Provided by TryEngineering -

Similar documents
Sail Away. Provided by TryEngineering - Lesson Focus. Lesson Synopsis. Aligned year levels Years 2, 4, 7 and 10.

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Build a Boat for Scientific Research

Newton s Triple Play Explore

SNAKY SPRING WAVE DEMONSTRATION ITEM # ENERGY - MOTION

University of Victoria Faculty of Education School of Physical Education May 2003 PE 117 TENNIS (A01)

BUILD A BETTER BOAT. Overview. Standards

LONG METAL SPRING ITEM # ENERGY - MOTION

Lifesaving Society National Lifeguard Instructor Candidate Self-Assessment

Personal Paintbrushes

Essential Question: How can you design a fishing pole from spaghetti that can support a great amount of weight to be prepared to catch Jangles?

INNOVATION TOOLS OF THE TRADE PRE-VISIT - BUILD A BETTER BASEBALL

Perilous Plunge. Activity Guide PITSCO. Ideas Solutions V0708

Sail Through Engineering Post-Workshop Activity

The Science of Golf. Test Lab Toolkit The Club: Energy & Force. Facilitator Guide Grades 6-8

An exploration of how the height of a rebound is related to the height a ball is dropped from. An exploration of the elasticity of rubber balls.

Redesign of a Tennis Racket for Reduced Vibrations and Improved Control and Power. MENG 370 Design Project Report Fall 2012 Semester

Turbulence and How to Avoid It

A Table Top Wind Tunnel You Can Build

NASA Engineering Design Challenge The Great Boomerang Challenge Teacher Guide Overview your students excited about this lesson

2017 Cardboard Challenge. 3rd Grade. Billy Goat Bridge

Bernoulli s Principle at Work

LESSON 2: SUBMARINE BUOYANCY INVESTIGATION

SC.5.P.13.2 Investigate and describe that the greater the force applied to it, the greater the change in motion of a given object.

Engineering Project Boat Building Challenge

Bubble Technology, Part 2: How Are Bubble Blowers Different?

Moving Air: 1.B.II Sailboats

POMS Science Summer Challenge

Introduction. Level 1

2006 AIMS Education Foundation

Brunel Would have Been Proud of You

Battle of the Waves Sound vs Light

Science of Sports Teacher Packet

Extending Bubble Trouble In Your Classroom

Investigating Factors That Affect Tsunami Inundation A Science Inquiry

Investigating Factors That Affect Tsunami Inundation A Science Inquiry

Hockey Scholar Curriculum Guide

Educational Innovations

Standard 3.1 The student will plan and conduct investigations in which

Case 4 : During a point, a player accidentally breaks the strings. Can the player continue to play another point with this racket.

NHL & NHLPA Future Goals Program Hockey Scholar TM

Table of Contents. Career Overview... 4

Overview: Note to Volunteers: Fling Flyer Design Challenge 1

The Math and Science of Bowling

Please be sure to save a copy of this activity to your computer!

Project-Based Instruction

Bubble Technology, Part 1: How Are Bubble Blowers Different?

The Rubber Band Car. Lesson Guide. The Challenge: To build a car that moves under the power of rubber bands! Topics: Forces, Energy, Simple Machines

Keeping Warm in the Arctic

The Mystery Tube. Purpose: The students will be able to. Experience the process of science first-hand. Use a constructed model to test a hypothesis.

F I N D I N G K A T A H D I N :

K-8 45 MIN 1 VOLUNTEER PER 5 CHILDREN DIFFERENT OBJECTS FLOAT OR SINK IN VARIOUS FLUIDS

MLC Tennis Hot Shots in schools

Case studies from classes led by Dr. Ron Fulbright, University of South Carolina Upstate. INNOVATIVE ANALYSIS A BETTER KITE

GO BEYOND! The Helio A7 is one of the lightest, most efficient folding aluminum chairs in the industry.

Lesson Plan: Bernoulli s Lift

Beech Maple Forest Classroom Unit

C l o t h i n g a n d T e x t i l e s ( 7 ) A Middle Years Human Ecology Course

5 th Grade - Lesson 2.4 Density and Sinking and Floating

Experimental Procedure

Prosthetic Arm. Preliminary As determined by your local MESA Center Regional 1 for 6 th Grade; 1 for 7 th /8 th Grade per Center

Forging new generations of engineers

Engineering: Measurement Technology Pressure/Level (SCQF level 6)

CHAPTER 2: Aims. Overview of Chapter. Working Scientifically Skills. Primary Science Curriculum link

Brixham Archers Arrow Workshop 2015

Life Vest Challenge. Student Resource: What is a Life Vest or PFD?

ORANGE BALL. CAMP 3 The All Court Player Draft

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Product Identification

Gas Laws. Essential Learning Outcomes: 1. Change can be measured. 2. Changes can occur within a substance that alters its identity.

MODERN ARCHERY Compound Bow

Great Science Adventures

NAVIGATOR PROP BUILDING INSTRUCTIONS & PHOTOS

Spring Doubles Tennis Rules

Helicopter & Launcher

PHYSICS 218 EXAM 1 Monday, September 24, 2007

BCX SERIES STAND UP PADDLEBOARD INSTRUCTION MANUAL

Mini-Golf Course Description. 1. You must draw your design on a piece of graph paper so that it will cover all four quadrants.

Educational Methods Using the Passive Walking Paper Robots for Teacher Education

EDUCATION RESOURCE DESIGN & TECHNOLOGY. Education Program Partner YEARS 8-10 RESILIENT FLAME DESIGN & TECHNOLOGY - PAGE 1

Extension Activities:

Drexel-SDP GK-12 ACTIVITY

Department of Defense Education Activity Host Nation Program Standards and Student Performance Outcomes Grades K - 6 Contents

Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect

#6 Lesson Emergency Rescue Vehicles Engineering Design Assessment

Kids Ride the Bus. A Comprehensive Lesson Plan. Traffic Jamming

Lesson 2 Pre-Visit Batting Average Ups and Downs

By Robyn Kademan and Shawdi Nesbit

Universal Elevator Mount Owners Manual Customer Service Center N53 W24700 South Corporate Circle Sussex, WI U.S.A.

The Science of Golf. Test Lab Toolkit The Ball: Aerodynamics. Grades 6-8

craft sticks (limit 6) glue cylinder chip can or Pitsco tube tape (limit 12 inches) paper fasteners (limit 4) index cards

Materials Selection and Design. Kene Mbanisi and Wole Soboyejo Worcester Polytechnic Institute Worcester, MA 01609

The NXT Generation. A complete learning solution

1. Unit Objective(s): (What will students know and be able to do as a result of this unit?

Ping Pong Rules Legal Service

Medium Term Plan. National Curriculum Focus: Volleyball Year Group: 3 Medium for delivery: Aim Of Unit: Teaching Method(s):

Spirit Lesson 3 Robot Wheelies Lesson Outline Content: Context: Activity Description:

Lighter than Air. The Tech Challenge 2016 Flight Lesson 2: Lesson Description: Grade Levels: 4-8. Education Outcomes: Education Standards

The Science of Golf. Test Lab Toolkit The Score: Handicap. Facilitator Guide Grades 6-8

March Madness Basketball Tournament

Transcription:

Provided by TryEngineering - Lesson Focus Lesson focuses on sports engineering and advanced materials development. Students work in a team to devise a racquet out of everyday materials that can consistently hit a ball to a target. Students design their racquet on paper, build the racquet, and test it. All teams evaluate their results, reflect on their design, and present to the class. Lesson Synopsis The "Tennis Anyone" lesson explores how engineers who work in the sports industry apply the latest materials, manufacturing techniques, and shapes to enhance sporting -- while maintaining the rules of a sport. Students work in teams to design a racquet made out of everyday materials that can consistently hit a ball to a target. They sketch their plans, consider material selection, build their racquet, test it, reflect on the challenge, and present their experiences to their class. Age Levels 8-18. Objectives Learn about engineering design and redesign. Learn about materials engineering. Learn how engineering can help solve society's challenges. Learn about teamwork and problem solving. Anticipated Learner Outcomes As a result of this activity, students should develop an understanding of: materials engineering design sports engineering teamwork Lesson Activities Students explore how engineers have incorporated the latest materials and manufacturing techniques to improve the performance of sports equipment. Students work in teams to construct a functional racquet out of everyday materials that can consistently hit a ball to a target. Students reflect on the experience and share with the class. Tennis Anyone? Page 1 of 10

Resources/Materials Teacher Resource Documents (attached) Student Resource Sheet (attached) Student Worksheet (attached) Alignment to Curriculum Frameworks See curriculum alignment sheet at end of lesson. I nternet Connections TryEngineering () International Tennis Federation Racquet History and Manufacturing Process (www.itftennis.com/technical/equipment/rackets/) International Tennis Hall of Fame & Museum (www.tennisfame.com) National Science Education Standards (www.nsta.org/publications/nses.aspx) ITEA Standards for Technological Literacy (www.iteaconnect.org/taa) Recommended Reading The Physics and Technology of Tennis (ISBN: 978-0972275903) Technical Tennis: Racquets, Strings, Balls, Courts, Spin, and Bounce (ISBN: 978-0199557684) Optional Writing Activity Write an essay or a paragraph about how the use of titanium has impacted the sports of golf, table tennis, and other sports. How has titanium use by engineers impacted other industries? Tennis Anyone? Page 2 of 10

For Teachers: Teacher Resources Lesson Goal The "Tennis Anyone" lesson focuses on sports engineering and advanced materials development. Students work in a team to devise a racquet out of everyday materials that can consistently hit a ball to a target. Students design their racquet on paper, build the racquet, and test it. All teams evaluate their results, reflect on their design, and present to the class. Lesson Objectives Learn about engineering design and redesign. Learn about materials engineering. Learn how engineering can help solve society's challenges. Learn about teamwork and problem solving. Materials Student Resource Sheets Student Worksheets Classroom Materials: ping pong ball covered in hook and loop or Velcro; target board of cloth or Velcro with scoring boxes. Student Team Materials: pipe cleaners, bendable aluminum wire, straws, paper towel tubes, paper clips, tape, balloons, glue, string, foil, plastic wrap, pens, pencils, paper, other items available in the classroom. Procedure 1. Show students the student reference sheets. These may be read in class or provided as reading material for the prior night's homework. 2. To introduce the lesson, consider asking the students how the tennis racquet has evolved over time. Ask them to think about how engineers incorporate newer materials or manufacturing processes to change and improve the performance or durability of a product. 3. If the internet is available, have students review the resources on the history and manufacturing of tennis racquets on the International Tennis Federation website (http://www.itftennis.com/technical/rackets-and-strings/overview.aspx/). 4. Students will work in teams of 3-4 students and consider their challenge. They'll also conduct research into how tennis racquets are manufactured online if possible. 5. Teams then consider available materials and develop a detailed drawing showing their racquet design including a list of materials they will need to build it. 6. Students build their racquet, and test it under teacher supervision. Each racquet must be able to direct a ping pong ball that has been covered in hook and loop (Velcro) onto a cloth or board with a target drawn on it. Team scores are based on highest scores on the target. 7. Students should observe the materials used and the design of other teams and gauge their performance. 8. Teams reflect on the challenge, and present their experiences to the class. Time Needed Two to three 45 minute sessions. Tennis Anyone? Page 3 of 10

Student Resource: History of Racquet Design Racquet History Tennis racquets have been made throughout the years in a variety of shapes, sizes, and out of many different materials. For the first 100 years of the modern version of the game of tennis, racquets were made of wood while strings were created from animal gut. Originally, the size of the racquet was limited by the strength and weight of the wooden frame which had to be strong enough to hold the strings and yet stiff enough to hit the ball. Next, laminated wood construction yielded more strength in racquets, and were used through most of the 20th century. Manufacturers then started adding non-wood laminates to wood racquets to improve stiffness. Non-wood racquets were made first of steel, then of aluminum, and then carbon fiber composites. More recently, ceramics and lighter metals such as titanium were introduced. These engineered materials are stronger and enable the production of oversized rackets that offered more power during play. Gut has partially been replaced by synthetic materials including nylon, polyamide, and other polymers. These engineered materials have proved to be more durable than the animal gut versions. Constraints of the Rules Under modern rules of tennis, racquets must adhere to a certain set of guidelines or standards, to make sure that play is fair. At the moment, these are some of the guidelines: * The hitting area, composed of the strings, must be flat and generally uniform. * The frame of the racket shall not exceed 73.7 cm (29.0 inches) in overall length, including the handle. * The frame of the racket shall not exceed 31.7 cm (12.5 inches) in overall width. * The hitting surface shall not exceed 39.4 cm (15.5 inches) in overall length, and 29.2 cm (11.5 inches) in overall width. * The racquet must not provide any kind of communication, instruction or advice to the player during the match. Engineers must work closely with those governing the rules of play to make sure that sporting equipment meets the requirements of the game. Tennis Anyone? Page 4 of 10

Student Worksheet: Build a Racquet Research and Planning You are part of a team of engineers who have been given the challenge of designing a tennis racquet out of everyday materials that can consistently hit a ball to a target. Read the handouts provided to you by your teacher, and if you also have access to the internet visit the International Tennis Federation at http://www.itftennis.com/technical/rackets-andstrings/overview.aspx to gain more understanding about the history and design of tennis racquets. Design Phase You have been provided with many materials from which to design and build your own tennis racquet. Your racquet must be strong enough to stay together throughout the challenge. In the box below draw a diagram of your racquet and provide a list of the materials you plan to use. Materials List: Tennis Anyone? Page 5 of 10

Student Worksheet: Build a Racquet (continued) Building Phase Build your racquet according to your plan but you may adjust it in the manufacturing process. You may also request additional materials, or trade materials with other student teams. If you make revisions to your design, consider why you are making a change. Testing Phase Try out your racquet! You'll use your racquet to hit a ping pong ball that has been covered in hook & loop or Velcro toward a target. Your goal is to use your racquet to hit your ball in the bullseye (or as close to the center as possible for highest points). Each member of your team may try the racquet up to three times -- and the six highest scores will be used to determine your team score. This way, if one team member has better aim than another, it will not matter. During this phase, be sure to examine all the different designs of racquets created by all the teams in your class. There is no right or wrong way to complete this challenge, and much can be learned by observing the engineering ideas of other teams. Scoring The center of the target is worth 10 points, the middle area is worth 6, and the outer area is worth 2. Remember to only include your top six scores in the table below: Score 1 Score 2 Score 3 Score 4 Score 5 Score 6 Total If your racquet falls apart during testing, you'll take the scores you accumulated until it was unusable, and add zeros if fewer than six scores were achieved. Tennis Anyone? Page 6 of 10

Student Worksheet: Build a Racquet (continued) Reflection Complete the reflection questions below: 1. How similar was your original design to the actual racquet your team built? 2. If you found you needed to make changes during the construction phase, describe why your team decided to make revisions. 3. Did your racquet survive the testing phase? If not, what would you have done differently in design or building to ensure it would have survived? 4. At the end of the testing phase, did your racquet experience significant damage? If so, what type of reinforcement would you have incorporated if you did this challenge again? 5. After the testing phase, what features would you have incorporated into a new design? What other materials might you have used? 6. Which racquet that another team made was the most effective or interesting to you? Why? 7. Do you think that this activity was more rewarding to do as a team, or would you have preferred to work alone on it? Why? Tennis Anyone? Page 7 of 10

For Teachers: Alignment to Curriculum Frameworks Note: Lesson plans in this series are aligned to one or more of the following sets of standards: U.S. Science Education Standards (http://www.nap.edu/catalog.php?record_id=4962) U.S. Next Generation Science Standards (http://www.nextgenscience.org/) International Technology Education Association's Standards for Technological Literacy (http://www.iteea.org/taa/pdfs/xstnd.pdf) U.S. National Council of Teachers of Mathematics' Principles and Standards for School Mathematics (http://www.nctm.org/standards/content.aspx?id=16909) U.S. Common Core State Standards for Mathematics (http://www.corestandards.org/math) Computer Science Teachers Association K-12 Computer Science Standards (http://csta.acm.org/curriculum/sub/k12standards.html) National Science Education Standards Grades K-4 (ages 4-9) CONTENT STANDARD A: Science as Inquiry As a result of activities, all students should develop Abilities necessary to do scientific inquiry CONTENT STANDARD B: Physical Science As a result of the activities, all students should develop an understanding of Properties of objects and materials Position and motion of objects CONTENT STANDARD E: Science and Technology As a result of activities, all students should develop Abilities of technological design Abilities to distinguish between natural objects and objects made by humans CONTENT STANDARD F: Science in Personal and Social Perspectives Science and technology in local challenges CONTENT STANDARD G: History and Nature of Science Science as a human endeavor National Science Education Standards Grades 5-8 (ages 10-14) CONTENT STANDARD A: Science as Inquiry As a result of activities, all students should develop Abilities necessary to do scientific inquiry CONTENT STANDARD B: Physical Science As a result of their activities, all students should develop an understanding of Properties and changes of properties in matter Motions and forces Transfer of energy CONTENT STANDARD E: Science and Technology As a result of activities in grades 5-8, all students should develop Abilities of technological design Understandings about science and technology CONTENT STANDARD F: Science in Personal and Social Perspectives Science and technology in society Tennis Anyone? Page 8 of 10

For Teachers: Alignment to Curriculum Frameworks (cont.) National Science Education Standards Grades 5-8 (ages 10-14) CONTENT STANDARD G: History and Nature of Science Science as a human endeavor Nature of science History of science National Science Education Standards Grades 9-12 (ages 14-18) CONTENT STANDARD A: Science as Inquiry As a result of activities, all students should develop Abilities necessary to do scientific inquiry CONTENT STANDARD B: Physical Science As a result of their activities, all students should develop understanding of Motions and forces CONTENT STANDARD E: Science and Technology As a result of activities, all students should develop Abilities of technological design Understandings about science and technology CONTENT STANDARD F: Science in Personal and Social Perspectives Science and technology in local, national, and global challenges CONTENT STANDARD G: History and Nature of Science Science as a human endeavor Nature of scientific knowledge Historical perspectives Next Generation Science Standards Grades 2-5 (Ages 7-11) Matter and its Interactions Students who demonstrate understanding can: 2-PS1-2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. Motion and Stability: Forces and Interactions Students who demonstrate understanding can: 3-PS2-1. Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. Engineering Design Students who demonstrate understanding can: 3-5-ETS1-1.Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. 3-5-ETS1-2.Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. Tennis Anyone? Page 9 of 10

For Teachers: Alignment to Curriculum Frameworks (cont.) Next Generation Science Standards Grades 2-5 (Ages 7-11) Engineering Design Students who demonstrate understanding can: 3-5-ETS1-3.Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. Next Generation Science Standards Grades 6-8 (Ages 11-14) Engineering Design Students who demonstrate understanding can: MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. MS-ETS1-2 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. Standards for Technological Literacy - All Ages The Nature of Technology Standard 1: Students will develop an understanding of the characteristics and scope of technology. Standard 3: Students will develop an understanding of the relationships among technologies and the connections between technology and other fields of study. Technology and Society Standard 4: Students will develop an understanding of the cultural, social, economic, and political effects of technology. Standard 6: Students will develop an understanding of the role of society in the development and use of technology. Standard 7: Students will develop an understanding of the influence of technology on history. Design Standard 8: Students will develop an understanding of the attributes of design. Standard 9: Students will develop an understanding of engineering design. Standard 10: Students will develop an understanding of the role of troubleshooting, research and development, invention and innovation, and experimentation in problem solving. Abilities for a Technological World Standard 11: Students will develop abilities to apply the design process. The Designed World Standard 19: Students will develop an understanding of and be able to select and use manufacturing technologies. Tennis Anyone? Page 10 of 10