Experimental feature of bicycle flow and its modeling

Similar documents
Numerical Simulations of a Three-Lane Traffic Model Using Cellular Automata. A. Karim Daoudia and Najem Moussa

Theoretical Computer Science. Analysis of a cellular automaton model for car traffic with a junction

Traffic circles. February 9, 2009

Designing a Traffic Circle By David Bosworth For MATH 714

Global Journal of Engineering Science and Research Management

Saturation Flow Rate, Start-Up Lost Time, and Capacity for Bicycles at Signalized Intersections

A Realistic Cellular Automata Model to Simulate Traffic Flow at Urban Roundabouts

ADAPTING CAR TRAFFIC MODELS AND CONCEPTS TO BICYCLE TRAFFIC

MICROSCOPIC DYNAMICS OF PEDESTRIAN EVACUATION IN HYPERMARKET

Available online at ScienceDirect

Modeling lane-changing decisions with MOBIL

The Application of Pedestrian Microscopic Simulation Technology in Researching the Influenced Realm around Urban Rail Transit Station

Special Behaviors in One Pedestrian Flow Experiment

The calibration of vehicle and pedestrian flow in Mangalore city using PARAMICS

PHANTOM JAM AVOIDANCE THROUGH IN-CAR SPEED ADVICE

arxiv: v1 [cs.ma] 22 Nov 2017

Simulation of pedestrian evacuation based on an improved dynamic parameter model

Effect of Driver Scope Awareness in the Lane Changing Maneuvers Using Cellular Automaton Model

Experimental studies of pedestrian flows under different boundary conditions

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 27 Sep 2006

Complete Street Analysis of a Road Diet: Orange Grove Boulevard, Pasadena, CA

CALIBRATION OF THE PLATOON DISPERSION MODEL BY CONSIDERING THE IMPACT OF THE PERCENTAGE OF BUSES AT SIGNALIZED INTERSECTIONS

Solutions to Traffic Jam on East Road of Beijing Jiaotong University in Rush Hours Based on Analogue Simulation

Investigating cyclist interaction behavior through a controlled laboratory experiment

Analysis of Bicycle Passing Events for LOS Evaluation on Physically. Separated Bicycle Roadways in China

Simulation of Pedestrian Flow Based on Multi-Agent

Exploration of design solutions for the enhancement of crowd safety

Models for Pedestrian Behavior

A REAL-TIME SIGNAL CONTROL STRATEGY FOR MITIGATING THE IMPACT OF BUS STOPS ON URBAN ARTERIALS

ANALYSIS OF SATURATION FLOW RATE FLUCTUATION FOR SHARED LEFT-TURN LANE AT SIGNALIZD INTERSECTIONS *

AN APPROACH FOR ASSESSMENT OF WEAVING LENGTH FOR MID-BLOCK TRAFFIC OPERATIONS

EXPERIMENTAL STUDY OF NON-MOTORIZED VEHICLE CHARACTERISTICS AND ITS EFFECT ON MIXED TRAFFIC

Chapter 20 Pedestrian Dynamics in Jamology

RESEARCH ON CYCLISTS MICROSCOPIC BEHAVIOR MODELS AT SIGNALIZED INTERSECTION

SUSTAINABILITY, TRANSPORT, & HEALTH. Ralph Buehler, Virginia Tech

Simulation Analysis of Intersection Treatments for Cycle Tracks

On-Road Parking A New Approach to Quantify the Side Friction Regarding Road Width Reduction

Research Article Car Delay Model near Bus Stops with Mixed Traffic Flow

Research Article Research on the Effects of Heterogeneity on Pedestrian Dynamics in Walkway of Subway Station

Influence of Vehicular Composition and Lane Discipline on Delays at Signalised Intersections under Heterogeneous Traffic Conditions

Large-Scale Bicycle Flow Experiment: Setup and Implementation

PEDESTRIAN crowd is a phenomenon that can be observed

arxiv: v3 [cs.ma] 28 Mar 2017

Mechanism Analysis and Optimization of Signalized Intersection Coordinated Control under Oversaturated Status

HEADWAY DISTRIBUTION OF TRAFFIC PLATOON IN URBAN ROAD, CASE STUDY : PADANG CITY

A STUDY ON TRAFFIC CHARACTERISTICS AT SIGNALIZED INTERSECTIONS IN BEIJING AND TOKYO

RESEARCH OF BLOCKAGE SEGMENT DETECTION IN WATER SUPPLY PIPELINE BASED ON FLUID TRANSIENT ANALYSIS ABSTRACT

1. Introduction. 2. Survey Method. Volume 6 Issue 5, May Licensed Under Creative Commons Attribution CC BY

A Study on Traffic Flow at Urban Road Intersections Based on Queuing Theory

A CELLULAR AUTOMATA EVACUATION MODEL CONSIDERING FRICTION AND REPULSION. SONG Weiguo, YU Yanfei, FAN Weicheng

Investigation of Suction Process of Scroll Compressors

Safety in numbers What comes first safety or numbers? Jan Garrard School of Health and Social Development Deakin University

UC Berkeley Research Reports

VGI for mapping change in bike ridership

PEDESTRIAN CROSSING BEHAVIOR AND COMPLIANCE AT SIGNALIZED INTERSECTIONS

ANALYSIS OF THE POSITIVE FORCES EXHIBITING ON THE MOORING LINE OF COMPOSITE-TYPE SEA CAGE

unsignalized signalized isolated coordinated Intersections roundabouts Highway Capacity Manual level of service control delay

3 TRAFFIC CONTROL SIGNAL TIMING AND SYNCHRONIZATION

Can PRT overcome the conflicts between public transport and cycling?

Research Article Evaluating Operational Effects of Bus Lane with Intermittent Priority under Connected Vehicle Environments

Canada s Capital Region Delegation to the Velo-City Global 2010 Conference

INTERSECTING AND MERGING PEDESTRIAN CROWD FLOWS UNDER PANIC CONDITIONS: INSIGHTS FROM BIOLOGICAL ENTITIES

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering

Evaluation of shared use of bicycles and pedestrians in Japan

arxiv: v1 [cs.ma] 25 Oct 2016

MRI-2: Integrated Simulation and Safety

Penguins move in sync to keep warm, study shows By Los Angeles Times, adapted by Newsela staff Jan. 15, :00 AM

Title: Modeling Crossing Behavior of Drivers and Pedestrians at Uncontrolled Intersections and Mid-block Crossings

Instructions for Counting Pedestrians at Intersections. September 2014

Safe roads for cyclists: an investigation of Australian and Dutch approaches

CAPACITY ESTIMATION OF URBAN ROAD IN BAGHDAD CITY: A CASE STUDY OF PALESTINE ARTERIAL ROAD

Evaluation of the ACC Vehicles in Mixed Traffic: Lane Change Effects and Sensitivity Analysis

Evolution of urban transport policies: International comparisons

Facility preferences & safety

Delay Analysis of Stop Sign Intersection and Yield Sign Intersection Based on VISSIM

DOI /HORIZONS.B P23 UDC : (497.11) PEDESTRIAN CROSSING BEHAVIOUR AT UNSIGNALIZED CROSSINGS 1

TSS Transport Simulation Systems S.L., Passeig de Gràcia 12, Barcelona, Spain

INTERSECTIONS AT GRADE INTERSECTIONS

Research Article Effect of Restricted Sight on Right-Turn Driver Behavior with Pedestrians at Signalized Intersection

An experimental study of internal wave generation through evanescent regions

Dynamically stepping over large obstacle utilizing PSO optimization in the B4LC system

Assessing the Traffic and Energy Impacts of Connected and Automated Vehicles (CAVs)

For Information Only. Pedestrian Collisions (2011 to 2015) Resolution. Presented: Monday, Apr 18, Report Date Tuesday, Apr 05, 2016

Jamming phenomena of self-driven particles

Impact of U-Turns as Alternatives to Direct LeftTurns on the Operation of Signalized. Intersections

Crossing Behaviour of the Elderly: Road Safety Assessment through Simulations

Comparative Study of VISSIM and SIDRA on Signalized Intersection

Impact of Signalized Intersection on Vehicle Queue Length At Uthm Main Entrance Mohd Zulhilmi Abdul Halim 1,b, Joewono Prasetijo 2,b

Heterogeneous port traffic of general ships and seaplanes and its simulation

3.9 - Transportation and Traffic

Utilization of the spare capacity of exclusive bus lanes based on a dynamic allocation strategy

Observation-Based Lane-Vehicle Assignment Hierarchy

A Traffic Operations Method for Assessing Automobile and Bicycle Shared Roadways

Lessons from Copenhagen. John L Bowman 2013

Drivers Behavior at Signalized Intersections Operating with Flashing Green: Comparative Study

Bicyclist Lateral Roadway Position versus Motorist Overtaking Distance

NZ Transport Agency Cycling Rules

Improving Traffic Fluidity and Road Safety Using Cellular Automata

Feasibility Analysis of China s Traffic Congestion Charge Legislation

Study on fatal accidents in Toyota city aimed at zero traffic fatality

Transcription:

SUBJECT AREAS: STATISTICAL PHYSICS, NONLINEAR PHENOMENA, PHASE TRANSITIONS AND CRITICAL PHENOMENA Experimental feature of bicycle flow and its modeling Rui Jiang 1,2,3, Mao-Bin Hu 2, Qing-Song Wu 2, Wei-Guo Song 3 1 MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China 2 School of Engineering Science, University of Science and Technology of China, Hefei 230026, China 3 State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China As a healthy and green transportation mode, cycling has been advocated by many governments. However, compared with vast amounts of works on vehicle flow and pedestrian flow, the bicycle flow study currently lags far behind. We have carried out experimental studies on bicycle flow on a 146-m long circular road. We present the fundamental diagram of bicycle flow and the trajectories of each bicycle. We have analyzed the spatiotemporal evolution of bicycle flow as well as its stability and phase transition behavior. The similarity between bicycle flow and vehicle flow has been discussed. We have proposed a cellular automaton model of bicycle flow, and the simulation results are in good agreement with the experiments. Due to serious congestion and pollution, the traffic problem caused by motor vehicles has become an urban illness. As an ecological means of transportation, cycling has a number of advantages over other modes, both for the individuals and the society. For individuals, cycling is healthy and cheap, and sometimes can be faster than other transport modes. For society, cycling is environmental sustainable, requires cheap infrastructure and improves public health. Therefore, cycling has been advocated by many governments. On the one hand, extensive cycling rights of way have been complemented by many pro-bicycle policies and programmes such as ample bicycle parking, full integration with public transport. On the other hand, car parking has been made expensive and inconvenient in central cities, and strict land-use policies have generated shorter and thus more pro-cycling trips. As a consequence, the percent of bicycle trips has reached nontrivial level in some countries, such as 10% in Germany and Sweden, 11% in Finland, 18% in Denmark, and 27% in the Netherlands [1]. Therefore, bicycle flow study is practically important for design, operation and control of bicycle facilities. On the other hand, as vehicle flow and pedestrian flow, bicycle flow is a self-driven many-particle system far from equilibrium [2,3]. Thus the study is expected to contribute to understand various fundamental aspects of nonequilibrium systems which are of current interest in statistical physics such as swarming and herding of birds and fishes [4], traveling waves in an emperor penguin huddle [5], ant trails [6], and movement of molecular motors along filaments [7].

However, unfortunately, compared with vast amounts of papers studying motor vehicle flow and pedestrian flow [2,3,8], the state of knowledge regarding bicycle flow currently lags far behind [9]. In the bicycle studies, the data were collected via on-site observations [10-15] and experiments [15]. The objective of these studies was to determine the optimal bike path or lane width, to assess safety, the impact of bicycles on vehicle traffic flow, the level of service, the fundamental diagram and the capacity of bicycle flow [9-20]. For example, the studies, so far, suggest that capacity varies in a wide range, such as 2,600 bicycles per hour per 3.3-ft (1 m) [11], 3,000 to 3,500 bicycles per hour per 2.6-ft (0.78 m) [12], 4,500 bicycles per hour per 8-ft (2.4 m) [13], 10, 000 bicycles per hour per 2.5-m [15]. Nevertheless, none of the previous studies investigates the phase transition feature of bicycle flow. This paper carries out an experimental study on the bicycle flow, see section Methods. We present not only the fundamental diagram, but also the trajectories of each bicycle so that we can analyze the spatiotemporal evolution of bicycle flow as well as its stability and phase transition behavior. We have also discussed the similarity between bicycle flow and vehicle flow, and presented a model to simulate the bicycle flow. Results Figure 1 shows the fundamental diagram of flow rate versus bicycle number, which exhibits the common feature as vehicular flow and pedestrian flow: the flow rate increases when bicycle density (bicycle number/course length) is small and decreases when bicycle density is large. The capacity is reached in the intermediate density. For the first experiment, the capacity is estimated to be around 3000 bicycles per hour, complemented with the simulation (see section Discussion). For the second experiment, the capacity is a little smaller, which is around 2700 bicycles per hour. This may be due to the different gender constitution of the riders as pointed out in section Methods, and the maximum riding speed of male students is larger than that of female students. In the third experiment, flow rate is remarkably smaller due to the rain.

Figure 1 The fundamental diagram obtained from the experiment (scattered data) and from the simulation (solid lines). Next we study the spatiotemporal evolution of the bicycle flow via investigating the trajectories of the bicycles. It has been found that there exists a critical density ρ c1 around 37 bicycles per 100-m. Below the critical density, the bicycle flow is quite stable. Fig.2(a) and (b) show two such typical trajectory diagrams, see also the Supplementary Videos S1 and S2. One can see that even if small jams have occurred from time to time, they will soon disappear, as shown by the blue arrows. Moreover, as shown by the red arrows in Fig.2(a), some large gaps occur from time to time when the density is far below ρ c1. On the one hand, this is because, when the preceding bicycle is slow, some riders would rather ride slowly instead of accelerating to decrease the gap and then decelerating. On the other hand, the behavior may be partially due to the rain. As a result, the flow rate is remarkably smaller. As the density approaches ρ c1, the bicycle flow becomes more congested and the large gaps cannot occur. However, when the density is above ρ c1, the bicycle flow becomes unstable as shown in Fig.3(c). Traffic jams exist in the bicycle flow, see also Supplementary Video S3, from which one can see that some riders walked instead of riding even if outside of the jams because the riding speed approximately equals to walking speed. Even if the jam occasionally dissipates (in the vicinity of 700 s as shown by the blue arrow), it soon appears spontaneously (in the vicinity of 800 s as shown by the red arrow). When the density further increases, the jams cannot dissipate.

Figure 2 Typical trajectory diagrams from experiment. (a) from the third experiment and bicycle number is 39; (b) from the second experiment and bicycle number is 48; (c) from the third experiment and bicycle number is 63. Recent empirical studies show that the congested vehicle flow can be classified into two phases: the synchronized flow and the jam [21-23]. When the density of synchronized flow is large (which is named heavy synchronized flow), the vehicle flow is not stable and a spontaneous phase transition from synchronized flow to jam will occur [21-26]. On the other hand, the light synchronized flow is quite stable and no spontaneous phase transition to jam occurs, and vehicle flow evolves into a widening synchronized flow pattern at the road bottlenecks [21-23]. One can see that the feature of bicycle flow is very similar to that of vehicle flow: the heavy (light) synchronized flow corresponds to bicycle flow with density above (below) ρ c1. In the future work, we need to carry out experimental study on wider courses allowing overtaking. Moreover, the effect of bottlenecks, which will cause phase transition from free bicycle flow to congested bicycle flow, also needs to be investigated. Based on the similarity between bicycle flow and vehicle flow, we expect that the experiment on bicycle flow will be helpful to disclose the mechanism of phase transition from free vehicle flow to congested vehicle flow. Discussion

Model Now we present a cellular automaton (CA) model of bicycle flow. The CA approach has been used successfully to simulate vehicular flow and pedestrian flow [27-30]. In the CA model, the road is classified into cells, and bicycles move with integer velocity 0, 1,, v max. Here v max denotes the maximum velocity of bicycles. In each time step, the bicycles move as follows: (1) Acceleration, v i min(v i +1, v max ) (2) Deceleration, (2a) if d i < d od, v i min(v i, d i, max(d i 1, d c )) (2b) else, v i min(v i, d i ) (3) Determination of virtual velocity of a bicycle, v vir,i = max(v i 1,0) (4) Recalculation of velocity, taking into account virtual velocity of preceding bicycle, v i min(v i + min(v vir,i 1, v a ), v max ) (5) Randomization, v i max(v i 1,0) with probability p (6) Bicycle movement, x i x i + v i In the model, v i and x i denote velocity and position of bicycle i, respectively, d i = x i 1 x i l is the gap between bicycle i and its preceding one i 1, l is length of a bicycle. The anticipation effect is considered in deceleration rule (2a), i.e., when a bicycle and its preceding one are within an operating distance d od, the bicycle's velocity is decided not only by its spatial gap, but also by its preceding one's spatial gap. This reflects the fact that when the spatial gap of its preceding car is small, bicycle tends to move more slowly than that allowed by its spatial gap in order to avoid unrealistic oversized deceleration in the next time step. The parameter d c is a criterion parameter which indicates that the preceding bicycle's spatial gap has limited effect on the bicycle compared with its own spatial gap. For instance, even if the preceding bicycle's spatial gap d i 1 = 0, a bicycle still moves forward if its own gap d i > 0. In rules (3) and (4), the virtual velocity of the preceding bicycle is introduced as in vehicular flow models [30], which takes into account the fact that the preceding bicycle is also moving. Here v a denotes the maximum limit of virtual velocity. For the randomization probability p, the slow-to-start rule is taken into account by adopting a velocity dependent randomization probability as in vehicle flow model [28]: with p 0 > p n. p = { p 0 p n if v i = 0 v i > 0 Simulation results In the simulations, the circular road is classified into 486 cells and each cell corresponds to 0.3 m. Thus, the road length is 145.8 m. The length of bicycles is set as 1.5 m, thus a bicycle occupies 5 cells. The parameters p n = 0.3, p 0 = 0.8, d c = 3 cells, and d od = 20 cells are used. We compare the simulation results with the experimental ones. For the first set of simulation, the parameters are set as v max = 14, v a = 4, because the riders are all young male university student.

For the second set of simulation, the parameters are set as v max = 12, v a = 4 because there are both male and female riders. For the third set of simulation, the parameters are set as v max = 12, v a = 1 due to the rain. As can be seen from Fig.1, the simulation results are in good agreement with the experimental ones. Figure 3 shows typical trajectory diagrams of the bicycle flow from the simulation. When the density ρ < ρ c1, traffic jam disappears quickly and bicycle flow becomes homogeneous even if starting from a standing platoon, see Fig.3(a) and (b). On the other hand, when the density is larger than ρ c1, the traffic jam cannot dissipate, see Fig.3(c). This is also generally in consistent with the experiment. The deficiency of the model is that the bicycle flow is quite homogeneous. Therefore, it cannot reproduce the spontaneous formation and disappearance of small jams shown in Fig.2(b), and the disappearance and re-formation of jam shown in Fig.2(c). Thus, the model needs to be improved in the future work.

Figure 3 Typical trajectory diagrams from simulation. (a) the third set of parameters and bicycle number is 39; (b) the second set of parameters and bicycle number is 48; (c) the third set of

parameters and bicycle number is 63. Methods In the experiment, we use an oval-like course on four neighboring basketball court with 29 m straight sections joined by 14 m circular curves, see Fig.4. The total length of the course is thus about 146 m. The width of the course is about 80 cm and bicycles are not allowed to overtake. We have changed the number of bicycles within the course and thus observed features of bicycle flow under different density. Note that this kind of experiment has already been conducted for vehicle flow and pedestrian flow [24-26, 31]. We have conducted the experiment three times, on Nov.3.2009, Nov.7.2009, Apr.19.2010, respectively. The weather is sunny for the first time, sunny/cloudy for the second time, and a little rainy for the third time. Thus some riders hold up an umbrella with one hand while riding in the third experiment. In the first experiment, the riders are all young male university student. In the second and third experiments, there are both male and female riders. A video camera has been used to film the experiment on a 18-stories building neighboring the experiment field. We have labeled the course into meters, via which the location information of each bicycle has been obtained every second from the videos. Thus, the trajectories of each bicycle can be plotted. For the flow, we counted the number of bicycles passing a point in unit time. Figure 4 A snapshot of the experiment

1. Pucher, J. & Buehler, R., Making Cycling Irresistible: Lessons from The Netherlands, Denmark and Germany. Transport Reviews 28, 495-528 (2008) 2. Chowdhury, D., Santen, L. & Schadschneider, A., Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199-329 (2000). 3. Helbing, D., Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067-1141 (2001) 4. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O., Novel type of phase-transition in a system of self-driven particle. Phys. Rev. Lett. 75, 1226 1229 (1995) 5. Gerum, R.C., Fabry, B., Metzner, C., Beaulieu, M., Ancel, A., et al., The origin of traveling waves in an emperor penguin huddle. New J. Phys. 15, 125022 (2013) 6. John, A., Schadschneider, A., Chowdhury, D. & Nishinari, K., Traffic like collective movement of ants on trails: Absence of a jammed phase. Phys. Rev. Lett. 102, 108001 (2009) 7. Parmeggiani, A., Franosch, T. & Frey, E., Phase coexistence in driven one dimensional transport. Phys. Rev. Lett. 90, 086601 (2003) 8. Kerner, B.S., Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory: A brief review. Physica A 392, 5261-5282 (2013) 9. Taylor, D. & Davis, W., Review of Basic Research in Bicycle Traffic Science, Traffic Operations, and Facility Design. Transportation Research Record 1674, 102-110 (1999). 10. Wang, D., Feng, T., & Liang, C., Research on bicycle conversion factors. Transportation Research Part A 42, 1129-1139 (2008). 11. Homburger, W.S., Capacity of Bus Routes, and of Pedestrian and Bicycle Facilities. Working paper of Institute of Transportation Studies, University of California at Berkeley: Berkeley, California (1976). 12. Botma, H. & Papendrecht, H., Traffic Operation of Bicycle Traffic. Transportation Research Record 1320, 65-72 (1991). 13. Raksuntorn, W. & Khan, S.I., Saturation flow rate, start-up lost time, and capacity for bicycles at signalized intersections. Transportation Research Record 1852, 105-113 (2003). 14. Gould, G. & Karner, A., Modeling Bicycle Facility Operation Cellular Automaton Approach. Transportation Research Record 2140, 157-164 (2009) 15. Navin, F.P.D., Bicycle Traffic Flow Characteristics: Experimental Results and Comparisons. ITE Journal 64, 31-37 (1994) 16. Botma, H. Method to determine level of service for bicycle paths and pedestrian-bicycle paths. Transportation Research Record 1502, 38-44. (1995). 17. Zhao, X.M., Jia, B., Gao, Z.Y. & Jiang, R., Traffic interactions between m-vehicles and non m-vehicles near a bus stop. Journal of Transportation Engineering 135, 894-906 (2009) 18. Vasic, J. & Ruskin, H.J., Cellular automata simulation of traffic including cars and bicycles. Physica A 391, 2720-2729 (2012). 19. Jia, S.P., Peng, H.Q., Guo, J.Y. & Chen, H.B., Quantitative analysis of impact of bicycles on vehicles in urban mixed traffic. Journal of Transportation Systems Engineering and Information Technology 8, 58-63 (2008) 20. Allen, D.P., Hummer, J.E., Rouphail, E.M. & Milazzo, J.S., Effect of Bicycles on Capacity of Signalized Intersections. Transportation Research Board 1646, 87-95 (1998) 21. Kerner, B.S. & Rehborn, H., Experimental properties of complexity in traffic flow. Phys. Rev. E 53, 4275 4278 (1996)

22. Kerner, B.S. & Rehborn, H., Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett. 79, 4030 4033 (1997) 23. Kerner, B.S., Experimental features of self-organization in traffic flow. Phys. Rev. Lett. 81, 3797 3800 (1998). 24. Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., et al., Traffic jams without bottlenecks - experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10, 033001 (2008). 25. Nakayama, A., Fukui, M., Kikuchi, M., Hasebe, K., Nishinari, K., et al., Metastability in the formation of an experimental traffic jam. New J. Phys. 11, 083205 (2009) 26. Tadaki, S., Kikuchi, M., Fukui, M., Nakayama, A., Nishinari, K., et al., Phase transition in traffic jam experiment on a circuit. New J. Phys. 15, 103034 (2013). 27. Nagel, K. & Schreckenberg, M., A cellular automaton model for freeway traffic. J. Phys. I (France) 2, 2221 2229 (1992) 28. Barlovic, R., Santen, L., Schadschneider, A. & Schreckenberg, M., Metastable states in cellular automata for traffic flow. Eur. Phys. J. B 5, 793 800 (1998) 29. Li, X.B., Wu, Q.S. & Jiang, R., Cellular automaton model considering the velocity effect of a car on the successive car. Phys.Rev.E 64, 066128 (2001) 30. Burstedde, C., Klauck, K., Schadschneider, A. & Zittartz, J., Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507-525 (2001) 31. Seyfried, A., Steffen, B., Klingsch, W. & Boltes, M., The fundamental diagram of pedestrian movement revisited. J. Stat. Mech. P10002 (2005) Supplementary information Video S1 Scenario of the experiment corresponding to Fig.2(a). Video S2 Scenario of the experiment corresponding to Fig.2(b). Video S3 Scenario of the experiment corresponding to Fig.2(c). Acknowledgments This work is funded by the National Basic Research Program of China (No.2012CB725404), the National Natural Science Foundation of China (Grant Nos. 71371175, 11422221 and 71171185). Author contributions R.J. conceived and designed the research, R.J., M.B.H., Q.S.W., W.G.S. performed the experiment, R.J. analyzed the data and wrote the paper, all authors discussed the results and commented on the manuscript. Additional information Competing financial interests: The authors declare no competing financial interests.