A Closer Look at Fiber Optic Cable Assemblies

Similar documents
Expanded Beam Optical Termini

EUROPEAN pr I-ETS TELECOMMUNICATION September 1995 STANDARD

ST Connectors & Adapters

Teledyne Oil & Gas North Williamson Blvd. Daytona Beach, FL USA (phone) (fax)

TECH TIPS: ROPE DEFECTS

Optical Time Domain Reflectometer. Operating System 2 Windows XPe Windows XP Pro with desktop option 256 MB

Technical White Paper PREVENTIVE MAINTENANCE OF FIBER OPTIC CABLES AND OPTICS

PRODUCT SPECIFICATION. SFP+ Cage and Cage Assembly 1 of 8 A

APPLICATION NOTE AN-2100 PREVENTIVE MAINTENANCE OF FIBER OPTIC CABLES AND FINISAR OPTICS

Underwater pressure resistant. cables and harnesses for outboard use

DeZURIK Double Block & Bleed (DBB) Knife Gate Valve Safety Manual

RESOLUTION MSC.94(72) (adopted on 22 May 2000) PERFORMANCE STANDARDS FOR NIGHT VISION EQUIPMENT FOR HIGH-SPEED CRAFT (HSC)

DeZURIK. KSV Knife Gate Valve. Safety Manual

In-Line Fluid Monitoring Packages. Informer & ProControl 1KE

ISO INTERNATIONAL STANDARD. Hydraulic fluid power Filter elements Determination of resistance to flow fatigue using high viscosity fluid

FP15 Interface Valve. SIL Safety Manual. SIL SM.018 Rev 1. Compiled By : G. Elliott, Date: 30/10/2017. Innovative and Reliable Valve & Pump Solutions

Offshore // Marine // Subsea Cable solutions that thrive under pressure

SPECIFICATIONS PARTICLE SENSOR KS-18F Higashimotomachi, Kokubunji, Tokyo , Japan

DeZURIK. KGC Cast Knife Gate Valve. Safety Manual

Technical Data Sheet. R&M Closures

Reliability Technology for Submarine Repeaters

1200B2 Series Service Regulators. Instruction Manual

EL-O-Matic E and P Series Pneumatic Actuator SIL Safety Manual

Fuel Gas Pressure Control Solutions for Fired Heaters and Boilers

COMPARISON OF DIFFERENTIAL PRESSURE SENSING TECHNOLOGIES IN HOSPITAL ISOLATION ROOMS AND OTHER CRITICAL ENVIRONMENT APPLICATIONS

Advanced Test Equipment Rentals ATEC (2832) OMS 600

LIFTING MAGNETS ERIEZ MAGNETICS

Genesis MX SLM-Series

Solenoid Valves For Gas Service FP02G & FP05G

GE Oil & Gas Model. Masoneilan* Air Lock-up Valve Instruction Manual. GE Data Classification : Public

SPR - Pneumatic Spool Valve

AUW-D AUW AUX AUYSeries

INSTALLATION PROCEDURE FOR OPGW FIBER OPTIC CABLES

A hose layline contains important information for specifying the replacement assembly: manufacturer, hose trade name, working pressure and hose ID.

HydroCOM: High energy savings and excellent controllability

Data Center Products

Six Sigma Mask Testing with a BERTScope Bit Error Rate Tester. Application Note

Fibre Selection Guide

TONS! powerteam.com HEAVY LIFT CYLINDERS

Global SURF (Subsea Umbilicals, Risers and Flowlines) Market: 2018 World Market Review and Forecast to 2023

1.8 INDUSTRIAL PROCESS WEIGHING IN HAZARDOUS AREAS

J. J. Daly Metal Improvement Company Paramus New Jersey USA

RouteIT Cable Managers

Gasket material and seal integrity in Thermo Scientific 2D Barcoded Storage Tubes

Product Name: Angel Anchor

Underwater Fiber-Optic Plane Irradiance Collector

Compact Ball Valves ASAHI AV VALVES. Contents. User s Manual. (Page) (1) Be sure to read the following warranty clauses of our product 1

TRUSTED. DURABLE. RELIABLE.

AREA TOTALS OECD Composite Leading Indicators. OECD Total. OECD + Major 6 Non Member Countries. Major Five Asia. Major Seven.

Eutectic Plug Valve. SIL Safety Manual. SIL SM.015 Rev 0. Compiled By : G. Elliott, Date: 19/10/2016. Innovative and Reliable Valve & Pump Solutions

Gas Injection Systems

TIGHTNESS. Glass sealing Thanks to our glass-sealing technology, ODU products can meet the most demanding tightness requirements.

Local Solutions For Individual Customers Worldwide. Pressure Transmitter and Reader of the PT-RF Series. Product Catalogue

Operator s Manual. with Maintenance Schedule. Fourth Edition Second Printing Part No

Online DGA-monitoring of power transformers

Global Construction Outlook: Laura Hanlon Product Manager, Global Construction Outlook May 21, 2009

Operating Instructions for Intrinsically Safe Pressure Transmitters Series DMG/******** for Hazardous Application in Coal Mining Industry

Pneumatic QEV. SIL Safety Manual SIL SM Compiled By : G. Elliott, Date: 8/19/2015. Innovative and Reliable Valve & Pump Solutions

Lab Cock. Contents. User s Manual (1) Be sure to read the following warranty clauses of our product 1. (2) General operating instructions 2

Dräger ERS-Chamber Refuge Chambers

Membrane Housings. Reverse Osmosis Nanofiltration Ultrafiltration Microfiltration

Press Release. Friction Stir Welding: Grenzebach extends its portfolio

Blackwater Sensing: Providing long-term reliability for Blackwater sensors.

INSTRUCTIONS FOR USE

TRUSTED. DURABLE. RELIABLE.

Maintenance and Troubleshooting of Pneumatic Conveying Systems for Sand in a Foundry

Now with. Covers. Grade Level Box BULK FEATURES TESTING CRITERIA TECHNICAL SPECIFICATIONS

Safety Guidelines FOR ULTRA HIGH-PRESSURE HYDRAULIC APPLICATIONS.

Hydraulic (Subsea) Shuttle Valves

W E NE E D TO TA LK A BOUT COLD FLOW. The Problem With The Cold Flow Standard.

The Next Generation Easy-to-Deploy (ETD) Tsunami Assessment Buoy

This manual provides necessary requirements for meeting the IEC or IEC functional safety standards.

Instructions For Use USD3156. Kleenpak Capsule with Pegasus Protect Prefiltration Membrane

Guide for Evaluating Your Hose Assembly Supplier

Product Name: Hold Me Rope Anchor

RESILIENT SEATED BUTTERFLY VALVES FUNCTIONAL SAFETY MANUAL

OWNER'S MANUAL ENG. ran

Needle valve. Contents. User s Manual. (1) Be sure to read the following warranty clauses of our product 1. (2) General operating instructions 2

ThermoVault Max. Extreme Temperature Thermal Barrier. Product User Guide

INSTALLATION, OPERATION AND MAINTENANCE GUIDE

Rate of Flow Valve Series 120

OPERATOR S MANUAL. Pediatric/Infant cap-one Mask YG-232T/YG-242T A. General. Safety Information WARNING WARNING WARNING. Components WARNING

Outside Plant Single Armor Double Jacket

AVANTI ANCHOR SAFETY POINT User s, Maintenance and Installation Manual

IBDN BIX Cross-Connect System

The power of the wind

Water Flow Regulators. The Leading Water Flow Regulator Worldwide. Essential Equipment For every injection and blow molding machine

Protection for Vessels Engaged in Servicing Submarine Cables

TPM TIP. Oil Viscosity

Installation Instructions

The Criticality of Cooling

Gas Clean. Filters. Delivering Clean Gases for GC and GC/MS Operation

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION

Enbridge Pipelines Inc. PIPELINE INTEGRITY AXIAL CRACK THREAT ASSESSMENT

WORLD. Geographic Trend Report for GMAT Examinees

TRI LOK SAFETY MANUAL TRI LOK TRIPLE OFFSET BUTTERFLY VALVE. The High Performance Company

Adjustment & Calibration Instructions

USER MANUAL LTH-255A Hand Piece

Neles trunnion mounted ball valve Series D Rev. 2. Safety Manual

The International Coach Federation (ICF) Global Consumer Awareness Study

Transcription:

A Closer Look at Fiber Optic Cable Assemblies Many network performance problems occurring at the physical layer are directly related to cable assembly quality. In fact, the overall performance and reliability of a network port is only as good as the cabling to which it is connected. This is particularly true of optical fiber cable assemblies, where seemingly minute variances in tight fiber connectivity tolerances can drastically undermine cabling performance. While a percentage of assembly performance issues may be identified through field testing of installed channels, field testing is not inclusive of all potential issues. Although a critical step, field testing can provide a false sense of security. For example, a single passing result for insertion loss does not guaranty long term reliability. To help network infrastructure professionals understand the variables affecting the quality of fiber assemblies, Siemon has performed comprehensive benchmark testing on a representative assortment of commercially available fiber assemblies. The study included generic fiber jumpers purchased through on-line retailers that were produced by both domestic (US) and offshore assembly houses as well as assemblies from Siemon and other globally known brands - all purchased through authorized distributors. This benchmark testing provides a detailed review of mechanical and optical characteristics that are critical to the performance and longevity of these connections. www.siemon.com 1

FIBER OPTIC ASSEMBLIES Testing was performed on 36 random samples of duplex LC laser optimized multimode OM3 50/125 fiber jumpers from 9 suppliers Siemon, 4 other leading global manufacturers and 4 generic assembly houses. We tested each assembly to Siemon Internal specifications as well as TIA and IEC standards for end face geometry, optical performance, cleanliness and mechanical reliability. Every Siemon XGLO and LightSystem product is 100% tested and inspected for end face geometry, cleanliness, surface defects, insertion loss and return loss (both directions and both wavelengths). Each jumper is serialized and traceable to factory test results for insertion loss and return loss. Optical Performance Insertion loss and return loss performance are fundamental parameters used to assess the compatibility of optical fiber links and channels with the specific networking applications they support. Insertion loss is commonly used as the basis for acceptance testing of installed links and channels. Although return loss testing of installed cabling is not required by industry standards, it is a normative requirement for fiber connectors and assemblies. Return loss is critical to optical performance of links and channels because reflected optical signals can interfere with detectors on both the forward and rearward directions. These reflections degrade signal to noise ratio and are commonly presented using eye diagrams, with higher return loss resulting in a smaller eye opening (height, peak to peak). Likewise, testing in both directions and at both wavelengths will detect abnormalities that degrade optical performance of cabling channels. Table 1: Insertion Loss and Return Loss Test Results: Insertion Loss - 1 out of 9 manufacturers had 1 or more failures. Return Loss - 3 out of 9 manufacturers had 1 or more failures. Industry Standard ISO/IEC 11801 Ed. 2.2; TIA/EIA 568C.3 Siemon Specification Manufacturer IL (.75 db) RL (20dB) IL (.25 db) RL (30dB) Siemon Pass Pass Pass Pass 1-Global MFG Pass Pass Pass Pass 2-Global MFG Pass Pass Pass Pass 3-Global MFG Pass Pass Pass Pass 4-Global MFG Pass Pass Pass Pass 5-Generic Pass Fail Pass Fail 6-Generic Pass Pass Pass Pass 7-Generic Pass Fail Pass Fail 8-Generic Pass Fail Fail Fail 2 www.siemon.com

Insertion Loss is typically the only field measurement, but not the only parameter that can affect network performance and reliability. Control of end face geometry, cleanliness, surface defects and mechanical integrity should all be considered to ensure long-term reliability. End Face Geometry Overall performance of the fiber optic connectivity depends on the mechanical characteristics that control alignment and physical contact of the fiber cores. End face geometry is an essential characteristic of repeatable and reliable optical fiber connections. The three critical parameters for connector end-face geometry are: (See Figure 1 below). Radius of curvature (ROC): the roundedness of the ferrule s end-face surface Apex Offset: The degree to which the end face dome is centered Fiber Undercut/Protrusion: the height or depth that the fiber core protrudes or undercuts the ferrule surface. Figure 1: End Face Geometry End-Face Curvature Center Top of Dome Apex Offset FIBER OPTIC ASSEMBLIES Ferrule Ferrule Radius Undercut Protrusion Ferrule Ferrule Siemon Labs have performed extensive research on the effect of end face variation on performance and intermateability. As a result, we have adopted specifications that exceed industry standards for all three measurements (See Table 2). Because the quality and consistency of the physical contact between fiber cores depends on end-face geometry, it must be rigorously controlled to support the premise that cabling is fully intermateable and interoperable. Otherwise, the percentage of mated connections that do not conform with optical performance requirements will statistically increase. In other words, poor end face control poses increased risk that a day-one pass will be followed by trouble on day-two. www.siemon.com 3

FIBER OPTIC ASSEMBLIES Table 2: End Face Geometry Test Results: 6 out of 9 manufacturers had 1 or more failures. Manufacturer Industry Standard (IEC-61755-3-1) ROC (5-30mm) Apex 70µm Fiber height (-100nm~500nm) ROC (7-25mm) Siemon Specification Apex 50µm Fiber height (-100~50nm) Siemon Pass Pass Pass Pass Pass Pass 1-Global MFG Pass Fail Pass Fail Fail Fail 2-Global MFG Pass Pass Pass Pass Pass Pass 3-Global MFG Pass Pass Pass Pass Fail Pass 4-Global MFG Pass Pass Pass Pass Pass Pass 5-Generic Fail Fail Fail Fail Fail Fail 6-Generic Pass Fail Fail Pass Fail Fail 7-Generic Pass Fail Fail Fail Fail Fail 8-Generic Pass Fail Pass Fail Fail Fail Note: Siemon End Face Geometry requirements have been shown in addition to those of IEC-61755-3-1. Figure 2: APEX and ROC Test Examples PASS PASS APEX is aligned with the central axis of fiber ROC shape is symmetrical Fiber Height No visible sign of protrusion or undercut FAIL FAIL APEX is not aligned with the central axis of fiber ROC shape is not symmetrical Fiber Height visible sign of undercut A connection between a jumper having non-compliant end-face geometry and one that is standards compliant will exhibit inconsistent test results. For example, optical fiber links that pass acceptance testing using a compliant reference cord will exhibit higher optical loss and greater variability when replacing the reference cords with non-compliant jumpers. Contamination and Surface/Subsurface Defects Fiber core fractures and the presence of contamination on ferrules, alignment sleeves or dust caps cause wide variations in both insertion loss and return loss performance. These issues are separate from end face geometry, but have an equally high impact on first pass yield for cabling acceptance testing. More importantly, these irregularities undermine network integrity because uncorrected contamination or fractures interfere with optical performance and results are highly variable and completely unpredictable. 4 www.siemon.com

End Face Visual Inspection Surface defects and cleanliness are critical, but will not always be detected with insertion loss or end face geometry testing. A smooth but fractured fiber will not necessarily fail end face geometry checks for radius of curvature, apex offset and fiber height. Because proper cleanliness of the fiber jumper during manufacturing and installation is critical to reliability and optical performance, Siemon utilizes automated end face inspection for jumper cleanliness and surface defects according to IEC 61300-3-35 and IEC 62627. This equipment automatically detects surface defects and contamination that can directly impact performance. Figure 3: End Face Contamination and Surface Defects Worst Case Failed Examples Pre-Cleaning Contamination Debris Liquid Residue Siemon (Pass) FIBER OPTIC ASSEMBLIES Fail After Cleaning Due to Ferrule Defects Adhesive Region Failure End Face Visual Inspection Test Results: All random samples under test except for Siemon were received with some form of contaminated end face and failed the automated visual test against IEC61300-3-35. After properly cleaning, 75% passed with some defects and 25% failed after cleaning. Non compliant end-face geometry and contamination are the leading causes for erratic optical test results in the field and are responsible for wasted time and effort in trouble-shooting optical fiber cabling. These issues translate to low first pass yield on acceptance testing of installed fiber cabling channels. Faced with time constraints, installers will sometimes retest until they achieve a passing result. Unless the non-compliant jumpers are replaced, they pose a risk of unacceptably high insertion loss for the channel on day two. Another problem is that contamination can act as a virus that is transferred onto reference jumpers and the equipment interface. Even if the infected jumper is replaced, the damage is done. www.siemon.com 5

FIBER OPTIC ASSEMBLIES Mechanical Reliability There are several tests required as part of industry standard specifications for mechanical reliability. Mechanical reliability parameters include Flex Testing, Torsion Testing, Pull Testing, Cable Retention, Impact Testing, Vibration Testing, Durability and Transmission with an Applied Load. These mechanical tests verify that a fiber jumper can endure the installation and maintenance performed in a typical fiber optic network, and that they can dependably withstand the internal stresses imposed by spring loaded physical contact over time under in a variety of environmental conditions. Mechanical tests performed on each assembly were Cable Pull, Flex, Torsion and Retention. Table 3: Mechanical Reliability Test Results All generic jumper samples had 1 or more failures for cable pull and cable retention. Cable Pull (FOTP-6) Industry Standard (TIA-568-C.3) Cable Flex (FOTP-1) Cable Torsion (FOTP-36) Cable Retention (FOTP-6) Siemon Specification Cable Flex (FOTP-1) Cable Torsion (FOTP-36) Cable Retention (FOTP-6) Cable Pull (FOTP-6) Manufacturer Load: 50N @ 0 Load 4.9N Load 15N Load: 19.4N @ 90 Load: 50N @ 0 Load 4.9N Load 15N Load: 19.4N @ 90 Duration: 5s Cycle: 100 Cylce: 10 Duration: 5s Duration: 60s Cycle: 100 Cylce: 10 Duration: 60s Siemon Pass Pass Pass Pass Pass Pass Pass Pass 1-Global MFG Pass Pass Pass Pass Pass Pass Pass Pass 2-Global MFG Pass Pass Pass Pass Pass Pass Pass Pass 3-Global MFG Pass Pass Pass Pass Pass Pass Pass Pass 4-Global MFG Pass Pass Pass Pass Pass Pass Pass Pass 5-Generic Fail n/a* n/a* n/a* Fail n/a* n/a* n/a* 6-Generic Fail Pass** Pass** Fail Fail Pass** Pass** Fail 7-Generic Fail Pass** Pass** Fail Fail Pass** Pass** Fail 8-Generic Fail n/a* n/a* n/a* Fail n/a* n/a* n/a* *All samples failed in previous test **Remaining samples in group compliant to the test Figure 4: Failed Connections during axial and 90º pull test Fiber break after 50N axial pull for 60 seconds Fiber break at LC connector after 50N axial pull for 60 seconds Connector break after 19.4N for 60 seconds at 90º degree pull Connector deformation after 19.4N for 60 seconds at 90 degree pull 6 www.siemon.com

In Conclusion Siemon places such a high emphasis on end face geometry, cleanliness, surface/subsurface integrity and mechanical performance specifically because field testing of optical fiber links is necessary but not sufficient to guaranty the integrity of installed optical fiber cabling. One reason it is insufficient is because link testing does not include the fiber jumpers used for equipment connections on either end of the link. Another reason is that insertion loss is the only required transmission parameter for optical fiber cabling based on industry standards. For these reasons, it is absolutely essential to ensure that optical fiber cables, components and assemblies be fully standards compliant. One way to do so is to require that all fiber assemblies come with objective evidence of return loss and insertion loss testing in both directions and at both wavelengths. This study demonstrates the importance of high quality materials and process controls throughout all manufacturing operations, including final inspection and testing. While most any fiber optic patch cord can pass insertion loss, other critical parameters that are equally important include end face geometry, return loss, mechanical reliability, surface defects and cleanliness. According to this study, generic fiber jumpers from assembly houses are least likely to pass these critical parameters which can result in product failures and costly network down time. Siemon was the only manufacturer to comply with all parameters because we use the highest quality components, consumables, test equipment and processes. One should ask, are the savings from using substandard fiber jumpers worth putting critical network performance and reliability at risk? FIBER OPTIC ASSEMBLIES www.siemon.com 7

FIBER OPTIC ASSEMBLIES WORLD WIDE LOCATIONS THE AMERICAS USA...(1) 866 474 1197 Canada...(1) 888 425 6165 Columbia - Central and South America Main...(571) 317 2121 Argentina...(54) 11 4706 0697 Brasil...(55) 11 3831 5552 Mexico...(52) 55 2881 0438 Peru...(511) 275 1292 Venezuela...(58) 212 992 5884 EUROPE, MIDDLE EAST AND AFRICA United Kingdom...(44) (0) 1932 571771 Germany...(49) (0) 69 97168 184 France...(33) 1 46 46 11 85 Italy...(39) 02 64 672 209 ASIA PACIFIC Australia (Sydney)...(61) 2 8977 7500 Australia (Brisbane)...(61) 7 3854 1200 Australia (Melbourne)...(61) 3 9866 5277 Southeast Asia...(65) 6345 9119 China (Shanghai)...(86) 21 5385 0303 China (Beijing)...(86) 10 6559 8860 China (Guangzhou)...(86) 20 3882 0055 China (Chengdu)...(86) 28 6680 1100 India...(91) 11 66629661...(91) 11 66629662 Japan...(81) (3) 5798 5790 2012 Siemon WP_FiberCbleAssmb Rev. C 5/12 (US) www.siemon.com