ABSORPTION OF CO 2 INTO PERFLUORINATED GAS CARRIER IN

Similar documents
CHEM 355 EXPERIMENT 7. Viscosity of gases: Estimation of molecular diameter

Measurements of k L a. Steady-State Mass Balance Method:

Experimental analysis of the hydrodynamics and mass transfer of Taylor flow in small channels

Ch. 11 Mass transfer principles

Measurement of both gas and liquid velocity profiles for bubble-induced turbulent flow

Simulation of Gas Holdup in a Bubble Column with a Draft Tube for Gas Dispersion into an Annulus

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

MEMORANDUM. Investigation of Variability of Bourdon Gauge Sets in the Chemical Engineering Transport Laboratory

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water

Hydrodynamic and Mass Transfer Characteristics of External-Loop Airlift Reactors without an Extension Tube above the Downcomer

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

Energy and mass transfer in gas-liquid reactors.

Development of High-speed Gas Dissolution Device

Experimental Analysis and CFD Simulation of Pressure Drop of Carbon Dioxide in Horizontal Micro Tube Heat Exchangers

Journal of Chemical Engineering of Japan, Advance Publication doi: /jcej.12we164; published online on July 25, 2012

1. A pure substance has a specific volume of 0.08 L/mol at a pressure of 3 atm and 298 K. The substance is most likely:

Carbon dioxide absorption in a membrane contactor

Integration of Impact Factors of Gas-Liquid Transfer Rate

EFFECTS OF CHEMICAL ADDITIVES ON THE PRESSURE DROP IN THE PIPES

Experimental Investigation of the Rise Behavior of Live-Oil Droplets during Deep-Sea Oil Spills

THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4

A07 Surfactant Induced Solubilization and Transfer Resistance in Gas-Water and Gas-Oil Systems

ON THE EFFECT OF LIFT FORCES IN BUBBLE PLUMES

Chapter 3 EXPERIMENTAL: EQUIPMENT, SET-UP, AND PROCEDURE

An innovative technology for Coriolis metering under entrained gas conditions

The Split of Two-Phase-Flow at Horizontal Side-T-junctions in Unbalanced Pipe Systems for Clean Extinguishing Agents

Inprocess Operator Training Programme

Flow behavior of wakes in a three-phase slurry bubble column with viscous liquid medium

Experimental Study of an Air Lift Pump

Numerical simulation of an intermediate sized bubble rising in a vertical pipe

Increase in Evaporation Caused by Running Spa Jets swhim.com

Study of an Oxygenation Process in Capillary. in the Presence of Magnetic Field

Mass Transfer. Bioprocess Engineering Principles, Second Edition Elsevier Ltd. All rights reserved.

Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

Experimental and modelling study of the solubility of CO 2 in various CaCl 2 solutions at different temperatures and pressures

MATHEMATICAL MODELING OF PERFORMANCE OF A LIQUD PISTON COMPRESSOR

CFD SIMULATIONS IN AN INTERNAL CIRCULATION AIRLIFT OPERATING UNDER HOMOGENEOUS REGIME

Workshop 1: Bubbly Flow in a Rectangular Bubble Column. Multiphase Flow Modeling In ANSYS CFX Release ANSYS, Inc. WS1-1 Release 14.

EDUCTOR. principle of operation

Bubbly flow and gas liquid mass transfer in square and circular microchannels for stress free and rigid interfaces: dissolution model

Technical Note. Determining the surface tension of liquids by measurements on pendant drops

Experimental study on path instability of rising bubbles

FORMATION AND DEVELOPMENT OF SUBMERGED AIR JETS

Multiple effects of operating variables on the bubble properties in three-phase slurry bubble columns

Bioreactor System ERT 314. Sidang /2012

CEE 452/652. Week 9, Lecture 2 Absorption. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

Irrigation &Hydraulics Department lb / ft to kg/lit.

CFD Flow Analysis of a Refrigerant inside Adiabatic Capillary Tube

Chapter 13 Gases, Vapors, Liquids, and Solids

ANALYSIS OF HEAT TRANSFER THROUGH EXTERNAL FINS USING CFD TOOL

Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils

Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle

Figure 1 Schematic of opposing air bearing concept

CRYSTALLIZATION FOULING IN PACKED COLUMNS

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8

Redacted for Privacy

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class

States of Matter Review

A REVIEW OF T-JUNCTION GEOMETRICAL EFFECT ON TWO-PHASE SEPARATION

CONSIDERATION OF DENSITY VARIATIONS IN THE DESIGN OF A VENTILATION SYSTEM FOR ROAD TUNNELS

Gases&Technology. Measurement of Impurities in Helium Using the Dielectric Barrier Discharge Helium Ionization Detector. FEATURE.

HYDROGEN - METHANE MIXTURES : DISPERSION AND STRATIFICATION STUDIES

ULTRASOUND-INDUCED POLYMERISATIONS IN HIGH- PRESSURE FLUIDS

Carbon Dioxide Flooding. Dr. Helmy Sayyouh Petroleum Engineering Cairo University

The effect of two inclined circular plunging jets on air entrainment in an aeration tank

Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler

Experiment 18 Properties of Gases

LEAP CO 2 Laboratory CO 2 mixtures test facility

Dissolved Oxygen and measurement possibilities. Berno Lüpkes, 15 th March 2017

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Prediction of the long-term insulating capacity of cyclopentane-blown polyurethane foam

Chem 110 General Principles of Chemistry

Gas Absorption Column CAG

Effect of gases on radical production rates during single-bubble cavitation

Air Bubble Defects in Dispensing Nanoimprint Lithography

Experimental Studies on the Instabilities of Viscous Fingering in a Hele-Shaw Cell

Investigation of two-phase microchannel flow and phase equilibria in micro cells for applications to enhanced oil recovery

Air Bubble Departure on a Superhydrophobic Surface

of air-lift reactors based on bubble dynamics

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

Science In Action 8 - Unit 1 Mix and Flow of Matter

CHEMISTRY - CLUTCH CH.5 - GASES.

Oxygen mass transfer in a bubble column with non-newtonian fluids

Pressure Drop of Two-Phase Flow Through Horizontal Channel with Smooth Expansion

2. Determine how the mass transfer rate is affected by gas flow rate and liquid flow rate.

Isotopes and Gases. Isotopes as constraints to air sea gas exchange, gas exchange time scales, the various time scales of carbon (isotope) exchange

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

9 Mixing. I Fundamental relations and definitions. Milan Jahoda revision Radim Petříček, Lukáš Valenz

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine.

Kinetic-Molecular Theory of Matter

Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline Kun Huang 1,a Yan Xian 2,b Kunrong Shen 3,c

High-Pressure Phase Equilibrium Measurements Using a Double-Chamber Recirculation Apparatus for the System Carbon Dioxide Lemon Essential Oil

A Discrete, Multiphase Flow Approach to Monopropellant-Based Micropropulsion

1. Introduction (1) (2)

CO2 absorption at elevated pressures using a hollow fiber membrane contactor Dindore, V.Y.; Brilman, D.W.F.; Feron, P.H.M.

A model for the bubble lift-off diameter in subcooled boiling flow in a horizontal channel

Basic Flows in a Microfluidic Device

Modelling, Design And Optimization of Equipment for Toluene Emissions Abatement

Lab 3 Introduction to Quantitative Analysis: Pumps and Measurements of Flow

Transcription:

Chemical and Process Engineering 01, 33 (4), 595-60 DOI: 10.478/v10176-01-0049-3 ABSORPTION OF CO INTO PERFLUORINATED GAS CARRIER IN THE TAYLOR GAS LIQUID FLOW IN A MICROCHANNEL SYSTEM Paweł Sobieszuk *, Maciej Pilarek Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland The aim of this study was to determine the solubility of CO in perfluorodecalin (PFD) which is frequently used as efficient liquid carrier of respiratory gases in bioprocess engineering. The application of perfluorinated liquid in a microsystem has been presented. Gas-liquid mass transfer during Taylor (slug) flow in a microchannel of circular cross section 0.4 mm in diameter has been investigated. A physicochemical system of the absorption of CO from the CO /N mixture in perfluorodecalin has been applied. The Henry s law constants have been found according to two theoretical approaches: physical (H = 1. 10-3 mol/m 3 Pa) or chemical (H = 1.6 10-3 mol/m 3 Pa) absorption. We are hypothesising that the gas-liquid microchannel system is applicable to determine the solubility of respiratory gases in perfluorinated liquids. Keywords: perfluorodecalin (PFD), liquid gas carrier, solubility, Taylor flow, microreactor 1. INTRODUCTION Liquid perfluorochemicals (perfluorocarbons, PFCs) are characterised by a high solubility of respiratory gases (O and CO ) and other non-polar gases. They have raised much interest as fully safe synthetic liquid gas carriers in bioprocess and medical applications (Lowe, 001; Pilarek and Szewczyk, 008; Riess, 006) confirmed by many laboratory studies and clinical investigations. It is assumed that the gas transfer rate in PFCs increases linearly with the partial pressure of a component in the gaseous phase (according to the Henry s Law) in contrast with sigmoid dissociation curves for biological gas carriers (e.g. haemoglobin or myoglobin) (Krafft and Riess, 1998; Lowe, 00; Riess, 001). PFCs are immiscible in aqueous and most other media and they create a separate perfluorinated phase at the bottom of the two-phase (water/pfc) systems due to their relatively high density (about 1.9 kg dm -3 ) (Lowe, 00; Riess, 001). In connection to their various applications it is also important that PFCs added to a reaction or culture system do not change the concentration of its components. Liquid perfluorinated gas carriers are also stable and inert compounds with high resistance to heat sterilisation (e.g. by autoclaving) and possibility for long time-storage at room temperature (Lowe, 00; Pilarek et al., 011a). Bioprocess applications of liquid PFCs are mainly related to supplying them into culture systems as gas carriers (mainly O ) as well as scavengers of gaseous by-products (mainly CO ) of cellular metabolism. Many studies have shown that the application of gas saturated perfluorinated liquids can improve efficiency of microbial (Elibol and Mavituna, 1997; Pilarek and Szewczyk, 008; Pilarek et al., 011a), plant cell (Pilarek and Szewczyk, 008) and animal cell cultures (Shiba et al., 1998; Rappaport, 003; Pilarek et al., 011b) and thus lead to improved growth or metabolite biosynthesis in cultures of various *Corresponding author, e-mail: sobieszuk@ichip.pw.edu.pl Unauthenticated 89.67.4.59 595

P. Sobieszuk, M. Pilarek, Chem. Process Eng., 01, 33 (4), 595-60 kinds of cells. Generally, applications of PFCs are still limited due to their relatively high cost, which makes their use in large-scale bioprocesses uneconomical. However, PFCs could successfully be used in miniature-scale processes and in microbioreactor cultivations of various kinds of cells to prevent oxygen or carbon dioxide limitation during grow to high cell densities, especially in high throughput screening approaches (Pilarek et al., 011a; Ukkonen et al., 011). In view of the unusual mechanism of dissolution of gases in perfluorinated liquid, it would be interesting to determine the nature of the absorption process and the values of CO solubility into perfluorodecalin (PFD). A typical apparatus for this type of investigations is the laminar-jet setup (Pohorecki and Moniuk, 1988). However, because of the cost of fluorinated liquids, using such equipment is uneconomical and problematic. We hypothesise that an application of a gas-liquid microreactor system could be more feasible. Mass transfer and hydrodynamics of the Taylor flow in microchannels have widely been investigated (Qian and Lawal, 006; Sobieszuk et al., 010; Eskin and Mostowfi, 01; Sobieszuk et al., 01). There are lot of experimental data on volumetric mass transfer coefficient (k L a) values in the Taylor flow (Kashid et al., 011; Sobieszuk et al., 008; Yue et al., 007) and k L (Sobieszuk et al., 011) values. Therefore, a series of experiments involving the study on the rate of CO absorption into perfluorodecalin (PFD) were done. On this basis and using the available correlations for mass transfer in the Taylor flow, the values of the Henry s law constant have been determined. The aim of this study was to determine the solubility of CO into perfluorodecalin which is frequently used as an efficient liquid carrier of respiratory gases in bioprocess engineering. To the best of our knowledge this is the first attempt to apply a microreactor system to defining the mechanism of gas absorption in liquid PFC and also the first report of the application of perfluorinated gas carrier in microchannel system in general.. EXPERIMENTAL SYSTEM A glass, Y-shaped microreactor, with inlet channels 10 apart from each other and from the main channel has been used. The cross-section of all the channels was circular with 0.4 mm diameter. The main microchannel length was 100 mm. The experimental set-up is shown in Fig. 1. Fig. 1. Experimental set-up, 1a, 1b gas bottles with CO and N ; a, b gas flow regulators; 3 manometer; 4 - syringe pump; 5 Y-shaped microreactor; 6 gas chromatograph ; 7 separator; 8 - liquid outlet A physicochemical system of the absorption of CO from the CO /N mixture into a pure PFD has been applied. The gases (N and CO ) were supplied from cylinders through reducing valves and gas flow 596 Unauthenticated 89.67.4.59

Absorption of CO into perfluorinated gas carrier in the Taylor gas liquid flow in a microchannel system regulators. Both gases were mixed before the inlet to the microchannel, and pressure was measured. PFD (cis/trans C 10 F 18 ; ABCR GmbH, Germany) was supplied by a syringe pump. The liquid flow was measured using a measuring cylinder and a stop watch. The two-phase mixture leaving the microchannel was separated in a separator. The gas was directed to the gas chromatograph (Shimadzu GC 014). The rate of absorption was measured twice: once for the entire microreactor (Fig. a), and for the second time using only the phase contactor and the separator, without the main gas liquid microchannel (Fig. b) in order to eliminate the end effects for each experiment conditions. The properties of PFD (density, viscosity, surface tension) were used based on data presented by Pilarek et al. (006). The diffusivity of CO in perfluorodecalin was calculated based on the Wilke and Chang method. All experiments were conducted at the room temperature. Three concentrations of CO at the gas inlet were used: 30 %, 50 % and 70 %, respectively. For each experimental series the gas flow was kept constant and equalled 3.33 10-8 m 3 /s. The flow ranges of pure PFD were from 1. 10-8 to 3.1 10-8 m 3 /s. The CO absorption rate was calculated from the gas concentration difference between the inlet and the outlet from microreactor. Fig.. Microchannel set up used in experiments: a) microreactor separator, b) phase contactor separator 3. RESULTS AND DISCUSSION The values of CO concentration in CO /N mixture at the outlet of both studied microchannel devices have been presented in Fig 3. The significant differences in concentration have been noted for all the studied cases. These results allow to determine the absorption rate only in the microchannel. However, our method could not be effective in the case of gases characterised by lower solubility in PFCs (e.g. O or CO) since it could be observed that too large a part of PFC is absorbed in the phase separator. Due to this fact the differences between the measured concentrations of the absorbed gas at the inlet of the microreactor separator system and the contactor separator system might be too low in order to ensure sufficiently accurate values of the absorption rate. The absorption rate in microchannel as a function of the superficial velocity of the two-phase flow has been shown in Fig. 4. An expected upward trend of the absorption rate with an increasing two-phase flow velocity (i.e. higher values of the mass transfer coefficient at higher values of two-phase flow velocity) as well as with the increasing CO concentration at the gas inlet (i.e. with increased driving force of the absorption process) has been observed. The Henry s law constant can be determined for the studied CO PFD system based on the estimated values of the CO absorption rates in the applied microchannel device. The mechanism of gas dissolution in perfluorinated liquids quoted in the literature (Deschamps et al., 007) does not explicitly define whether it is chemical or physical absorption. Therefore, two approaches have been attempted for further discussion. Unauthenticated 89.67.4.59 597

P. Sobieszuk, M. Pilarek, Chem. Process Eng., 01, 33 (4), 595-60 Fig. 3. Concentration of CO in CO /N mixture at outlet in microreactor-separator system and inlet separator system in the case of various CO concentrations at the inlet: a) 30%, b) 50% and c) 70% Fig. 4. CO absorption rate in microchannel as a function of the superficial two-phase flow velocity 598 Unauthenticated 89.67.4.59

Absorption of CO into perfluorinated gas carrier in the Taylor gas liquid flow in a microchannel system As it is commonly known, the absorption rate is defined as follows N = klavδc (1) The values of the volumetric mass transfer coefficient for the various gas/liquid systems are available in the literature. Sobieszuk et al. (011) proposed the correlation for k L calculation in the gas-liquid microchannel system. However, in the case of our present study involving a heterogeneous microsystem the interfacial area remains unknown, so the correlation due to Yue et al. (007) has been used. They proposed the following correlation for the volumetric mass transfer coefficient: The driving force of the process is given by Sh a d = () 0.13 0.937 0.5 0.084 ReG ReL ScL ( c c ) ( c c ) i1 1 i Δ c = (3) ci 1 c1 c i c The Henry s law constant is defined as c = H p (4) Since the inlet concentration of CO in the liquid phase (PFD) is 0 (c 1 = 0) and the gas-side mass transfer resistance can be neglected, Eq. (3) simplifies to H ( Hp c ) Δ c = (5) H Hp c For physical absorption the outlet concentration of CO in the liquid phase can be calculated based on mass balance c L p QG1 QG = RT RT (6) Q After rearranging Equations (1), (3) and (5), the absorption rate can be expressed as follows p QG1 QG H p RT RT 1 H p QL N = kla V (7) H p QG1 QG H p RT RT Q In case of chemical absorption it can be assumed that the outlet concentration of CO in the liquid phase is 0 (c =0). Hence p Δ c = H (8) p and finally the absorption rate is described by a simple equation L Unauthenticated 89.67.4.59 599

P. Sobieszuk, M. Pilarek, Chem. Process Eng., 01, 33 (4), 595-60 p N = kla V H (9) p Based on the experimental data of the absorption rate of CO into PFD for different values of the twophase superficial flow velocity the Henry s law constant could be determined. In case of physical absorption the values of H were calculated from Eq. (7) and the average value has been obtained as H = 1. 10-3 mol/m 3 Pa with standard deviation of 3.14 10-4 mol/m 3 Pa. The results estimated for chemical absorption of CO into PFD defined by Eq. (9) are shown in Fig. 5. Fig. 5. Determination of the Henry s law constant for chemical absorption based on Eq. (9) As can be seen H = 1.6 10-3 mol/m 3 Pa with the correlation coefficient R = 0.84. It should be emphasised that the obtained values are very close to each other, but are subject to an experimental error. Such errors resulted from the effects of short microchannel used and from relatively low CO solubility in PFD. 4. CONCLUSIONS The rates of CO absorption in PFD in the Taylor flow in microchannel have been estimated. The Henry s law constants have been found for the studied microsystem based on two theoretical approaches, physical or chemical absorption processes. Both obtained values of H are very close to each other and are in accordance with previously published literature data of CO solubility in PFD (Deschamps et al., 007; Pilarek and Szewczyk, 008). Nevertheless, we conclude that the mechanism (physical or chemical) of CO absorption in PFD cannot be explicitly defined based on the results of our experiments. It turned out that the applied 100 mm long microchannel was too short to observe any differences between the two examined kinds of absorption. Using microdevices with a longer microchannel enabling greater residence time of media could provide more accurate experimental data. Finally, we can state that the gas-liquid microchannel system is applicable for experimental determination of respiratory gases solubility in perfluorinated liquids. 600 Unauthenticated 89.67.4.59

Absorption of CO into perfluorinated gas carrier in the Taylor gas liquid flow in a microchannel system This work was supported by the budget sources for The National Centre for Science (Poland), Grant No. N N09 06140. SYMBOLS a specific interfacial area, m -1 c concentration of CO in liquid phase, kmol m -3-1 D diffusivity of CO into perfluorodecalin, m s d microchannel diameter, m -1 H Henry s law constant, mol m -3 Pa k L liquid side mass transfer coefficient, m s -1 N absorption rate, mol s -1 p partial pressure, Pa -1 Q flow rate, m 3 s -1 R gas constant, J mol -1 K Re G =u G d ρ G /μ G Reynolds number for gas phase Re L =u L d ρ L /μ L Reynolds number for liquid phase Sc L =μ L /(ρ L D) Schmidt number for liquid phase Sh=k L d/d Sherwood number T temperature, K u superficial velocity, m s -1 V microchannel volume, m 3 Greek symbols ρ density, kg m -3 μ viscosity, Pa s σ surface tension, N m -1 Subscripts 1 inlet outlet i interfacial area G gas L liquid Abbreviations PFC PFD perfluorochemical perfluorodecalin REFERENCES Deschamps J., Menz D.-H., Padua A.A.H., Costa Gomes M. F., 007. Low pressure solubility and thermodynamics of solvation of oxygen, carbon dioxide, and carbon monoxide in fluorinated liquids. J. Chem. Thermodyn., 39, 847-854. DOI: 10.1016/j.jct.006.11.01. Elibol M., Mavituna F., 1997. Characteristics of antibiotic production in a multiphase system. Proc. Biochem., 3, 417-4. DOI: 10.1016/S003-959(96)00099-4. Eskin D., Mostowfi F., 01. A model of a bubble train flow accompanied with mass transfer through a long microchannel. Int. J. Heat Fluid Flow, 33, 147-155. DOI: 10.1016/j.ijheatfluidflow.011.11.001. Kashid M.N., Renken A., Kiwi-Minsker L., 011. Gas-liquid and liquid-liquid mass transfer in microstructured reactors. Chem. Eng. Sci., 66, 3876-3897. DOI: 10.1016/j.ces.011.05.015. Unauthenticated 89.67.4.59 601

P. Sobieszuk, M. Pilarek, Chem. Process Eng., 01, 33 (4), 595-60 Krafft M.P., Riess J.G., 1998. Highly fluorinated amphiphiles and colloidal systems and their applications in the biomedical fields. A contribution. Biochimie, 80, 489-514. Lowe K.C., 001. Fluorinated blood substitutes and oxygen carriers. J. Fluorine Chem., 109, 59-65. DOI: 10.1016/S00-1139(01)00374-8. Lowe K.C., 00. Perfluorochemical respiratory gas carriers: benefits to cell culture systems. J. Fluorine Chem., 118, 19-6. DOI: 10.1016/S00-1139(0)0000-. Pilarek M., Szewczyk K.W., Stępniewski J., Anderszewska A., 006. The use of a perfluorinated oxygen vector in cultures of microorganisms. Przem. Chem., 85, 1131-1133. Pilarek M., Szewczyk K.W., 008. Effects of perfluorinated oxygen carrier application in yeast, fungi and plant cell suspension cultures. Bio. Eng. J., 41, 38-4. DOI: 10.1016/j.bej.008.03.004. Pilarek M., Glazyrina J., Neubauer P., 011a. Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures. Microb. Cell Fact. 10, art. no. 50. DOI: 10.1186/1475-859-10-50. Pilarek M., Neubauer P., Marx U., 011b. Biological cardio-micro-pumps for microbioreactors and analytical micro-systems. Sens. Actuators B: Chem., 156, 517-56. DOI: 10.1016/j.snb.011.0.014. Pohorecki R., Moniuk W., 1988. Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions. Chem. Eng. Sci., 43, 1677-1684. DOI: 10.1016/0009-509(88)85159-5. Qian D., Lawal A., 006. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chem. Eng. Sci., 61, 7609-795. DOI: 10.1016/j.ces.006.08.073. Rappaport C., 003. Review Progress in concept and practice of growing anchorage-dependent mammalian cells in three dimension. In Vitro Cell Dev. Biol.-Animal, 39, 187-19. DOI:10.190/1543-706X(003)039<0187:RICAPO>.0.CO;. Riess J.G., 001. Oxygen carriers ( Blood substitutes ) Raison d Etre, chemistry and some physiology. Chem. Rev., 101, 797-919. DOI: 10.101/cr970143c. Riess J.G., 006. Perfluorocarbon-based oxygen delivery. Artif. Cells, Blood Substit. Biotechnol., 34, 567-580. DOI: 10.1080/1073119060097384. Shiba Y., Ohshima T., Sato M., 1998. Growth and morphology of anchorage-dependent animal cells in a liquid/liquid interface system. Biotechnol. Bioeng., 57, 583-589. DOI: 10.100/(SICI)1097-090(19980305)57:5<583::AID-BIT10>3.0.CO;-D. Sobieszuk P., Aubin J., Pohorecki R., 01. Hydrodynamics and mass transfer in gas-liquid flows in microreactors. Chem. Eng. Tech., 35, 1346-1358. DOI: 10.100/ceat.01100643. Sobieszuk P., Pohorecki R., Cygański P., Grzelka J., 011. Determination of the interfacial area and mass transfer coefficients in the Taylor gas liquid flow in a microchannel. Chem. Eng. Sci., 66, 6048-6056. DOI: 10.1016/j.ces.011.08.09. Sobieszuk P., Cygański P., Pohorecki R., 010. Bubble lengths in the gas-liquid Taylor flow in microchannels. Chem. Eng. Res. Des., 88, 63-96. DOI: 10.1016/j.cherd.009.07.007. Sobieszuk P., Cygański P., Pohorecki R., 008. Volumetric liquid side mass transfer coefficient in a gas-liquid microreactor. Chem. Proc. Eng., 9, 651-661. Ukkonen K., Vasala A., Oyamo H., Neubauer P., 011. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer. Microb. Cell Fact., 10, art. no. 107. DOI: 10.1186/1475-859-10-107. Yue J., Chen G., Yuan Q., Luo L., Gonthier Y., 007. Hydrodynamics and mass transfer characteristics in gasliquid flow through a rectangular microchannel. Chem. Eng. Sci., 6, 096-108. DOI: 10.1016/j.ces.006.1.057. Received 14 May 01 Received in revised form 10 November 01 Accepted 4 November 01 60 Unauthenticated 89.67.4.59