Appendix B 1) Directional Spectrum

Similar documents
Sea State Analysis. Topics. Module 7 Sea State Analysis 2/22/2016. CE A676 Coastal Engineering Orson P. Smith, PE, Ph.D.

Wave Generation. Chapter Wave Generation

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

PUV Wave Directional Spectra How PUV Wave Analysis Works

Standing Waves in a String

Modelling and Simulation of Environmental Disturbances

Waves. G. Cowles. General Physical Oceanography MAR 555. School for Marine Sciences and Technology Umass-Dartmouth

CHAPTER 6 DISCUSSION ON WAVE PREDICTION METHODS

PHYS 102 Quiz Problems Chapter 16 : Waves I Dr. M. F. Al-Kuhaili

SECTION 1 & 2 WAVES & MECHANICAL WAVES

Waves Multiple Choice

WAVE FORECASTING FOR OFFSHORE WIND FARMS

Slide 1 / The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength Amplitude

Surface Waves NOAA Tech Refresh 20 Jan 2012 Kipp Shearman, OSU

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

ASSESSMENT OF MARINE CONDITIONS FOR LOGISTICS, OPERATION ENVELOPE AND WEATHER WINDOW FOR OFFSHORE PROJECTS

Introduction to Waves. If you do not have access to equipment, the following experiments can be observed here:

Generalized Wave-Ray Approach for Propagation on a Sphere and Its Application to Swell Prediction

Garrett McNamara, Portugal, 30 Jan What is a wave?

CHAPTER 68. RANDOM BREAKING WAVES HORIZONTAL SEABED 2 HANS PETER RIEDEl. & ANTHONY PAUL BYRNE

What is a wave? Even here the wave more or less keeps it s shape and travelled at a constant speed. YouTube. mexicanwave.mov

Lesson 14: Simple harmonic motion, Waves (Sections )

Wave Load Pattern Definition

PROPOSAL OF NEW PROCEDURES FOR IMPROVED TSUNAMI FORECAST BY APPLYING COASTAL AND OFFSHORE TSUNAMI HEIGHT RATIO

LATLAS. Documentation

What is a wave? A wave is a disturbance that transfers energy from place to place.

Physical Science 1 Chapter 6 WAVES. A wave is a disturbance that is propagated through a system. Waves transfer energy.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Swell and Wave Forecasting

DRAFT OMAE REAL TIME WAVE FORECASTING FOR REAL TIME SHIP MOTION PREDICTIONS

Period: Date: 1. A single disturbance that moves from point to point through a medium is called a. a. period b. periodic wave c. wavelength d.

Student name: + is valid for C =. The vorticity

Unit 3 Lesson 2 Properties of Waves. Copyright Houghton Mifflin Harcourt Publishing Company

Airy Wave Theory 1: Wave Length and Celerity

WAVE PERIOD FORECASTING AND HINDCASTING INVESTIGATIONS FOR THE IMPROVEMENT OF

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack

Wave and wind conditions in the Red Sea A numerical study using a third generation wave model

Motion in 1 Dimension

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected)

Wave Energy Atlas in Vietnam

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

Ocean Wave Forecasting

Lesson 48: Wave Velocity and Boundaries

Application of Simulating WAves Nearshore (SWAN) model for wave simulation in Gulf of Thailand

Appendix E Cat Island Borrow Area Analysis

Offshore Wind Turbine monopile in 50 year storm conditions

Analysis and Research of Mooring System. Jiahui Fan*

Swell and Wave Forecasting

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer:

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK

ADAMS OFFSHORE SERVICES LIMITED, 5th Floor, Regent Center, Regent Road, Aberdeen, United Kingdom - AB11 5NS DPSV ADAMS AQUANAUT. DP Capability Plot

Waves Part II. non-dispersive (C g =C)

PAPER 2 THEORY QUESTIONS

DUXBURY WAVE MODELING STUDY

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves

Wave Forces on a Moored Vessel from Numerical Wave Model Results

OCEAN WAVES NAME. I. Introduction

A Comparison of Two Methods for Determining Wave Heights from a Discus Buoy with a Strapped-Down Accelerometer

Movement and Position

Waves. Name and Surname: Class: L E A R N I N G O U T C O M E. What are waves? Why are waves formed?

AP Physics B Summer Homework (Show work)

SUPERGEN Wind Wind Energy Technology Rogue Waves and their effects on Offshore Wind Foundations

Physics: 3. Velocity & Acceleration. Student Notes

+ t1 t2 moment-time curves

Atmosphere, Ocean and Climate Dynamics Fall 2008

EFFECTIVENESS OF FLOATING WAVE ATTENUATORS FOR RESTORING AND PROTECTING COASTAL MARSH

SOME PROPERTIES OF SWELL IN THE SOUTHERN OCEAN. Jon B. Hinwoodil. Deane R. Blackman, and Geoffrey T. Lleonart^3

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another.

Oceans - Laboratory 12

1. The graph below shows how the velocity of a toy train moving in a straight line varies over a period of time.

Phet Wave on a String Simulation!

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour.

ABSTRACT. KEY WORDS: coral reef, storm waves, infragravity waves, power plant, cooling water, field observation. INTRODUCTION FIELD OBSERVATION

The Susceptibility of FPSO Vessel to Green Water in Extreme Wave Environment

Physics Wave Problems. Science and Mathematics Education Research Group

GEOPHYSICAL RESEARCH LETTERS

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion

Improving Surfing Conditions with Floating Wave Filters

Measured broadband reverberation characteristics in Deep Ocean. [E.Mail: ]

Lab test 4 Seakeeping test with a model of an oil tanker

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher

Airy Wave Theory 2: Wave Orbitals and Energy. Compilation of Airy Equations

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes

Chapter 16. Waves-I Types of Waves

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Phys 101 College Physics I ` Student Name: Additional Exercises on Chapter 3

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Thomas Lykke Andersen, Morten Kramer, Peter Frigaard November 2003

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS

HIGH RESOLUTION WIND AND WAVE MEASUREMENTS FROM TerraSAR-X IN COMPARISON TO MARINE FORECAST

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec

Inter-comparison of wave measurement by accelerometer and GPS wave buoy in shallow water off Cuddalore, east coast of India

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET

The purpose of this experiment is to find this acceleration for a puck moving on an inclined air table.

Applying Hooke s Law to Multiple Bungee Cords. Introduction

The role of wave breaking on the development of wave spectra and bispectra in the surf zone

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π

CHAPTER 10 WAVES. Section 10.1 Types of Waves

What Do You Think? GOALS

Transcription:

Appix B 1) Directional Spectrum Matlab code to produce Directional Spectrums based on data from Scripps Buoys DATA RETRIEVED FROM: Scripps Coastal Data Information Program http://cdip.ucsd.edu/ --->Historic--->Interactive products ---> Interactive data---->spectral data the data must be an ascii file with no text By Rodrigo Arrea, 11/6/09 ------------------------------------------------------------------------------------------------ Load numerical data load 200710220454.txt data=x200710220454; Figure out the y axis limit in the non-directional graphs, so that the limit is always the same and the spectrums can be compared limy=1.1*ceil(max(data(:,3))); Extract the useful data [s,v]=size(data); Each spectral data file has 64 frequencies, in case of consecutive data... n=s/64; for q=1:n; lf=(q-1)*64+1; hf=64*q; spec=data(lf:hf,1:9); Divide the data into variables f=spec(1:64,1); d=spec(1:64,2); E=spec(1:64,3); a1=spec(1:64,5); b1=spec(1:64,6); a2=spec(1:64,7); b2=spec(1:64,8); Calculate R1 R2 Theta1 and Theta2 r1=sqrt(a1.^2+b1.^2); r2=sqrt(a2.^2+b2.^2); theta1=atan2(b1,a1); theta2=0.5*atan2(b2,a2); Change radians into degrees for u=1:64; a=theta1(u,1); b=theta2(u,1); theta1(u,1)=a*180/pi; theta2(u,1)=b*180/pi; Avoid negative angles if theta1(u)<=0 theta1(u)=theta1(u) + 360; if theta2(u)<=0 theta2(u)=theta2(u)+360; Calculate directional energy dir=(0:3:360); S=zeros(64,121); X=zeros(64,121); Y=zeros(64,121); alpha=zeros(size(dir)); The angles are changed to nautical convention for i=1:121; if dir(1,i)<=90 alpha(1,i)=90-dir(1,i); elseif 90<dir(1,i)<=360

alpha(1,i)=450-dir(1,i); S(1:64,i)=1/pi.*(0.5+r1.*cosd(dir(1,i)-theta1)+r2.*cosd((dir(1,i)-theta2)....*2)); Nautical convention is used to graph for i=1:121; X(1:64,i)=f.*cosd(alpha(1,i)); Y(1:64,i)=f.*sind(alpha(1,i)); Significant wave height, peak period, Mean direction m0=0; for p=1:63 m0=d(p,1)*(e(p,1)+e(p+1,1))/2+m0; Hs=4*sqrt(m0); [y,v]=max(e); Tp=1/f(v,1); Graph's grid g1=0.05; xg1=-g1:0.01:g1; g2=0.1; xg2=-g2:.01:g2; g3=0.2; xg3=-g3:.01:g3; g4=0.4; xg4=-g4:.01:g4; g5=0.58; xg5=-g5:.01:g5; T1=1/g1; T2=1/g2; T3=1/g3; T4=1/g4; T5=1/g5; yg5=zeros(size(xg5)); color axis cmax=max(max(s))*1.02; ------PLOTS---------------- close all scrsz = get(0,'screensize'); figure('position',[scrsz(1) scrsz(2) scrsz(3) scrsz(4)]) subplot(2,3,[1 2 4 5]); set(gcf,'color','white') hold on h_plot=pcolor(x,y,s); caxis([0.4 cmax]) set(gcf,'defaultaxesfontsize',18) ('location','northoutside') set(h_plot,'facecolor','interp','facealpha',1); shading flat axis equal tight off hold on Period gridlines (round) line(xg1,real(sqrt(g1^2-xg1.^2)),'linewidth',2,'linestyle','--','color','k') line(xg1,-real(sqrt(g1^2-xg1.^2)),'linewidth',2,'linestyle','--','color','k') line(xg2,real(sqrt(g2^2-xg2.^2)),'linewidth',2,'linestyle','--','color','k') line(xg2,-real(sqrt(g2^2-xg2.^2)),'linewidth',2,'linestyle','--','color','k') line(xg3,real(sqrt(g3^2-xg3.^2)),'linewidth',2,'linestyle','--','color','k') line(xg3,-real(sqrt(g3^2-xg3.^2)),'linewidth',2,'linestyle','--','color','k') line(xg4,real(sqrt(g4^2-xg4.^2)),'linewidth',2,'linestyle','--','color','k') line(xg4,-real(sqrt(g4^2-xg4.^2)),'linewidth',2,'linestyle','--','color','k') line(xg5,real(sqrt(g5^2-xg5.^2)),'linewidth',2,'linestyle','--','color','k') line(xg5,-real(sqrt(g5^2-xg5.^2)),'linewidth',2,'linestyle','--','color','k') text(0,g1,[num2str(t1),' s'],'horizontalalignment','center',... 'Fontsize',16,'Color','w','fontweight','bold') text(0,g2,[num2str(t2),' s'],'horizontalalignment','center',... 'Fontsize',16,'Color','w','fontweight','bold') text(0,g3,[num2str(t3),' s'],'horizontalalignment','center',... 'Fontsize',16,'Color','w','fontweight','bold') text(0,g4,[num2str(t4),' s'],'horizontalalignment','center',...

'Fontsize',16,'Color','w','fontweight','bold') text(0,g5,['t=',num2str(t5),' s'],'horizontalalignment',... 'center','fontsize',16,'verticalalignment','top','color','w',... 'fontweight','bold') Direction gridlines line(yg5,xg5,'linewidth',1,'linestyle',':','color','k') line(xg5,yg5,'linewidth',1,'linestyle',':','color','k') z=(-g5*sind(45):0.01:g5*sind(45)); line(z,z,'linewidth',1,'linestyle',':','color','k') line(-z,z,'linewidth',1,'linestyle',':','color','k') text(0,g5,'0\circ','horizontalalignment','center','verticalalignment','bottom',... text(g5,0,' 90\circ','horizontalAlignment','left','verticalalignment','middle',... text(0,-g5,'180\circ','horizontalalignment','center','verticalalignment','top',... text(-g5,0,'270\circ ','horizontalalignment','right','verticalalignment','middle',... Energy Spectrum subplot(2,3,3);plot(f,e,'linewidth',2); xlim([0 0.58]) ylim([0 limy]) xlabel('wave frequency, Hz ','FontSize',18) ylabel('energy, m^2/hz','fontsize',18) title({['measured Spectrum'];['Hs=',num2str(Hs),' & Tp=',num2str(Tp)]},'FontSize',20) Pierson Moskowitz Spectrum A=5/16*Hs^2*f(v,1)^4; B=5*f(v,1)^4/4; SPM=zeros(64,1); for i=1:64; SPM(i,1)=30*60*A*exp(-B/f(i,1)^4)/f(i,1)^2; JONSWAP Spectrum SJ=zeros(64,1); gam=2.7; sig1=0.07; sig2=0.09; sig=zeros(64,1); for i=1:64; if f(i,1)<=f(v,1) sig(i,1)=sig1; elseif f(i,1)>f(v,1) sig(i,1)=sig2; SJ(i,1)=SPM(i,1)*gam^exp(-(f(i,1)-f(v,1))^2/(2*(sig(i,1))^2*(f(v,1))^2)); subplot(2,3,6);plot(f,spm,f,sj,'linewidth',2); xlim([0 0.58]) ylim([0 limy]) xlabel('wave frequency, Hz ','FontSize',18) ylabel('energy, m^2/hz','fontsize',18) leg('spm',['sj, gamma= ',num2str(gam)],'location',[.8.3.1.1]) leg('boxoff') title({['spm = Pierson-Moskowitz '];['SJ = JONSWAP spectrum ']},'Fontsize',20) 2) Theoretical Transmission Coefficient I) For swell waves MATlab code for calculating theoretical trasmission coefficients of wave filters following the following assumptions: -Linear Wave Theory -Seas behave as deep-water waves, and swell as shallow-water waves. -Horizontal particle displacement amplitude is proportional to kinematic wave energy -All the wave energy above the draft is blocked and all the wave

energy below is transmitted By Rodrigo Arrea, 11/6/09 ------------------------------------------------------------------------------------- Swell Conditions: T=10:15, and H=0.1:1 Ts=(10:0.2:15); [m1 n1]=size(ts); Hs=(0.1:0.05:1); [m2 n2]=size(hs); Hs=Hs'; d=0:-0.1:-10; [m3 n3]=size(d); Ld=1.56.*Ts.^2; deep water equation Ls=zeros(1,n1); for p=1:100 Ls(i)=Ld(i)*tanh(2*pi*10/Ls(i)); ks=2*pi./ls; as=2;does not affect the transmission coefficient compute a matrix with the horizontal disp. amplitudes for all wave periods and depths Hs(k,i)=as*cosh(ks(i)*(d(k)+10))/(sinh(ks(i)*10)); Get the total 'Energy' of the entire thing, by integrating the displacement over the depth Es=zeros(1,n1); for i=1:n1 Es(i)=Es(i)+Hs(k,i)*0.1; Find the amount of energy blocked by different drafts dr=(-0.1:-0.1:-2.0); [m4 n4]=size(dr); Bs=zeros(20,n1); for z=1:n4; y=z+1; for k=1:y; Bs(z,i)=Bs(z,i)+Hs(k,i)*0.1; Calculate the transmission coefficient Cts=zeros(20,n1); for z=1:20; Cts(z,i)=(Es(i)-Bs(z,i))/Es(i); set(gcf,'color','white','defaultaxesfontsize',18) pcolor(cts) set(gca,'ydir','reverse') xlabel('wave Period, [sec]') ylabel('wave Filter Draft, [m]')

II) For wind-waves MATlab code for calculating theoretical trasmission coefficients of wave filters following the following assumptions: -Linear Wave Theory -Seas behave as deep-water waves, and swell as shallow-water waves. -Horizontal particle displacement amplitude is proportional to kinematic wave energy -All the wave energy above the draft is blocked and all the wave energy below is transmitted By Rodrigo Arrea, 11/6/09 ----------------------------------------------------------------------------------------- SEAS (chop) Tc=(0.5:0.1:3.5); [m1 n1]=size(tc); Hc=(0.1:0.05:1); [m2 n2]=size(hc); Hc=Hc'; d=0:-0.1:-10; [m3 n3]=size(d); Lc=1.56.*Tc.^2; kc=2*pi./lc; ac=1.3; compute a matrix with the horizontal disp. amplitudes for all wave periods and depths Hc(k,i)=ac*exp(kc(i)*d(k)); Get the total 'Energy' of the entire thing, by integrating the displacement over the depth Ec=zeros(1,n1); for i=1:n1 Ec(i)=Ec(i)+Hc(k,i)*0.1; Find the amount of energy blocked by different drafts dr=(-0.1:-0.1:-2.0); [m4 n4]=size(dr); Bc=zeros(20,n1); for z=1:n4; y=z+1; for k=1:y; Bc(z,i)=Bc(z,i)+Hc(k,i)*0.1; Calculate the transmission coefficient Ctc=zeros(20,n1); for z=1:20; Ctc(z,i)=(Ec(i)-Bc(z,i))/Ec(i); set(gcf,'color','white','defaultaxesfontsize',18) pcolor(ctc) set(gca,'ydir','reverse') xlabel('wave Period, [sec] ') ylabel('wave Filter Draft, [m] ')

3) Wind-waves forecast Source code to calculate the forecasted wave height and period due to a constant wind and deping on different fetches. Gives two figures one with the wave height and the other with the wave period By Rodrigo Arrea, 11/06/09 Wind speed U10=(0.05:0.05:20); Fetch Length X=(20:20:20000); Drag Coefficient CD=0.001*(1.1+0.035.*U10); Gravity g=9.81; friction velocity u=sqrt(u10.^2.*cd); wave height [m n]=size(u10); [v b]=size(x); H=zeros(b,n); for i=1:n; for j=1:b; H(j,i)=u(i)^2/g*0.0413*sqrt(g*X(j)/u(i)^2); wave period T=zeros(b,n); for i=1:n; for j=1:b; T(j,i)=u(i)/g*0.651*(g*X(j)/u(i)^2)^(1/3); close all ---PLOTS--- figure scrsz = get(0,'screensize'); set(gcf,'color','white','defaultaxesfontsize',20,'position',... [scrsz(1) scrsz(2) scrsz(3) scrsz(4)]) pcolor(h); xlabel('u_1_0, wind speed at 10 meters above water level [m/s] ') ylabel('x, Fetch Length [km] ') title('predicted wind-wave height in meters ') figure scrsz = get(0,'screensize'); set(gcf,'color','white','defaultaxesfontsize',20,'position',... [scrsz(1) scrsz(2) scrsz(3) scrsz(4)]) pcolor(t); xlabel('u_1_0, wind speed at 10 meters above water level [m/s] ') ylabel('x, Fetch Length [km] ') title('predicted wind-wave period in seconds ')