OF WILD RED DEER (Cervus elaphus) IN SOUTH EAST QUEENSLAND

DMU 361 Fremont Deer Management Unit Newaygo, Oceana, N. Muskegon Counties

Monitoring Population Trends of White-tailed Deer in Minnesota Marrett Grund, Farmland Wildlife Populations and Research Group

Ministry of Forests, Lands and Natural Resource Operations

2000 AP ENVIRONMENTAL SCIENCE FREE-RESPONSE QUESTIONS

BRIEFING on IBERIAN LYNX (Lynx pardinus) MANAGEMENT PLAN AT DOÑANA NATIONAL PARK

CHECKS AND BALANCES. OVERVIEW Students become managers of a herd of animals in a paper-pencil, discussionbased

Survival and Cause-specific Mortality of Red Deer Cervus Elaphus in Białowieża National Park, Poland

Long-tailed Weasel. Mustela frenata. Other common names. Introduction. None

Record of a Sixteen-year-old White-tailed Deer (Odocoileus virginianus) in Carbondale, Illinois: a Brief Note.

Regulation of the hunting season as a tool for adaptive harvest management first results for pink-footed geese Anser brachyrhynchus

In Pursuit of Wild Game: Investigating People s Perceptions of Hunting. Dr Shawn J. Riley Dr Göran Ericsson

TWENTY-SIX YEARS. Delisting the Yellowstone Grizzly Bear. A Lesson in Cooperation, Conservation, and Monitoring

Humans are 'unique super-predator'

Status and Distribution of the Bobcat (Lynx rufus) in Illinois

Initial Mortality of Black Bass in B.A.S.S. Fishing Tournaments

Implications of reducing Norway lobster (Nephrops norvegicus) minimum size (MLS/MCRS) in the Skagerrak and Kattegat area (IIIa).

Map Showing NAFO Management Units

Status and management of wolf in Estonia

Findings of the Alaska Board of Game BOG

021 Deer Management Unit

Utah Mountain Lion Status Report

Red deer calf tagging programmes in Scotland an analysis. Deer Commission for Scotland, Knowsley, 82 Fairfield Road, Inverness IV3 5LH

RE: Development of an Environmental Assessment for a mountain lion management plan on the Kofa National Wildlife Refuge, Arizona

Cormorants and fish populations

Investigating the Potential Role of Coyotes on Caribou Populations on the Island of Newfoundland. Report to the Harris Centre

Competitive Performance of Elite Olympic-Distance Triathletes: Reliability and Smallest Worthwhile Enhancement

Other Relevant International Standards OIE Global Conference on Rabies Control 7-9 September 2011, Incheon, Korea

POPULATION CHARACTERISTICS OF BROWN BEARS ON OSHIMA PENINSULA, HOKKAIDO

GLOBAL RE-INTRODUCTION PERSPECTIVES

Describe what is happening in figures 1-3. Is the population of mice different in figure 3 than in figure 1? Explain why.

SAC-08-10a Staff activities and research plans. 8 a Reunión del Comité Científico Asesor 8 th Meeting of the Scientific Advisory Committee

Summary of discussion

OREGON DEPARTMENT OF FISH AND WILDLIFE SUMMARY OF COUGAR POPULATION MODEL AND EFFECTS OF LETHAL CONTROL

Best Management Practices. for Trapping Badger in the United States

A Level Threatened. Species Trail. Answers

Deer Management Unit 152

Describe what is happening in figures 1-3. Is the population of mice different in figure 3 than in figure 1? Explain why.

The importance of Pedigree in Livestock Breeding. Libby Henson and Grassroots Systems Ltd

Project Updates January 2015

NEVADA DEPARTMENT OF WILDLIFE HARVEST MANAGEMENT GUIDELINES FOR HUNTING SEASONS

THE WOLF WATCHERS. Endangered gray wolves return to the American West

Deer Management Unit 252

EU request on management areas for sandeel in the North Sea

Fifth otter survey of England

Biodiversity benefits from NZ s major predator control regimes

Deer Management Unit 255

Keywords: 7SI/Brown bear/harvest/harvest quota/hunting/malme/management/ mortality/population size/trend/ursus arctos

Federal Aid in Wildlife Restoration Annual Performance Report of Survey-Inventory Activities 1 July June IS 0 N

.Conservation of the Fisheries of Lakes Victoria, Kyoga and Nabugabo

Teleosts: Evolutionary Development, Diversity And Behavioral Ecology (Fish, Fishing And Fisheries) READ ONLINE

Illinois Science and Social Science Standards 11.A.2e; 11.B.2a; 12.B.2a; 13.B,2f; 17.A.2b: 17.B.2b; 17.C.2c; 18.B.2b

Baltic Marine Environment Protection Commission Group on Ecosystem-based Sustainable Fisheries Gothenburg, Sweden, May 2016

2012 Kootenay-Boundary Mule Deer Management Plan: Outline and Background Information

Phillip Island Nature Park an example of sustainable ecotourism

The Qamanirjuaq Caribou Herd An Arctic Enigma by Leslie Wakelyn

FACILITATING THE MANAGEMENT OF FOXES ON PRIVATE LAND: ARE LANDHOLDERS INTERESTED?

Transcription:

More female red foxes Vulpes vulpes on bait sites in spring Author(s): Jens Galby and Olav Hjeljord Source: Wildlife Biology, 16(2):221-224. Published By: Nordic Board for Wildlife Research https://doi.org/10.2981/08-008 URL: http://www.bioone.org/doi/full/10.2981/08-008 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Wildl. Biol. 16: 221-224 (2010) DOI: 10.2981/08-008 Ó Wildlife Biology, NKV www.wildlifebiology.com Short communication More female red foxes Vulpes vulpes on bait sites in spring Jens Galby & Olav Hjeljord The red fox Vulpes vulpes has traditionally been subjected to control efforts throughout much of its range. In this article, we present data on the sex and age composition of red foxes culled at bait sites in an area of southeastern Norway. While an excess of males were shot in early and mid-winter, equal proportions of males and females were shot in early spring. Apparently, females are more nutritionally stressed in March due to pregnancy and therefore visit bait sites more frequently. Culling earlier in winter will predominantly remove males and will bias the sex composition in the population towards females. Key words: control, female behaviour, sex/age ratio, Vulpes vulpes Jens Galby* & Olav Hjeljord, Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5014, N-1432 A s, Norway - e-mail addresses: jens.galby@anticimex.no (Jens Galby); olav.hjeljord@ umb.no (Olav Hjeljord) *Present address: Galbyveien 245, N-1540 Vestby, Norway Corresponding author: Olav Hjeljord Received 28 January 2008, accepted 22 March 2010 Associate Editor: Graeme Coulson Due to its impact on game and livestock, and also because it is an important vector of rabies, the red fox Vulpes vulpes is subjected to control attempts throughout much of its range (Macdonald 1980, Saunders & McLeod 2007). Culling methods include trapping, poisoning, hunting with dogs for adults and for pups at den sites and hunting at night, either by searching an area by car and spotlight or by lying in wait near a bait site. While culling will reduce fox populations at some temporal and spatial scales, the various methods differ in their effectiveness as population control methods (Hewson 1986, Gorta zar et al. 2003, Virgo s & Travaini 2005, Saunders & McLeod 2007). This is related partly to the ability of the red fox to compensate for hunting mortality and decreasing population density through increased production of pups and partly to its migratory and social behaviour (Storm et al. 1976, Caughley 1977, Hewson 1986, Newsome et al. 1989). Red fox populations usually consist of resident adults which, to varying degrees, defend their territories against other foxes, and of young floaters without a territory (Schantz 1981, 1984, Corbet & Harris 1991). While most subadult males disperse, a varying proportion of females may stay in their mothers territories (Jensen 1973, Macdonald 1979, Englund 1980). The effect of hunting on a red fox population will depend both on the sex and age groups removed and on the time of the year during which the hunting takes place. If mostly young floaters are shot, the effect of hunting will probably be low. On the other hand, removal of adult, resident foxes, especially pregnant females in late winter, will probably have a higher impact on the population. In agricultural areas of Scandinavia, one of the most popular hunting methods for red fox is shooting at bait sites at night. The bait is placed in an open area where foxes commonly travel at night and is maintained from early fall and throughout the winter. The hunter hides in a barn or a specially constructed shelter. Hunting at night requires snowcovered ground or artificial light for good visibility. Ó WILDLIFE BIOLOGY 16:2 (2010) 221

In this article, we compare the age and sex of red foxes shot at bait sites in late winter with those shot earlier in the season in an area of southeastern Norway. We also present data on subsequent bags of red foxes following one year of intensive local sport hunting. The hunting was carried out by local hunters within the regular hunting season. Material and methods We collected red foxes shot at bait stations during the hunting seasons of 2004/05 and 2005/06 from an area of approximately 500 km 2 in southeastern Norway (59815 N). This area is later referred to as the coastal area. We compared the sex and age composition of foxes shot in late winter with that of foxes shot earlier in the season. Hunting was particularly intensive at three neighbouring bait stations, which were located on a transect with approximately 0.6 km between the first and second and 1 km between the second and third stations, and which are later referred to as the core stations. We compared the sex and age composition of foxes shot at these stations during the season of 2005/06 with those shot during the previous season of 2004/05. The coastal area is a typical lowland, agricultural area of southeastern Norway, located 5-10 km from the coast and dominated by fields, fragmented forests and scattered farms. The coastal area is located in the region which has the highest fox density in Norway, estimated at 20 animals/10 km 2 in early fall (Hjeljord 2008; Norwegian Bureau of Hunting Statistics, unpubl. data). Foxes have always been hunted in the area, but hunting was intensified during the 2004/05 and 2005/06 hunting seasons, particularly at the core stations. Hunting effort (i.e. number of hunting nights) did not differ substantially between the two seasons. We also collected some foxes from an inland location 300 km farther to the north. This location, later referred to as the interior, is dominated by forest. At this location, most foxes were hunted using dogs and only a few were shot at bait sites. We determined the sex and age of the foxes by counting the cementum layers on the roots of canine teeth (Harris 1978). The first cementum layer usually becomes visible during the fox s second summer (Harris 1978). Thus, if the microscopic counting revealed no cementum layers, the fox s age was set at 0, meaning that the fox was born last spring and still in its first year. We dissected uteri from females shot in March, counted the number of foetuses, and if possible, determined the sex of the foetuses. We analysed data using contingency tables and Fisher s exact test together with simple t-tests and v 2 -tests. We used the SAS R version 9.2 (SAS Institute Inc. Cary, North Carolina, USA), the FREQ procedure and EXACT statement due to small sample sizes. Results In the coastal area, a total of 58 and 65 foxes were shot at bait sites in 2004/05 and 2005/06, respectively. There was an excess of males among foxes shot during fall and winter (October through February); the male:female ratio was 27:13 in 2004/05 (v 2 ¼ 1.86, df ¼ 1, P ¼ 0.17) and 39:13 in 2005/06 (v 2 ¼ 5.91, df ¼ 1, P ¼ 0.02). However, in early spring (March) 2005 and 2006, the male:female ratio was 7:11 and 6:7, respectively, which did not differ significantly from a 50:50 ratio (v 2 ¼0.113, df ¼ 1, P ¼ 0.74 and v 2 ¼ 0.0434, df ¼ 1, P ¼ 0.84, respectively; Fig. 1). Of the foxes shot in the coastal area, 36 and 32 Figure 1. Male (grey) and female (open) proportions of red foxes shot at bait sites in southeastern Norway during the hunting seasons of 2004/05 and 2005/06. 222 Ó WILDLIFE BIOLOGY 16:2 (2010)

were shot at the core stations during 2004/05 and 2005/06, respectively. Although the number of animals shot during the two seasons was similar, more young of the year were shot during the 2005/06 (75%) than during the 2004/05 hunting season (47%; v 2 ¼5.92, df¼1, P¼0.0215). The proportion of females in the bag decreased from 2004/05 (male:female ratio of 24:12) to 2005/06 (male:female ratio of 27:5), and while five females 1 years old were shot in 2004/05, only one was shot in 2005/06. The difference in the proportion of the sexes between seasons was, however, not significant (Fisher s exact test: P¼0.16). All of the four females shot at the core stations in March 2005 were pregnant. The male:female ratio of 44 foxes hunted using dogs and shot in the interior area was 21:23. Only 17 foxes were shot at bait sites in this area and of these, 11 were males and six were females. We could not test for difference in the sex ratio between the two hunting methods due to small sample sizes. We dissected 19 female foxes shot during March. Of these, two shot in late March showed signs of already having given birth, and therefore they were excluded from further analysis. Of the remaining 17 females, 10 were young of the year and eight of these were pregnant with an average of 3.8 foetuses. Of the seven females 1 years old, six were pregnant with an average of 4.3 foetuses. The difference in number of foetuses was not significant (t ¼ 0.419, df¼15, P¼0.68). Of the 31 foetuses old enough for sex determination, 16 were male and 15 were female. Discussion The sex ratio of foxes shot at bait sites during early and mid-winter was skewed towards males. The even sex ratio of foetuses and the difference in sex ratio among foxes shot at bait sites and those hunted with dogs in the interior area, clearly indicate that there is a male bias among foxes shot at bait sites during this time of the year, even if the sex composition of the population is even. We see three possible reasons for the male bias: most subadult males leave their natal home ranges, whereas subadult females emigrate less frequently (Jensen 1973, Englund 1980). This may also imply that female foxes are more stationary at a smaller scale and are less likely to roam far enough to encounter baits. It is a common assumption among fox hunters that male foxes are less shy than female foxes (Kraabøl 2003). Thus the male foxes may expose themselves more frequently by readily accepting bait close to farmhouses. Late winter is the mating season of the red fox in Scandinavia (Lindstro m 1984). Male foxes increase their activity during this period (Cavallini 1996), which may increase their chances of finding a bait. The male:female ratio of foxes shot in early spring (March) showed a different and actually opposite trend to the ratio of foxes shot during the rest of the year, with more females being shot during March. The most likely reason for this difference is that although females may generally be shyer than males, they become nutritionally stressed and less cautious during this month due to pregnancy. This conclusion may be supported by similar observations of other animal species. An excess of pregnant female beavers Castor fiber were shot during spring hunting (Parker et al. 2002). Female beavers are usually the first to appear in the evening and venture more frequently onto land than do the rest of the animals in a colony. Also collared pikas Ochotona collaris forage farther from the talus when pregnant (Holmes 1991), and bighorn sheep Ovis canadensis trade safety for access to more nutritious food during the last month of pregnancy (Berger 1991). Neither the hunting effort nor the number of foxes shot at the core stations differed substantially between the hunting seasons of 2004/05 and 2005/ 06. However, there were changes in the age composition of the bag. The increased proportion of subadults shot during the intensified hunting of the 2004/05 season follows a general trend in heavily hunted fox populations (Storm et al. 1976, Hewson 1986, Gorta zar et al. 2003). It is, however, surprising that hunting restricted to a small local area (the three core stations), apparently has an effect at the population level. This may be explained by foxes from a larger area making excursions outside their territory to search for spots with good food supplies (Cavallini 1996). Conclusion Since attempts to control the red fox are carried out in many regions of the world, there is a need for knowledge on how culling can be carried out in the Ó WILDLIFE BIOLOGY 16:2 (2010) 223

most efficient way. Our studies show that when hunting at bait sites is applied, reproductive females are most effectively removed in March. Culling earlier in winter will predominantly remove males and bias the sex composition in the population towards females. Acknowledgements - we thank the many hunters who participated in the project, in particular Gunnar Andersen, who shot 94 of 167 the foxes used in our study. We thank Katrine Eldegard for assistance in data analysis. We received financial support from the Norwegian Directorate for Nature Management. References Berger, J. 1991: Pregnancy incentives, predation constraints and habitat shifts: Experimental and field evidence for wild bighorn sheep. - Animal Behaviour 41: 61-77. Caughley, G. 1977: Analysis of vertebrate populations. - John Wiley and Sons Ltd, New York, New York, USA, 234 pp. Cavallini, P. 1996: Variation in the social system of the red fox. - Ethology, Ecology & Evolution 8: 323-342. Corbet, G.B. & Harris, S. 1991: The handbook of British mammals. 3rd edition. - Blackwell Scientific Publications, Oxford, UK, 588 pp. Englund, J. 1980: Yearly variations of recovery and dispersal rates of fox cubs tagged in Swedish coniferous forests. - In: Zimen, E. (Ed.); The red fox. Biogeographica 18: 195-207. Gortázar, C., Ferreras, P., Villafuerte, R., Martín, M. & Blanco, J.C. 2003: Habitat related differences in age structure and reproductive parameters of red foxes. - Acta Theriologica 48: 93-100. Harris, S. 1978: Age determination in the red fox (Vulpes vulpes) - an evaluation of technique efficiency as applied to a sample of suburban foxes. - Journal of Zoology (London) 184: 91-117. Hewson, R. 1986: Distribution and density of fox breeding dens and the effects of management. - Journal of Applied Ecology 23: 531-538. Hjeljord, O. 2008: Viltet - biologi og forvaltning. - Tun forlag, Oslo, Norway, 352 pp. (In Norwegian). Holmes, W.G. 1991: Predator risk affects foraging behaviour of pikas: Observational and experimental evidence. - Animal Behaviour 42: 111-119. Jensen, B. 1973: Movements of the red fox (Vulpes vulpes L.) in Denmark, investigated by marking and recovery. - Danish Review of Game Biology 8, 20 pp. Kraabøl, M. 2003: Rev og revejakt. - Friluftsforlaget, Arendal, Norway, 152 pp. (In Norwegian). Lindstro m, E.R. 1984: Ra vens a r. - In: Markgren, L. (Ed.); Skogsvilt. Grimso Viltforskningsstation, Naturva rdsverket, Stockholm, Sweden, pp. 116-119. (In Swedish). Macdonald, D.W. 1979: Helpers in fox society. - Nature 282: 69-71. Macdonald, D.W. 1980: Rabies and wildlife: a biologist s perspective. - Oxford University, New York, New York, USA, 151 pp. Newsome, A.E., Parer, I. & Catling, P.C. 1989: Prolonged suppression by carnivores - predator removal experiments. - Oecologia 78: 458-467. Parker, H., Rosell, F., Hermansen, T.A., Sørløkk, G. & Stærk, M. 2002: Sex and age composition of springhunted Eurasian beaver in Norway. - Journal of Wildlife Management 66: 1164-1170. Saunders, G. & McLeod, L. 2007: Improving fox management strategies in Australia. - Bureau of Rural Sciences, Canberra, Australia, 206 pp. Schantz, T. von 1981: Female cooperation, male competition, and dispersal in the red fox Vulpes vulpes. - Oikos 37: 63-68. Schantz, T. von 1984: "Non-breeders" in the red fox Vulpes vulpes: a case of resource surplus. - Oikos 42: 59-65. Storm, G.L., Andrews, R.D., Phillips, R.L., Bishop, R.A., Siniff, D.B. & Tester, J.R. 1976: Morphology, reproduction, dispersal and mortality of mid-western red fox populations. - Wildlife Monographs 49, 82 pp. Virgo s, E. & Travaini, A. 2005: Relationship between small-game hunting and carnivore diversity in central Spain. - Biodiversity and Conservation 14: 3475-3486. 224 Ó WILDLIFE BIOLOGY 16:2 (2010)