EXPERIMENT 6 THE SPEED OF SOUND USING THE RESONANCE OF LONGITUDINAL WAVES

Similar documents
Mechanical waves Electromagnetic waves

Waves & Interference

Chs. 16 and 17 Mechanical Waves

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Define transverse waves and longitudinal waves. Draw a simple diagram of each

is shown in Fig. 5.1.

WAVES. Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train).

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School

Date Lab Time Name. Wave Motion

Questions. Background. Equipment. Activities LAB 3. WAVES

Stationary Waves. Question paper 3. Save My Exams! The Home of Revision. International A Level. Exam Board Superposition. Booklet Question paper 3

Section 4.2. Travelling Waves

Sound waves... light waves... water waves...

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Standing Waves in a String

Physics Waves & Sound

MECHANICAL WAVES AND SOUND

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect


PHYS 102 Quiz Problems Chapter 16 : Waves I Dr. M. F. Al-Kuhaili

Wave a repeating disturbance or movement that transfers energy through matter or space

Today: waves. Exam Results. Wave Motion. What is moving? Motion of a piece of the rope. Energy transport

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move.

Question. A. Incorrect! Check the definition for period. B. Incorrect! Check the definition for speed.

A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

Physics Mechanics

i-clicker Discussion Question

Period: Date: 1. A single disturbance that moves from point to point through a medium is called a. a. period b. periodic wave c. wavelength d.

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011

Broughton High School

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Chapter # 08 Waves. [WAVES] Chapter # 08

Lab #21 - ORR: Resonance Tube

Chapters 25: Waves. f = 1 T. v =!f. Text: Chapter 25 Think and Explain: 1-10 Think and Solve: 1-4

Modified Version of the Mechanical Waves Conceptual Survey (MWCS-v2.0)

Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy.

Harmonics and Sound Exam Review

Slide 2 / 28 Wave Motion. A wave travels along its medium, but the individual particles just move up and down.

Doppler Effect. PHY132H1F Introduction to Physics II Class 3 Outline:

Today: waves. Exam Results, HW4 reminder. Chapter 8: Wave Motion. What is moving? Energy transport. Motion of a piece of the rope

Not all waves require a medium to travel. Light from the sun travels through empty space.

Gr. 11 Physics Waves and Sound

Questions OSCILLATIONS AND WAVES

Chapter 12: Mechanical Waves and Sound

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

2 nd Term Final. Revision Sheet. Students Name: Grade: 10 A/B. Subject: Physics. Teacher Signature

Mechanical Waves. Mechanical waves are created by the vibration of objects. Mechanical waves can be either transverse or longitudinal.

What are waves? Wave

So, the detailed calculation to find the speed of light (c) is: c=λ*f. Procedure:

Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc.

WAVES. Mr. Banks 8 th Grade Science

CHAPTER 16. Waves and Sound

Similarly to elastic waves, sound and other propagated waves are graphically shown by the graph:

INTRODUCTION TO WAVES. Dr. Watchara Liewrian


Practice Problems For 1st Wave Exam

Physical Science 1 Chapter 6 WAVES. A wave is a disturbance that is propagated through a system. Waves transfer energy.

Lab 2: Superposition of waves on a string

Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed : Wave Basics / Wave Properties

PHYSICS - CLUTCH CH 16: WAVES & SOUND.

Waves and Sound. Honors Physics

Algebra Based Physics

Waves Practice Problems AP Physics In a wave, the distance traveled by a wave during one period is called:

CHAPTER 10 WAVES. Section 10.1 Types of Waves

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation

Chapter 14 Waves. Apr 30 7:11 AM

Waves Multiple Choice

4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium.

Waves Chapter Problems

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p

Superposition of waves on a string

Section 1 Types of Waves

Phys1111K: Superposition of waves on a string Name:

Section 1: Types of Waves

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

Chapter 16. Waves-I Types of Waves

15815 Super Spring - Student

Chapter 10: Waves The Test. Types of Waves: Surface Waves. Wave concepts. Types of Waves: Compression Waves. Types of Waves: Compression Waves

Mechanical Waves and Sound

Chapter 14: Waves. What s disturbing you?

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

1. What are the differences and similarities among transverse, longitudinal, and surface waves?

Academic Year First Term. Grade 6 Science Revision Sheet

Waves, Sounds, and Light

Mechanical Waves. Chapter 15. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

Lesson 14: Simple harmonic motion, Waves (Sections )

Chapter 1. Energy

Parts of Longitudinal Waves A compression

Florida Benchmarks. SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials.

Waves and Sound. (Chapter 25-26)

Lab 12 Standing Waves

NATURE AND PROPERTIES OF WAVES P.1

Chapter 17. Mechanical Waves and sound

Characteristics of Waves

Physics Extended Essay. A research about the effect of sound waves on standing waves by using Ruben s Tube.

Transcription:

EXPERIMENT 6 THE SPEED OF SOUND USING THE RESONANCE OF LONGITUDINAL WAVES Sound waves produced by a tuning fork are sent down a tube filled with a gas. The waves reflect back up the tube from a water surface and interfere with the waves traveling downward. By properly adjusting the water level, a resonance condition can be established. By knowing the frequency of the tuning fork and the position of the water level for two different resonant lengths, the speed at which sound waves travel through the gas is found. THEORY The vibration of the tines of a tuning fork creates regions of compression and rarefaction In the gas. If these disturbances are sent down a gas-filled tube and reflected back up the tube from a fixed boundary, then interference occurs between the two waves. If the distance from the open end of the tube to the closed end is appropriately chosen, then standing longitudinal waves will be set up in the tube creating a resonance condition. For sound waves, resonance is indicated by an increase in the loudness of the sound. When this condition exists, the open end of the tube corresponds to an anti-node of the vibration (maximum oscillation of the molecules) and the closed end corresponds to a node (minimum oscillation). Because one full wavelength of a wave is the distance from a node to the second node away, with antinodes halfway between the nodes, the distance from an anti-node to a node corresponds to 1/4, 3/4, 5/4, etc. of a wavelength (refer to Figure 1). Figure 1. The particle displacement waveform for the open-closed tube in its first resonance condition, (a) and in its second resonance condition, (b). Notice that the increase in length corresponds to one-half of a wavelength. 6-1

Because the position of the anti-node at the open end of the tube cannot be precisely located, the distance from the open end to the first node is not measured. What is measured is the distance from one node, determined by the resonance condition, to the next adjacent node, also determined by the resonance condition. When the locations of these two nodal positions are found, the distance between them corresponds to one-half of a wavelength, i.e., L - / 2. The speed of sound in the tube is then or v f.. (1) v 2 f L. (2) The speed at which sound travels is also dependent upon the temperature of the gas. For air it is approximately v 331.4 0.6T. (3) where T is the temperature of air in degrees Celsius and the velocity is in meters per second. Similarly for carbon dioxide, v 259.0 0.4T. (4) APPARATUS o 2 tuning forks: 426.6 Hz and 384 Hz; 0.5% o resonance tube apparatus o 0-100 o C thermometer, 2 o C, o rubber mallet o can for water PROCEDURE a) Fill the tube and the water supply container with water from the water can until the water level in the tube is within 10 cm of the top of the tube. Be sure that the container is not full, because the container will be lowered and water will flow into the container (see Figure 2). b) Hold the thermometer in the tube and measure the temperature, T, of the air. c) Hold the 426.6 Hz tuning fork at its yoke and either strike the tines with the rubber mallet or strike the tuning fork on something soft like your knee, the sole of your shoe, or your head. Hold the tuning fork over the open end of the tube and slowly 6-2

lower the water level in the tube by lowering the water supply container until resonance is achieved. The water level in the tube now represents the position of a node. Record the water level position, L 1, and its uncertainty, L1. The uncertainty.here is not just the measurement uncertainty, but should also include the uncertainty associated with the difficulty in determining the water level position for the loudest sound. d) Again strike the tuning fork and -hold it over the tube. Lower the water supply container further, and again determine the water level position for resonance. Record this level, L 2, and its uncertainty, L2. Note that the distance L 2 L 1 = L corresponds to one-half a wavelength. e) Repeat the above procedures for the other tuning fork. h) Repeat the above procedures for the remaining tuning fork. f) Leave the water level in the tube at its lowered position. Take a small piece (about I cc) of dry ice and drop it into -the tube. The carbon dioxide vapor should fill the tube. If it does not fill the tube, then drop another small piece into the tube. Wait until all the bubbling stops. Measure the temperature of the gas, T. g) Strike the 426.6 Hz tuning fork and hold it over the tube. Gradually raise the water supply container until resonance occurs. Measure the position of the water level and its uncertainty. Continue to raise the water level in the tube until a second resonance is found and again measure the position of the water level and its uncertainty (the nodal positions should be closer together than in the case for air in the tube). Figure 2. The resonance tube apparatus. ANALYSIS 6-3

The uncertainty in the speed of sound using the resonance tube apparatus is f L2 L1 v v, (5) f L2 L1 where u is found from (2). The uncertainty using the temperature expressions (3) and (4) is where K is 0.6 for air and 0.4 for carbon dioxide. v k T. (6) Calculate separately for each tuning fork the speed of sound in air and carbon dioxide and the corresponding uncertainties from (2) and (5). Also calculate the expected values of the speeds of sound and uncertainties for each temperature reading from (3), (4) and (6). Report these values in a table of results. On two separate one-dimensional graphs (one for each gas), graph the values for the speed of sound and their uncertainties for the resonance tube determinations and the temperature determinations QUESTIONS 1. The anti-node at the open end of the tube actually occurs a small distance beyond the end of the tube. This extra distance is referred to as the end correction. Explain, on the basis of molecular oscillations why the anti-node occurs beyond the end of the tube. Hint: On the molecular level, the anti-node can be considered to be located at the average position of the oscillating molecule. 2. Draw diagrams to show that the distance from an anti-node to a node corresponds to / 4, 3 / 4, 5 / 4, etc. for standing waves in an open closed tube. 3. Explain why the velocity of sound increases as the temperature of the gas increases. 4. Does water vapor in the air cause the speed of sound to be greater or less than the speed of sound in dry air? Explain. 5. Why is it better to raise the water supply container instead of lowering it when using carbon dioxide? 6. Why are the nodal positions closer together for carbon dioxide vapor than for air? 6-4

7. When the dry ice is placed in the tube, the gas that is in the tube is a mixture of carbon dioxide and water vapor. How does the water vapor affect the determination of the speed of sound in carbon dioxide? Explain. 8. Derive (5) from (2) and derive (6) from (3) or (4). 9. The ideal gas analysis for the root-mean-square velocity of the molecules gives the velocity as RT v, (7) M where -y is the ratio of heat capacities, R is the Universal Gas constant, 7- is the absolute temperature of the gas, and M is the molecular mass of the molecules. Use (7) to calculate the speed of sound In air for the trial when the 385 Hz tuning fork was used. Compare this value with the values obtained using the resonance tube apparatus. 6-5