Oceans in Motion: Waves and Tides

Similar documents
OCN 201 Tides. Tsunamis, Tides and other long waves

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS

Chapter 22, Section 1 - Ocean Currents. Section Objectives

WIND SPEED LENGTH OF TIME WIND BLOWS (Duration) DISTANCE OVER WHICH IT BLOWS (Fetch)

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches

Chapter 10 Lecture Outline. The Restless Oceans

Chapter. The Dynamic Ocean

What is a wave? Even here the wave more or less keeps it s shape and travelled at a constant speed. YouTube. mexicanwave.mov

Garrett McNamara, Portugal, 30 Jan What is a wave?

General Coastal Notes + Landforms! 1

Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College

Deep-water orbital waves

The Composition of Seawater

page - Laboratory Exercise #5 Shoreline Processes

The movement of ocean water is a powerful thing. Waves created

OCEAN WAVES NAME. I. Introduction

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack

THE RESTLESS SEA.

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted

MAR 110 LECTURE #16 Tides

LAB: WHERE S THE BEACH

The ocean water is dynamic. Its physical

4/20/17. #30 - Coastlines - General Principles Coastlines - Overview

MAR 110 LECTURE #22 Standing Waves and Tides

OECS Regional Engineering Workshop September 29 October 3, 2014

THE OCEAN IS ALWAYS IN MOTION. WHY IS THIS IMPORTANT? First we need to know what kinds of movement there are in the ocean. Three Kinds of Water

OCEANOGRAPHY STUDY GUIDE

Waves and Water By ReadWorks

Environmental Geology Chapter 11 COASTAL PROCESSES and RELATED HAZARDS

The Movement of Ocean Water. Currents

BEACH PROCESSES AND COASTAL ENVIRONMENTS

Chapter - Oceans and Coasts

Oceans and Coasts. Chapter 18

What are Waves? Earthquake. Waving flags. Vocal Cords Vibrate

Chapter 20 Lecture. Earth: An Introduction to Physical Geology. Eleventh Edition. Shorelines. Tarbuck and Lutgens Pearson Education, Inc.

Waves waves Waves are defined by the following: Wave height H Wavelength L Period T Velocity V Breaking Waves

Ocean Motion Notes. Chapter 13 & 14

SURFACE CURRENTS AND TIDES

Tides Unit III: Real Tides (2 pts)

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

Waves Unit II: Waves in the Ocean (3.5 pts)

Prof. B.S. Thandaveswara. The periodic rise and fall of the planetary ocean level in response to the gravitational

Reading Material. Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall

Waves Part II. non-dispersive (C g =C)

There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular

Swell and Wave Forecasting

El Niño Southern Oscillation. Pressure systems over Darwin Australia and Tahiti Oscillate Typically occurs every 4-7 years

Full STEAM Ahead: Waves. Version 1 25 April 2018

/50. Physical Geology Shorelines

Oceanography 10. Tides Study Guide (7A)

Waves & Currents. Ocean Explorer Module 3. Marine Science Lesson Enhancements based on Grade 11 & 12 curriculum in Physics, Chemistry & Biology

Swell and Wave Forecasting

COASTAL ENVIRONMENTS. 454 lecture 12

Earth Science Chapter 16 Section 3 Review

Overview and preview. I. Tides as Waves (really really big) What are the Forces driving these waves? II: Into make-believe.

Imagine that you can see a side view of a wave as it approaches a beach. Describe how the wave changes as the wave approaches the beach.

Chapter 11 Tides. A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks.

Oceans - Laboratory 12

R E M I N D E R S. v Two required essays are due by April 9, v Extra Credit: Think Geographically Essays from any five of the textbook s

Earth s oceans covers 71 % _ of the planet s surface. In reality, Earth s ocean waters are all. interconnected as part of a single large global ocean.

Peter Castro Michael E. Huber

3/9/2013. Build house on cliff for a view of the ocean - be one with said view Pearson Education, Inc. Shorelines: summary in haiku form

Nearshore Sediment Transport What influences the loss of sediment on Beaches? - Waves - Winds - Tidal Currents - River discharge - Runoff

Why Study Shorelines?

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

Marginal Marine Environments

Chapter 12: Coasts (after a brief review of Tides)

Mechanical Waves and Sound

1 Shoreline Erosion and Deposition

What causes the tides in the ocean?

G. Meadows, H. Purcell and L. Meadows University of Michigan

Introduction to Physical Oceanography STUDENT NOTES Date: 1. What do you know about solar radiation at different parts of the world?

Table of Contents. Chapter: Waves. Section 1: The Nature of Waves. Section 2: Wave Properties. Section 3: The Behavior of Waves

Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another.

The oceans are vast not only in size, but also in their ability to store and release energy.

Unit 4 Lesson 3 Earth s Tides. Copyright Houghton Mifflin Harcourt Publishing Company

4754(B)/01 MATHEMATICS (MEI) ADVANCED GCE UNIT. Applications of Advanced Mathematics (C4) Paper B: Comprehension INSERT THURSDAY 14 JUNE 2007 PMT

Shore - place where ocean meets land Coast - refers to the larger zone affected by the processes that occur at this boundary.

Equilibrium Model of Tides

A Little Math. Wave speed = wave length/wave period C= L/T. Relationship of Wave Length to Depth of Wave Motion

What causes the tides in the ocean?

Announcements. Project 2 due Nov 7 th Topics for today: Big waves. Tsunamis, seiches and tidal waves. Tsunamis and seiches

Unit 11 Lesson 2 How Does Ocean Water Move? Copyright Houghton Mifflin Harcourt Publishing Company

WAVE MOTION. Let's start with an intuition-building exercise that deals with waves in matter, since

Waves, Light, and Sound

Coastal management has lagged behind the growth in population leading to problems with pollution

QUIZ SET C: Oceanography 101. Chapter 8

Modeling Waves Through Various Mediums

Theory and Application Introductory Oceanography Ray Rector: Instructor

Chapter 20 Study Questions Name: Class:

TIDES. Theory and Application

MAR 110 LECTURE #15 Wave Hazards

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another.

Coasts. 1. Coastal Processes. 1.1 Coastal erosion. 1.2 Sediment transport. Coastal Processes and Landforms. i. Hydraulic action

Shorelines Earth Chapter 20 Chapter 20 Shorelines The Shoreline: A Dynamic Interface Cape Cod and Point Reyes Hurricane Sandy

Statistics for Five Oceans - (In reality there is only one world ocean but geopolitics and environmental groups leads to the naming of five oceans.

Ch19&21 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Waters rise and fall in tides.

WONDERLAB: THE EQUINOR GALLERY. The science and maths behind the exhibits 30 MIN INFORMATION. Topic FORCES. Age

Transcription:

Oceans in Motion: Waves and Tides Waves Waves are among the most familiar features in the ocean. All waves work similarly, so although we are talking about ocean waves here, the same information would apply to any other waves you might discuss in science classes. Ocean waves transport energy over vast distances, although the water itself does not move, except up and down. This may surprise you, but if you think about it, once you are past the breakers on your raft, you pretty much just bob up and down. (You might drift up the beach.we ll get to that.) This orbital motion is explained in the figure below: There are waves of all sizes and shapes rolling into the beach at any given time. If they re not stopped by anything, waves can travel across entire ocean basins and so the waves at your beach might be from a storm half a world away. The most familiar ocean waves are caused by the wind. These are wind-driven waves. This sort of motion is set up anytime two fluids rub together, and remember that the atmosphere is essentially fluid. Waves caused by underwater disturbances such as earthquakes, landslides, or volcanic eruptions are called tsunamis. These waves are typically tens to hundreds of kilometers long. The gravitational pull of the sun and moon on the earth causes the tides which are actually tidal waves. We ll get back to that. So we can talk about waves, it s important that you know some of their parts. The following list refers to the figure below: crest-the very top of the wave trough-the hollow between two crests wave height-the vertical distance between the top of one wave crest and the bottom of the next trough 1 of 5 5/9/12 3:55 PM

wavelength-the horizontal distance between any one point on one wave and the corresponding point on the next wave steepness-the ratio of height to length amplitude-the maximum vertical displacement of the sea surface from still water level (half the wave height) period-the time it takes for one complete wavelength to pass a stationary point wave speed-the velocity with which waves travel deep water waves-waves that are in water that is deeper than half their wavelength shallow water waves-waves that are in water that is shallower than 1/20 their wavelength (the important difference on these last two is whether or not the sea floor influences the motion of the wave) One waves motion is completely independent of any other wave motion. When two groups of waves meet, they pass right through each other. This is obvious if you consider light and sound waves. When two people talk or your child has both the TV and the stereo on, you can hear both. One set of sound waves doesn t garble the other. Likewise you can see two objects at the same time. What does happen, though is that waves can either add up or cancel each other out as they pass through one another. This property is called superposition. If a crest from one wave happens to line up with the trough of another, they cancel each other out. This is called destructive interference. If two waves line up crest to crest or trough to trough, they add up. This is called constructive interference. This is why waves at the beach are all different sizes. There are lots of different wave groups coming in, and they re interfering with each other in different ways. Standing waves result when two equal waves are going in opposite direction and in this case you get the usual up/down motion of the water surface but the waves don t progress. These are common in coastal areas where waves reflect off seawalls, ship s hulls, or breakwaters. They re also common in swimming pools. A special type of standing wave is a seiche. You can observe this by sloshing around in your bathtub (or, if you re less adventurous try walking with coffee). When you get just the right steady wave frequency going in your tub or your cup, the motion quickly builds up and water or coffee sloshes all over the place. When harbors are designed, care has to be taken to give water built up in seiches some way out other than sloshing up into the first floor condos. Waves Hitting Things When a wave hits a hard vertical surface it is reflected. In other words, the wall pushes the water back just as hard as it got pushed, and sets up waves in the other direction. With constructive interference, you end up with bigger and therefore stronger waves. This is why, in the long run, solid seawalls are not good for saving property from the ocean. You end up creating stronger waves that cause even more erosion. 2 of 5 5/9/12 3:55 PM

Waves are also refracted. When you re at the beach, it appears as if the waves are mostly coming ashore in a straight line. If those waves were generated all over the place out at sea, how is it they re all heading the same direction? Here is an example of shallow water waves (waves getting steered by the seafloor). They may come in at an angle, but the side that hits shallow water first gets slowed down by friction and the other side "catches up" bending around until they re parallel with shore. This is shown in the figure. You have no doubt noticed when you swim in the ocean that you tend to drift down the beach. This is called longshore drift and is a consequence of these refracting waves. Along with you, a lot of sand is getting moved along, and this is one way that our barrier island migrate up and down the coastline. Interestingly, because tsunamis have such long wavelengths, they are shallow water waves and so the seafloor steers them around. This is one reason it is so difficult to predict where these waves will have an impact, even if you know what started them and where. The other amazing thing is that they typically travel about 750 kilometers per hour (or 500 miles per hour)! Because they re so long and low, it s hard to identify one until it s close to shore and by then it s too late to warn coastal residents. Surfing Why is surfing good in some places and lousy elsewhere? To understand this, you need to understand how and why waves break. You ve got lots of waves all nicely refracted and heading into the beach. The ones in front start really getting dragged by the bottom and so they slow down. This allows the ones behind them to ride up their backs. As the distance between the rows of waves decreases, all that wave energy gets condensed into a narrower and narrower space and has to go somewhere, so the wave gets taller. Remember that the waves energy goes around in an orbit under the wave. These taller waves require stronger and bigger orbits, which you notice in the fact that just behind where the waves break, you really get pushed alternately toward shore and away from shore (note that unless it s a rip current, these waves are not actually going to push you out to sea---there s just that circular motion going on). Meanwhile, the waves are slowing down still more and at some point, the orbit speed gets ahead of the wave speed, and the wave sort of runs over itself. You see this as the wave cresting, and since the water can t support it, it breaks, releasing all the energy, and propelling your surfboard forward. There are 3 basic types of breaking waves, depending on the type of shoreline they re hitting. Spilling breakers occur on gently sloping coasts where the waves break slowly and over a long distance, with 3 of 5 5/9/12 3:55 PM

the crest spilling gently down the front of the wave. That s what we have here. If the coast is steeper, the waves slow down more quickly and so the crest curls way over the front of the wave and plunges down towards the base---in other words it curls. This is a plunging breaker and is a good surfing wave like you d have in Hawaii. In some cases, where the coastline if very steep, the wave builds up very suddenly and breaks right onto the beach. These are surging breakers. Tides The biggest waves in our oceans are the tides. These are caused by the gravitational forces between the earth and the sun and the moon. The moon has the biggest influence because it is close. It essentially pulls up a bulge in the ocean on the side of the earth closest to it. It actually pulls up the land too, but not as much. There is also a bulge on the side opposite the moon. This one is tougher to understand. I ve heard it explained two ways that seem to help: 1. Because of centrifugal force (more an effect of the earth and moon revolving together than an actual force), the ocean on the side of the earth opposite the moon is sort of thrown outward, like you are when you go around a bend in your car. 2. Imagine a race car, minivan, and bicycle starting a race. All three accelerate, and from the point of view of the minivan, the race car shoots out in front and the bicycle gets left behind. The way they 4 of 5 5/9/12 3:55 PM

spread out depends on the differences in rate of acceleration. Similarly, the side of the earth nearest the moon gets pulled out harder than the side away from the moon relative to the earth itself. The nearside shoots out ahead, and the backside gets left behind. I don t care which of these you prefer, as long as you get that there is this bulge on BOTH sides of the earth even though the moon is only on one side! So this bulge sort of sits there and we rotate around such that sometimes we re under the bulge and sometimes we re not. Since it takes 24 hours for the earth to complete a rotation, plus we have to catch up a little because while the earth was rotating, the moon was revolving around the earth, we are directly under a bulge, or experiencing high tide, about every 6 1/2 hours. Twice daily tides like this are called semidiurnal tides. It is also possible to have only one high and one low tide per day. That would be a diurnal tide. Partly this depends on your latitude, but it turns out that some 400 variables go into predicting the tide at any one place, so it isn t nearly this simple. The sun tugs on the oceans too, but since it s so far away, it has less influence than the moon. You can see the influence when the moon and sun and earth are all lined up. This would be during a full moon and a new moon. With both the sun and moon pulling the same direction, we get extra high high tides and extra low low tides (a big tidal range). These happen twice a month and are called spring tides. In between these, during the quarter phases of the moon, we get tides with the lowest ranges. These are called neap tides. 5 of 5 5/9/12 3:55 PM