Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

Similar documents
Section 1: Types of Waves

Section 1 Types of Waves

CHAPTER 10 WAVES. Section 10.1 Types of Waves

2 Characteristics of Waves

Types of Waves. Section Section 11.1

Chapter 17 Mechanical Waves

Mechanical waves Electromagnetic waves

Characteristics of Waves

WAVES. Unit 3. Sources: Ck12.org

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

ENERGY OF WAVES ch.1 PRACTICE TEST

Wave a repeating disturbance or movement that transfers energy through matter or space

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p

How do waves transfer energy?

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

Chapter 20 Study Questions Name: Class:

Table of Contents. Chapter: Waves. Section 1: The Nature of Waves. Section 2: Wave Properties. Section 3: The Behavior of Waves

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

What is a wave? A wave is a disturbance that transfers energy from place to place.

Cover Sheet-Block 6 Wave Properties

Introduction to Waves

waves? Properties Interactions

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

CERT Educational Series Light and Waves Module

Parts of Longitudinal Waves A compression

How do waves interact with objects? How do waves behave when they move between two media? How do waves interact with other waves?

Chs. 16 and 17 Mechanical Waves

WAVES. Mr. Banks 8 th Grade Science

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Waves and Sound. Honors Physics

Waves Disturbances that transport but not

Not all waves require a medium to travel. Light from the sun travels through empty space.

Transverse waves cause particles to vibrate perpendicularly to the direction of the wave's motion (e.g. waves on a string, ripples on a pond).

Vocabulary. Energy Wave Amplitude Conduction Convection Radiation Color spectrum Wavelength Potential energy

Waves. What are waves?

Mechanical Waves and Sound

Name Class Date. How do waves behave when they interact with objects? What happens when two waves meet? How do standing waves form?

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011

What are waves? Wave

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

The physicist's greatest tool is his wastebasket Albert Einstein

Name Class Date. What is a wave? How do waves form? How are transverse and longitudinal waves different?

How are waves generated? Waves are generated by

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π

Directed Reading A. Section: The Nature of Waves WAVE ENERGY. surface of the water does not. Skills Worksheet. 1. What is a wave?

Waves & Interference

Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another.

Wave. 1. Transverse 2. Longitudinal 3. Standing

17.1: Mechanical Waves

WAVE NOTES WAVE NOTES THROUGH A MEDIUM EMPTY SPACE

2 nd Term Final. Revision Sheet. Students Name: Grade: 10 A/B. Subject: Physics. Teacher Signature

Florida Benchmarks. SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials.

Physical Science Ch. 10: Waves

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying

Section 4.2. Travelling Waves

Exercises Vibration of a Pendulum (page 491) 25.2 Wave Description (pages ) 25.3 Wave Motion (pages )

Physical Science 1 Chapter 6 WAVES. A wave is a disturbance that is propagated through a system. Waves transfer energy.

Waves, Sounds, and Light

Physics Waves & Sound

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves

Chapter 14: Waves. What s disturbing you?

Chapter 17. Mechanical Waves and sound

Name: Section: Date: Wave Review

Physics Mechanics

How do noise-cancelling headphones work? (hint: the answer involves a microphone and a type of interference)

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes

Slide 2 / 28 Wave Motion. A wave travels along its medium, but the individual particles just move up and down.

Check out Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYSICS Simple Harmonic Motion, Vibrations and Waves

PRE-TEST OVER WAVES (S8P4)

A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc.

Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed : Wave Basics / Wave Properties

Today: waves. Exam Results. Wave Motion. What is moving? Motion of a piece of the rope. Energy transport

Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move.

Similarly to elastic waves, sound and other propagated waves are graphically shown by the graph:

P11 Waves 1 Basics.notebook December 13, 2013

a disturbance that transfers energy Carries energy from one place to another Classified by what they move through

WAVES. Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train).

Waves, Light, and Sound

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect

Why are both electromagnetic and mechanical waves needed to make movies? Waves. transfer energy but do not carry medium with them.

Waves. Please get out a sheet of paper for notes.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter # 08 Waves. [WAVES] Chapter # 08

Mechanical Waves. Mechanical waves are created by the vibration of objects. Mechanical waves can be either transverse or longitudinal.

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Practice Problems For 1st Wave Exam

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Chapter 19: Vibrations And Waves

Waves. Kevin Small or

Review packet Physical Science Unit Waves - 1

MECHANICAL WAVES AND SOUND

SECTION 1 & 2 WAVES & MECHANICAL WAVES

Organize information about waves. Differentiate two main types of waves.

Chapter 10: Waves The Test. Types of Waves: Surface Waves. Wave concepts. Types of Waves: Compression Waves. Types of Waves: Compression Waves

Algebra Based Physics

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another.

Transcription:

Section 1 Types of Waves Objectives Recognize that waves transfer energy. Distinguish between mechanical waves and electromagnetic waves. Explain the relationship between particle vibration and wave motion. Distinguish between transverse waves and longitudinal waves.

Section 1 Types of Waves What Is a Wave? A wave is a periodic disturbance in a solid, liquid, or gas as energy is transmitted through a medium. Waves carry energy through matter or space. Most waves travel through a medium. The matter through which a wave travels is called the medium. Waves that require a medium are called mechanical waves.

Section 1 Types of Waves Formation and Movement of Ocean Waves

Section 1 Types of Waves What Is a Wave?, continued Light does not require a medium. Light waves consist of changing electric and magnetic fields in space. Light waves are called electromagnetic waves. An electromagnetic wave consists of oscillating electric and magnetic fields, which radiate outward at the speed of light.

Section 1 Types of Waves Electromagnetic Waves

Section 1 Types of Waves What Is a Wave?, continued Waves transfer energy. Energy may spread out as a wave travels. When sound waves travel in air, the waves spread out in spheres. As they travel outward, the spherical wave fronts get bigger, so the energy in the waves spreads out over a larger area.

Section 1 Types of Waves Tsunami

Section 1 Types of Waves Vibrations and Waves Waves are related to vibrations. Most waves are caused by a vibrating object. Electromagnetic waves may be caused by vibrating charged particles. In a mechanical wave, the particles in the medium also vibrate as the wave passes through the medium.

Section 1 Types of Waves Wave Model

Section 1 Types of Waves Vibrations and Waves, continued A vibration that fades out as energy is transferred from one object to another is called damped harmonic motion. Example: devices that dampen the waves associated with earthquakes.

Harmonic Damping in Structures

Section 1 Types of Waves Transverse and Longitudinal Waves Particles in a medium can vibrate either up and down or back and forth. Waves are often classified by the direction that the particles in the medium move as a wave passes by. Transverse waves have perpendicular motion. A transverse wave is a wave in which the particles of the medium move perpendicular to the direction the wave is traveling. Light waves are transverse waves.

Section 1 Types of Waves Transverse Wave

Section 1 Types of Waves Transverse and Longitudinal Waves Longitudinal waves have parallel motion. A longitudinal wave is a wave in which the particles of the medium vibrate parallel to the direction of wave motion. Sound waves are longitudinal waves. In a surface wave, particles move in circles. Surface waves occur at the boundary between two different mediums, such as between water and air. The particles move both perpendicularly and parallel to the direction that the wave travels.

Section 1 Types of Waves Longitudinal Wave

Section 1 Types of Waves Water Wave Motion

Section 2 Characteristics of Waves Objectives Identify the crest, trough, amplitude, and wavelength of a wave. Define the terms frequency and period. Solve problems involving wave speed, frequency, and wavelength. Describe the Doppler effect.

Section 2 Characteristics of Waves Bellringer There are many different types of waves. You may be familiar with the electromagnetic spectrum, which includes radio waves, microwaves, infrared light, visible light, ultraviolet light, X rays, and gamma rays. 1. Name five common applications of waves in the electromagnetic spectrum, and list the type of wave used in each case. 2. Lasers are made from accurately focused visible light waves that are produced in phase with each other. Lasers made from visible light waves are often used in surgery to perform delicate procedures and to seal the area being treated. Write a paragraph describing how you think this process works.

Section 2 Characteristics of Waves Wave Properties

Section 2 Characteristics of Waves Wave Properties An ideal transverse wave has the shape of a sine curve. Waves that have the shape of a sine curve are called sine waves.

Section 2 Characteristics of Waves Wave Properties, continued Amplitude measures the amount of particle vibration. The crest is the highest point of a transverse wave. The trough is the lowest point of a transverse wave. The amplitude is the maximum distance that the particles of a wave s medium vibrate from their rest position.

Section 2 Characteristics of Waves Characteristics of a Wave

Section 2 Characteristics of Waves Wave Properties, continued A longitudinal wave has compressions and rarefactions. The crowded areas are called compressions. The stretched-out areas are called rarefactions. The amplitude of a longitudinal wave is the maximum deviation from the normal density or pressure of the medium.

Section 2 Characteristics of Waves Wave Properties, continued A. A longitudinal wave has compressions and rarefactions. B. The high and low points of this sine curve correspond to compressions and rarefactions in the spring.

Section 2 Characteristics of Waves Wave Properties, continued Wavelength measures the distance between two equivalent parts of a wave. The wavelength is the distance from any point on a wave to an identical point on the next wave. Not all waves have a single wavelength that is easy to measure. Wavelength is represented by the Greek letter lambda,.

Section 2 Characteristics of Waves Wave Properties, continued The period measures how long it takes for waves to pass by. The period is the time that it takes a complete cycle or wave oscillation to occur. The period is represented by the symbol T. Frequency measures the rate of vibrations. The frequency is the number of cycles or vibrations per unit of time. The symbol for frequency is f. The SI unit for measuring frequency is hertz.

Section 2 Characteristics of Waves Frequency

Section 2 Characteristics of Waves Wave Period of Ocean Waves

Section 2 Characteristics of Waves Wave Properties, continued The frequency and period of a wave are related. The frequency is the inverse of the period. frequency 1 period 1 f = T

Section 2 Characteristics of Waves Wave Properties, continued Light comes in a wide range of frequencies and wavelengths. Our eyes can detect light with frequencies ranging from about 4.3 10 14 Hz to 7.5 10 14 Hz. Light in this range is called visible light. The full range of light at different frequencies and wavelengths is called the electromagnetic spectrum.

Section 2 Characteristics of Waves Visible Light

Section 2 Characteristics of Waves The Electromagnetic Spectrum

Section 2 Characteristics of Waves Wave Speed Wave speed equals frequency times wavelength. distance speed = time = wavelength speed = period = d t T speed = frequency wavelength = f

Section 2 Characteristics of Waves Equation for the Speed of a Wave

Section 2 Characteristics of Waves Math Skills Wave Speed The string of a piano that produces the note middle C vibrates with a frequency of 264 Hz. If the sound waves produced by this string have a wavelength in air of 1.30 m, what is the speed of sound in air? 1. List the given and unknown values. Given: frequency, f = 264 Hz wavelength, = 1.30 m Unknown: wave speed, =? m/s

Section 2 Characteristics of Waves Math Skills, continued 2. Write the equation for wave speed. = f 3. Insert the known values into the equation, and solve. = 264 Hz 1.30 m = 264 s 1 1.30 m = 343 m/s

Section 2 Characteristics of Waves Wave Speed, continued The speed of a wave depends on the medium. In a given medium, though, the speed of waves is constant; it does not depend on the frequency of the wave. Kinetic theory explains differences in wave speed. The arrangement of particles in a medium determines how well waves travel through it. In gases, the molecules are far apart and move around randomly. Waves don t travel as fast in gases.

Section 2 Characteristics of Waves Wave Speed, continued In liquids, such as water, the molecules are much closer together. But they are also free to slide past one another. In a solid, molecules are not only closer together but also tightly bound to each other. Waves travel very quickly through most solids. Light has a finite speed. All electromagnetic waves in empty space travel at the same speed, the speed of light, which is 3.00 10 8 m/s (186 000 mi/s). Light travels slower when it has to pass through a medium such as air or water.

Section 2 Characteristics of Waves Doppler Effect Pitch is determined by the frequency of sound waves. The pitch of a sound, how high or low it is, is determined by the frequency at which sound waves strike the eardrum in your ear. A higher-pitched sound is caused by sound waves of higher frequency. Frequency changes when the source of waves is moving. The Doppler effect is an observed change in the frequency of a wave when the source or observer is moving.

Section 2 Characteristics of Waves Doppler Effect and Sound

Section 3 Wave Interactions Objectives Describe how waves behave when they meet an obstacle or pass into another medium. Explain what happens when two waves interfere. Distinguish between constructive interference and destructive interference. Explain how standing waves are formed.

Section 3 Wave Interactions Bellringer 1. The back of a mirror is flat and highly reflective. Describe how you think a mirror works. 2. Why do you think one piece of safety equipment that backpackers carry into the wilderness is a mirror? 3. Describe what an echo is. 4. Blinds in the windows of homes, schools, and offices can be tilted up or down, or they can be closed completely. Explain how varying positions of the blinds controls light.

Section 3 Wave Interactions Reflection, Diffraction, and Refraction Reflection is the bouncing back of a ray of light, sound, or heat when the ray hits a surface that it does not go through. Waves reflect at a free boundary. The reflected wave is exactly like the original wave except that the reflected wave is traveling in the opposite direction to the direction of the original wave. At a fixed boundary, waves reflect and turn upside down.

Section 3 Wave Interactions Reflection

Section 3 Wave Interactions Reflection

Section 3 Wave Interactions Reflection, Diffraction, and Refraction, continued Diffraction is the bending of waves around an edge. Diffraction is a change in the direction of a wave when the wave finds an obstacle or an edge, such as an opening. Waves can also bend by refraction. Refraction is the bending of a wavefront as the wavefront passes between two substances in which the speed of the wave differs. All waves are refracted when they pass from one medium to another at an angle.

Section 3 Wave Interactions Diffraction

Section 3 Wave Interactions Refraction

Section 3 Wave Interactions Interference Waves in the same place combine to produce a single wave. Interference is the combination of two or more waves of the same frequency that results in a single wave. The resulting wave can be found by adding the height of the waves at each point. Crests are considered positive, and troughs are considered negative. This method of adding waves is sometimes known as the principle of superposition.

Section 3 Wave Interactions Constructive and Destructive Interference

Section 3 Wave Interactions Interference, continued Constructive interference increases amplitude. Constructive interference is any interference in which waves combine so that the resulting wave is bigger than the original waves. The amplitude of the resulting wave is the sum of the amplitudes of the two individual waves. Destructive interference decreases amplitude. Destructive interference is any interference in which waves combine so that the resulting wave is smaller than the largest of the original waves. When destructive interference occurs between two waves that have the same amplitude, the waves may completely cancel each other out.

Section 3 Wave Interactions Interference, continued Interference of light waves creates colorful displays. Interference of sound waves produces beats. When two waves of slightly different frequencies interfere with each other, they produce beats.

Section 3 Wave Interactions Standing Waves Interference can cause standing waves. A standing wave is a pattern of vibration that simulates a wave that is standing still. Standing waves can form when a wave is reflected at the boundary of a medium. Although it appears as if the wave is standing still, in reality waves are traveling in both directions.

Section 3 Wave Interactions Standing Wave

Section 3 Wave Interactions Standing Waves, continued Standing waves have nodes and antinodes. Each loop of a standing wave is separated from the next loop by points that have no vibration, called nodes. Nodes lie at the points where the crests of the original waves meet the troughs of the reflected waves, causing complete destructive interference. Midway between the nodes lie points of maximum vibration, called antinodes. Antinodes form where the crests of the original waves line up with the crests of the reflected waves, causing complete constructive interference.

Section 3 Wave Interactions Standing Waves, continued Standing waves can have only certain wavelengths. In general, standing waves can exist whenever a multiple of half-wavelengths will fit exactly in the length of the string. It is possible for standing waves of more than one wavelength to exist on a string at the same time.

Section 3 Wave Interactions Concept Mapping

Standardized Test Prep Understanding Concepts 1. Which of the following waves can be transmitted without a medium? A. electromagnetic B. longitudinal C. mechanical D. transverse

Standardized Test Prep Understanding Concepts 1. Which of the following waves can be transmitted without a medium? A. electromagnetic B. longitudinal C. mechanical D. transverse

Standardized Test Prep Understanding Concepts 2. How do longitudinal waves carry energy from a source? F. Particles vibrate outward from the source of the wave. G. Particles vibrate parallel to the direction of the wave. H. Particles vibrate perpendicular to the direction of the wave. I. Particles vibrate both parallel and perpendicular to the direction of the wave.

Standardized Test Prep Understanding Concepts 2. How do longitudinal waves carry energy from a source? F. Particles vibrate outward from the source of the wave. G. Particles vibrate parallel to the direction of the wave. H. Particles vibrate perpendicular to the direction of the wave. I. Particles vibrate both parallel and perpendicular to the direction of the wave.

Standardized Test Prep Understanding Concepts 3. What is measured by the amplitude of a wave? A. the amount of vibration of particles B. the direction of vibration of particles C. the rate of vibration of particles D. the wavelength of vibration of particles

Standardized Test Prep Understanding Concepts 3. What is measured by the amplitude of a wave? A. the amount of vibration of particles B. the direction of vibration of particles C. the rate of vibration of particles D. the wavelength of vibration of particles

Standardized Test Prep Understanding Concepts 4. Which combination of wave interactions can cause a standing wave? F. diffraction and interference G. diffraction and reflection H. reflection and interference I. reflection and refraction

Standardized Test Prep Understanding Concepts 4. Which combination of wave interactions can cause a standing wave? F. diffraction and interference G. diffraction and reflection H. reflection and interference I. reflection and refraction

Standardized Test Prep Understanding Concepts 5. Why do astronauts on the moon need a radio transmitter to carry on a conversation with each other?

Standardized Test Prep Understanding Concepts 5. Why do astronauts on the moon need a radio transmitter to carry on a conversation with each other? Answer: Sound waves require a medium to carry energy from one place to another. On the moon, there is no air to carry the vibrations.

Standardized Test Prep Reading Skills The Doppler Effect applies to light as well as sound. Astronomers have used this fact to measure the speed of objects in space as they move away from Earth. They know the frequency and wavelength of the light as it leaves a star because the energy transitions in atoms are the same throughout the universe. When the light reaches Earth, it has a different frequency from when it left the star. 6. Assess how the knowledge that light always travels at the same speed is essential for determining the speed at which a distant galaxy and Earth are moving apart.

Standardized Test Prep Reading Skills 6. Assess how the knowledge that light always travels at the same speed is essential for determining the speed at which a distant galaxy and Earth are moving apart. Answer: Using the change in frequency of light and the fact that the speed of light is constant, astronomers can calculate how fast the objects are moving away from one another.

Standardized Test Prep Reading Skills The Doppler Effect applies to light as well as sound. Astronomers have used this fact to measure the speed of objects in space as they move away from Earth. They know the frequency and wavelength of the light as it leaves a star because the energy transitions in atoms are the same throughout the universe. When the light reaches Earth, it has a different frequency from when it left the star. 7. Astronomers have observed that the wavelength of light reaching Earth from one edge of the sun is slightly different than from the other edge. What can be concluded about the sun based on this observation?

Standardized Test Prep Reading Skills 7. Astronomers have observed that the wavelength of light reaching Earth from one edge of the sun is slightly different than from the other edge. What can be concluded about the sun based on this observation? Answer: The observation indicates that the sun is rotating. The light from one edge is shifted to a shorter wavelength, and light from the other edge is shifted to a longer wavelength.

Standardized Test Prep Interpreting Graphics 8. What wave phenomenon is demonstrated in this illustration? A. diffraction C. reflection B. Interference D. refraction

Standardized Test Prep Interpreting Graphics 8. What wave phenomenon is demonstrated in this illustration? A. diffraction C. reflection B. Interference D. refraction

Standardized Test Prep Interpreting Graphics 9. Which of the points on the illustration indicates an antinode? F. W H. Y G. X I. Z

Standardized Test Prep Interpreting Graphics 9. Which of the points on the illustration indicates an antinode? F. W H. Y G. X I. Z