Notes on equipment protection per EN/IEC and NEMA For Bourdon tube or diaphragm pressure gauges

Similar documents
Notes on equipment protection to DIN EN and NEMA

Bourdon tube pressure gauge, stainless steel For extremely low ambient temperatures down to -70 C Model PG23LT, with case filling

Expansion Thermometers Stainless Steel Series, Model 70

Diaphragm monitoring system with threaded connection For the chemical and petrochemical industries Model DMS34

Gas density monitor With integrated transmitter Model GDM-100-TI

Differential pressure gauge For the process industry Model , all-metal media chamber

Bourdon tube pressure gauges with glycerine filling, for chemical applications EN 837-1

High-performance submersible pressure transmitter For level measurement Model LH-10

1

Precision pressure sensor Basic version Model CPT6020

IP DEFINITIONS. Technical Notes. Definitions. IPXX Code

Compact differential pressure switch Flameproof enclosure Ex d Models DE, DEC

INGRESS PROTECTION RATIO IP

Bourdon tube pressure gauges for chemical applications EN 837-1

High-performance submersible pressure transmitter For level measurement Model LH-20

Hydraulic hand spindle pump Models CPP1000-M, CPP1000-L

Buying more than 11 gauges? Call Lesman for additional discounts.

High-performance submersible pressure transmitter For level measurement Model LH-10

High-performance submersible pressure transmitter For level measurement Model LH-20

HYDRA-line. HYDRA-Gauges Ultra High Purity Pressure Gauge Model HG. Pressure Systems. Applications. Special features. Description

Mechanical Pressure Measurement

High-speed pressure sensor Model CPT6140

Pressure Equalising Valves Model , for Differential Pressure Gauges

PKP Prozessmesstechnik GmbH. Borsigstrasse 24. D Wiesbaden-Nordenstadt. Tel: / Fax: / Operating Instructions

Aluminium, white with black lettering. Bar. Option with unit bar/pa, bar/psi, kpa, MPa, psi

Pneumatic high-pressure controller Model CPC7000

New! SOLFRUNT 659 Stainless Steel Pressure Gauges. Process Gauges A18

Hydraulic comparison test pump Models CPP1000-X, CPP1600-X

Hydraulic hand test pump Models CPP700-H and CPP1000-H

Pressure gauges EN All stainless steel construction PBX100, PBX150 (1.18) Functional and constructive characteristics

High-performance submersible pressure transmitter For level measurement Model LH-20

Bourdon tube pressure gauge for diaphragm seals

SOLFRUNT Model /2" (63mm) and 4" (100mm) Stainless Steel Gauges

Nominal size dim 63mm. Option with case dim 50 mm. Aluminium, white with black lettering

Pressure switch with bourdon tube

Pneumatic dead-weight tester Model CPB3500

Contents. Operating instructions. Pressure switch, heavy-duty version Model PSM-520

Bourdon Tube Pressure Gauges Ultra High Purity (UHP) Series Type

Pressure gauges EN Safety pressure gauges solid-front PBXSF100, PBXSF150 (1.20) Functional and constructive characteristics

BDT20 Safety process pressure gauge 100 & 160mm

Introduction IP codes are used in electrical product catalogs, etc., to indicate waterproofness and so on.

How to specify a product. Process Sensors and Mechanical Instruments

Installation and Maintenance Instruction Manual

Submersible pressure sensor High-performance Model LH-20

Hand-held pressure calibrator with integrated pump Model CPH6600

Pneumatic service kit Model CPG-KITP

High-performance submersible pressure transmitter For level measurement in hazardous areas Model LH-20

Precision digital pressure gauge Model CPG1000

Industrial pressure controller Model CPC4000

MEASURING INSTRUMENTS - STRUMENTI PER MISURARE

Product Catalogue. P-SERIES Pressure Gauges

Instrumentation Catalogue

Environmental Protection of HMI Components

High Purity & Ultra High Purity

Pressure measurement. Pressure gauges

Digital dead-weight tester Model CPD8500

3.0 Pressure Transmitter Selection

Safety and Longterm Accuracy of Bourdon Tube Pressure Gauges

Instruction Manual. CG16K Barometrically Compensated Capsule Dial Gauge. CG16K Capsule Dial Gauge, 0 to 25 mbar

McDaniel. General Service Gauges. (Brass Internals) Stainless Steel Case 1 1 /2 and 2 1 /2 Gauges. All Brass 2 and 2 1 /2 Gauges M C

Columbus Instruments

Precision hand-held pressure indicator Model CPH6400

Dead-weight tester High-pressure version Model CPB3800HP

Digital pressure gauge Model CPG500

Model /2" (63mm), 4" (100mm) and 6" (160mm) Open Front Stainless Steel Gauges

Session #: Selection of Explosion Protected Equipment for Hazardous Locations

PRESSURE & TEMPERATURE GAUGES PRESSURE TEMPERATURE. Catalogue H20200a

WIKA INSTRUMENT CORPORATION

Instrument Operating Manual

Digital pressure gauge Model CPG500

Pneumatic high-pressure controller Model CPC7000

LMP 307. Stainless Steel Probe. Stainless Steel Sensor. accuracy according to IEC 60770: standard: 0.35 % FSO option: 0.25 % / 0.

Flow meter. bellow vaporizer. APL valve. Scavenging system

Non-corrosive gas Liquid. Corrosive gas

DS/PI-14 DIAPHRAGM SEAL TEMPERATURE ERROR

PKP Prozessmesstechnik GmbH. Borsigstrasse 24. D Wiesbaden-Nordenstadt. Tel: / Fax: / Operating Instructions

Pressure Measurement Single-range transmitters for general applications

BOSHART INDUSTRIES Telephone: Toll Free: Fax:

29 Pressure, Temperature relationship of a gas

SR500 PAPR Copyright 2015 by The S.E.A. Group 1

Chlorinator MODEL MK-I

Valves. Diaphragm shut-off valves, kidney-type

BOSHART INDUSTRIES Telephone: Toll Free: Fax:

Pressure and Temperature Gauges

Propane Conversion Kit Instruction

ATEX VACUUM PUMPS AND GAUGES CHEMICALLY RESISTANT, OIL-FREE AND SAFE

CTK Co., Ltd. (Ho-dong) 113, Yejik-ro, Cheoin-gu, Yongin-shi Gyeonggi-do KOREA, REPUBLIC OF Tel: Fax:

CTK Co., Ltd. (Ho-dong) 113, Yejik-ro, Cheoin-gu, Yongin-shi Gyeonggi-do KOREA, REPUBLIC OF Tel: Fax:

Propane Conversion Kit Instruction

ATM.ECO/IS - Analog Transmitter with Temperature compensation

Product information. Capacitive. Level detection in liquid VEGACAP 62 VEGACAP 63 VEGACAP 64 VEGACAP 66 VEGACAP 69. Document ID: 29983

FAS-W. Features. Applications. Automatic condensation hygrometer

AIR COMPRESSOR OPERATING INSTRUCTION AND PARTS LIST

Product information. Capacitive. Level detection with bulk solids VEGACAP 62 VEGACAP 65 VEGACAP 66 VEGACAP 67. Document ID: 29982

Pilot HON 625. Entwurf. Product information. serving the gas industry worldwide

High Precision Gauge Pressure Indicators

x act i Precision Pressure Transmitter for Food Industry, Pharmacy and Biotechnology Stainless Steel Sensor accuracy according to IEC 60770: 0.

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION

FINAL VERSION VERSION FINALE

TIGHTNESS. Glass sealing Thanks to our glass-sealing technology, ODU products can meet the most demanding tightness requirements.

Transcription:

Technical information Notes on equipment protection per EN/IEC 60529 and NEMA For Bourdon tube or pressure gauges WIKA data sheet IN 00.18 General information This technical information describes the measures to prevent both the formation of condensation within a hermetically sealed case, and also the intrusion of water into cases vented to the atmosphere. It applies for both Bourdon tube pressure gauges and pressure gauges. 1. Introduction and explanation of physical conditions The formation of condensation in the cases of hermetically sealed, unfilled instruments cannot generally be avoided. This is based on the physical fact that the humidity found in air, In addition, water in the form of splash, jet and rain water under particular conditions, settles on cold surfaces as from outside can intrude into the case, so long as the instrument is vented to atmosphere. condensation. The warmer the air, the more humidity it can hold. If the air cools (e.g. at the window of a gauge), then the air can only hold a small amount of humidity. The excess humidity settles as condensation on the window. 2. Explanation of the degrees of protection per EN/IEC 60529 Degrees of protection against solid foreign bodies, defined by the first index number First index Degree of protection number Code designation Definition 0 Not protected 1 Protected against solid foreign bodies of 50 mm 2 Protected against solid foreign bodies of 12.5 mm 3 Protected against solid foreign bodies of 2.5 mm 4 Protected against solid foreign bodies of 1.0 mm The object probe, a round body of 50 mm diameter, must not fully intrude 1) The object probe, a round body of 12.5 mm diameter, must not fully intrude 1) The object probe, 2.5 mm in diameter, must not intrude at all 1) The object probe, 1.0 mm in diameter, must not intrude at all 1) 5 Dust protected Ingress of dust is not completely prevented, but dust may not intrude in a such a quantity that the satisfactory operation of the instrument or safety is impaired 6 Dust tight No ingress of dust 1) The full diameter of the object probe must not pass through any opening in the case. Illustration 1 Source: EN/IEC 60529 WIKA data sheet IN 00.18 06/2016 Page 1 of 6

Degrees of protection against water, defined by the second index number Second index number Degree of protection Code designation Definition 0 Not protected 1 Protected against dripping water Perpendicularly falling drops must have no damaging effects 2 Protected against dripping water when the case is inclined to 15 Perpendicularly falling drops must have no damaging effects, when the case is inclined to an angle of up to 15, either side of perpendicular 3 Protected against sprayed water Water that is sprayed at an angle of up to 60, either side of perpendicular, must have no damaging effects 4 Protected against splash water Water that splashes against the case from any direction must have no damaging effects 5 Protected against water jets Water that splashes against the case, as a jet, from any direction, must have no damaging effects 6 Protected against strong water jets Water that splashes against the case, as a strong jet, from any direction, must have no damaging effects 7 Protected against the effects of temporary immersion in water 8 Protected against the effects of permanent immersion in water Illustration 2 Source: EN/IEC 60529 Water must not enter in any quantity which could cause damage, when the case, under standardised pressure and temperature conditions, is temporarily immersed in water Water must not enter in any quantity which could cause damage, when the case is permanently immersed in water, under conditions which must be agreed between the manufacturer and user. The conditions must, however, be more demanding than those for the index number 7 Example: Ingress protection IP65 First index number 6: Second index number 5: Dust tight, no ingress of dust Protected against water jets: Water that splashes against the case as a jet from any direction must have no damaging effects. 3. Comparison of NEMA (National Electrical Manufacturers Association) and EN/IEC 60529 NEMA ingress protection Model number 1 IP10 2 IP11 3 IP54 3 R IP14 3 S IP54 4 and 4 X IP66 5 IP52 6 and 6 P IP67 12 and 12 K IP52 13 IP54 Illustration 3 EN/IEC 60529 ingress protection Classification Page 2 of 6 WIKA data sheet IN 00.18 06/2016

4. Measures against the formation of condensation Different filling liquids depending on the ambient temperature and the electrical conductivity In order to avoid the formation of condensation in the case, WIKA recommends filling the instruments with glycerine. For contact gauges, the filling can be made with silicone oil, since silicone oil, unlike glycerine, is not hygroscopic and therefore prevents a short circuit within the instrument. If the ambient temperature drops below -20 C, then we recommend that the instrument absolutely must be filled with silicone oil. Even at temperatures down to -50 C, silicone oil can still be used due to its low viscosity. For flammable and/or explosive media, e.g. oxygen, inert filling liquids must be used. 5. Hermetically sealed instruments and effects associated with them In order to prevent the intrusion of water into the case, it is recommended that an ingress protection method is chosen that reliably inhibits this (see illustrations 1 and 2). The ingress protection demands that the instrument is hermetically sealed. With vented instruments, the vent valve has to be closed in order to achieve the specified ingress protection. This, however, produces a temperature error, which can affect the measuring result (see illustrations 4, 5 and 6). Therefore the vent valve has to be opened for a short time before reading the measured value. 5.1 Temperature errors for unfilled and filled Bourdon tube pressure gauges A standard 232.50/30 instrument with a pressure range greater than 25 can be made hermetically sealed without any problems, and manufactured with an ingress protection of IP66. The temperature error that occurs with these instruments is, since it is so small in relation to the pressure range, that the instrument still will operate within its specified class accuracy. Instruments with a scale range of less than 25 can likewise be made hermetically sealed, though a temperature error will then be present (see illustration 4). The temperature errors present are shown in the following graphs. Temperature errors in hermetically sealed, unfilled Bourdon tube pressure gauges in % Adjusted at 20 C Illustration 4 Temperature in C WIKA data sheet IN 00.18 06/2016 Page 3 of 6

Temperature errors in hermetically sealed, filled Bourdon tube pressure gauges Filled to 90 % with glycerine Illustration 5 Temperature in C Filled to 90 % with silicone oil in % in % Illustration 6 Temperature in C Page 4 of 6 WIKA data sheet IN 00.18 06/2016

5.2 Temperature error with unfilled and filled pressure gauges With model 4, 5 and 7 hermetically sealed pressure gauges, the temperature error for scale ranges 100 m is. For scale ranges < 100 m we recommend only using instruments with a pressure compensation. For instrument models 73x.14, 702.01/02/03, 700.01/02 and 7x2.15, due to their mechanical design, there are no additional temperature errors. 5.3 Model overview Pressure gauges for which the formation of condensation and the ingress of water from the outside can be prevented: Bourdon tube pressure gauges Diaphragm pressure gauges Model 232.50 Model 232.30 Model 233.50 filled Model 233.30 filled Model 233.30 filled, with pressure compensation all pressure ranges Model 4 and 7 Model 4 and 7 filled Model 4 and 7 with pressure compensation 25 < 25 25 < 25 > 100 m < 100 m > 100 m < 100 m all pressure ranges unavoidable unavoidable unavoidable Formation of condensation Hermetically sealed 1) 1) Hermetically sealed = airtight case Illustration 7 For influence see illustration 4 For influence see illustration 5 or 6 6. Pressure compensation As can be seen in illustration 7, formation of condensation in filled pressure gauges can be prevented by the use of pressure compensation s, without any temperature error. Pressure compensation s can be used for all safety pressure gauges per EN 837-1 S3. Technically not solvable Technically not solvable Model 4 and 7 filled, with pressure compensation all pressure ranges Plastic Illustration 8: Rear wall of case with pressure compensation, nominal size 63 Illustration 9: Rear wall of case with pressure compensation, nominal size 100 WIKA data sheet IN 00.18 06/2016 Page 5 of 6

Plastic Illustration 10: Rear wall of case with pressure compensation for contact gauges, nominal size 160 Blow-out rear wall with pressure compensation Pressure element Case with solid baffle wall Dial Window Laminated safety glass Socket Connection shank Movement with interchangeable movement retainer Pointer Sealing Bayonet ring Illustration 11: Exploded view drawing 09/2010 WIKA Alexander Wiegand SE & Co. KG, all rights reserved. The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials. Page 6 of 6 WIKA data sheet IN 00.18 06/2016 06/2016 EN WIKA Alexander Wiegand SE & Co. KG Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany Tel. +49 9372 132-0 Fax +49 9372 132-406 info@wika.de www.wika.de