Respiratory System. 1. muscular tube lined by mucous membrane 2. throat 3. nasopharynx, oropharynx, laryngopharynx

Similar documents
Chapter 15. Lecture and Animation Outline

(Slide 1) Lecture Notes: Respiratory System

Chapter 16 Respiratory System

Respiratory System Physiology. Dr. Vedat Evren

Chapter 23: Respiratory System

Physiology of Respiration

Chapter 13 The Respiratory System

2/28/18. Respiratory System. 1 Copyright 2016 by Elsevier Inc. All rights reserved. Introduction. Anatomy. Physiology. Respiratory System

The Respiratory System

Human Biology Respiratory System

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

UNIT 9 - RESPIRATORY SYSTEM LECTURE NOTES

82 Respiratory Tract NOTES

BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM

Lesson 9.1: The Importance of an Organ Delivery System

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing

Respiratory System. Part 2

Human Anatomy & Physiology

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration.

Respiration. The ins and outs

Respiratory System Review

Chapter 13 The Respiratory System

Lab 17. The Respiratory System. Laboratory Objectives

Respiratory System -Training Handout

Respiration - Human 1

BREATHING AND EXCHANGE OF GASES

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Structures of the Respiratory System include:

I. Gas Exchange Respiratory Surfaces Respiratory Surface:

GAS EXCHANGE & PHYSIOLOGY

Respiratory Physiology Gaseous Exchange

B. Lining - epithelium

system. and then into the tissues. Diffusion of wastes such as Carbon Dioxide from tissues into blood and out of blood into the lungs.

BREATHING AND EXCHANGE OF GASES

The Respiratory System. Medical Terminology

Chapter 11: Respiratory System Review Assignment

Chapter 23 Respiratory System

Respiratory Lecture Test Questions Set 3

BIOH122 Human Biological Science 2


Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES

CHAPTER 17 BREATHING AND EXCHANGE OF GASES

Pop Quiz. What produces mucus, HCl and pepsinogen in the stomach? List a water soluable vitamin What is a ruminant stomach?

Collin County Community College. Lung Physiology

Respiratory system. Premedical - Biology

Respiration. The resspiratory system

1. Label a diagram of the respiratory system. Objective sheet 3 Notes

Chapter 22 The Respiratory System

2. State the volume of air remaining in the lungs after a normal breathing.

BIOLOGY 12 - RESPIRATION - CHAPTER NOTES

Using the figure above, match the following: 4. Tidal volume. 5. Inspiratory reserve volume. 6. Residual volume. 7. Expiratory reserve volume.

Respiration. Chapter 39

Respiratory system & exercise. Dr. Rehab F Gwada

Chapter 37: Pulmonary Ventilation. Chad & Angela

Respiratory Pulmonary Ventilation

PARTS AND STRUCTURE OF THE RESPIRATORY SYSTEM

Respiratory Physiology. Adeyomoye O.I

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

CHAPTER 3: The respiratory system

GASEOUS EXCHANGE IN HUMANS 06 AUGUST 2014

Respiratory Physiology 2

Respiratory Anatomy and Physiology. Respiratory Anatomy. Function of the Respiratory System

Respiratory Lecture Test Questions Set 1

Then the partial pressure of oxygen is x 760 = 160 mm Hg

Clinical Respiratory System Quiz

4/18/12 MECHANISM OF RESPIRATION. Every Breath You Take. Fun Facts

2.1.1 List the principal structures of the

GASEOUS EXCHANGE 17 JULY 2013

Respiratory system. Role. Ventilation consists of 4 (5) steps : oxygen delivery and carbon dioxide elimination ph balance sound and voice formation

Respiratory System Anatomy. Chapter 23

Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system

Assignments for Life Processes(Respiration)

25/4/2016. Physiology #01 Respiratory system Nayef Garaibeh Rawan Alwaten

Bio 182- Ecology Unit Outline 1

Section Three Gas transport

Page 1. Chapter 33: Respiration O 2 CO 2

RESPIRATION III SEMESTER BOTANY MODULE II

Airway: the tubes through which air flows between atmosphere and alveoli. Upper airway. Lower airway

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Emergency Medical Technician 60 Questions

Chapter 17 Mechanics of Breathing

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

alveoli Chapter 42. Gas Exchange elephant seals gills AP Biology

Chapter 23: The Respiratory System

Respiration (revised 2006) Pulmonary Mechanics

Respiratory System Study Guide, Chapter 16

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

Section Two Diffusion of gases

Ch. 12: Respiratory Physiology

RESPIRATORY SYSTEM OF RABBIT:

Department of Biology Work Sheet Respiratory system,9 class

Alveolus and Respiratory Membrane

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

CHAPTER 3: The cardio-respiratory system

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial

AP Biology. Chapter 42. Gas Exchange. Optimizing gas exchange. Gas exchange. Gas exchange in many forms. Evolution of gas exchange structures

2) During exhalation Air is cooled due to condensation and loses its moisture, depositing it on lining in trachea and nose

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD

Gas Exchange Respiratory Systems

Transcription:

I. Functions of the Respiratory System A. gas exchange B. prevent dehydration C. sound D. olfaction E. ph regulation II. Anatomy of the Respiratory System A. Nose 1. external nares vestibule nasal cavity internal nares (choanae) 2. paranasal sinuses frontal, sphenoidal, maxillary, ethmoidal 3. nasal conchae turbinates and meatuses warn, moisten and trap 4. nasal mucosa cilia smoker s cough 5. cystic fibrosis thick mucous secretions that block airways genetic B. Pharynx 1. muscular tube lined by mucous membrane 2. throat 3. nasopharynx, oropharynx, laryngopharynx C. Larynx 1. voice box 2. connects pharynx to trachea 3. thyroid cartilage Adam s apple hyaline thyrohyoid membrane 4. cricoid cartilage landmark for tracheostomy 5. epiglottis 6. arytenoids, cuneiform, and cornicuate cartilages important in supporting and moving the vocal chords 7. voice production elastic ligaments deep to membrane of vocal folds a. contraction causes vocal folds to stretch into airways b. air pushes against them and vibrates strings of a guitar c. pitch controlled by tension on vocal chords males thicker and longer, lower pitch d. volume controlled by air pressure e. whispers almost close rima glottides vocal folds do not vibrate, no pitch 8. laryngitis inflammation of the larynx interferes with contraction of vocal cords or can t vibrate freely D. Trachea 1. windpipe 2. connects larynx to primary bronchi 3. tracheal cartilage rings, keeps airway open 4. tracheostomy hole 5. intubation tube

E. Bronchi 1. right and left pulmonary bronchi 2. bronchial tree a. trachea, primary bronchi, secondary bronchi, tertiary bronchi, bronchioles, terminal bronchioles b. walls of bronchi contain rings of cartilage c. walls of bronchioles contain smooth muscle tissue 3. compare tissues as look at tree 4. bronchoscopy illuminated tube, culture, biopsy, meds, clear F. Lungs 1. pleural membrane a. parietal attached to wall of thoracic cavity b. visceral covers lungs c. pleural cavity 2. right lung has three lobes, left has two 3. within lobules of lobes, terminal bronchioles subdivide into respiratory bronchioles which subdivide into alveolar ducts which divide into alveoli arranged in alveolar sacs 4. surfactant in alveolar fluid surface tension at all water air interferes; polar molecules more strongly attracted to each other than to air molecules like keeping a soap bubble from collapsing, keeps alveoli from collapsing a. phospholipids and lipoproteins that keeps alveoli from collapsing after each exhalation 5. pneumonia inflammation of lobules of lung 6. pulmonary embolism clot that blocks that obstructs circulation to the lung tissue 7. pleurisy inflammation of pleural membrane III. Respiratory Physiology A. Pulmonary Ventilation breathing 1. compliance measure of the ease with which the lungs and thoracic wall can be expanded balloon (thin or thick) 2. inspiration inhalation a. Boyle s law pressure is inversely related to volume of gas assuming the temperature is constant jar demo 3. muscles used in respiration a. diaphragm contraction lowers b. external intercostals contraction pulls ribs and sternum up and out c. internal intercostals contraction pulls ribs and sternum down and in 4. pressure a. atmospheric pressure = 760 mm Hg b. intrapleural pressure i. subatmospheric 4.6 mm Hg less than atmospheric causes parietal and visceral pleurae to adhere strongly to each other surfaces moist helps also

c. alveolar pressure (intrapulmonic) i. lung volume increases causing alveolar pressure to drop about 2 mm Hg allows alveoli to fill with air 5. expiration exhalation a. inspiratory muscles relax decrease volume b. alveolar pressure increases to 762 mm Hg c. air moves out of lungs 6. breathing patterns a. normal quiet breathing eupnea i. passive no muscle contractractions used ii. elastic recoil of chest wall and lungs b. apnea i. temporary cessation of breathing c. dyspnea labored heavy breathing d. tachypnea rapid breathing e. costal breathing shallow, chest breathing external intercostals f. diaphragmatic breathing diaphragm + accessory inspiratory muscles 7. atelactasis collapsed lung or incomplete expansion of a lung B. Lung Volumes and Capacities 1. respiration one inspiration + one exhalation 2. spirometer used to measure volume of air in a breath and rate of ventilation 3. tidal volume 500 ml volume of one breath 4. minute ventilation amount of air inhaled and exhaled in 1 minute 5. anatomic dead space 150 ml of the 500 ml tidal volume remain in air spaces of the respiratory system about the same as ideal weight in pounds 6. inspiratory reserve volume inspired air above and beyond tidal volume 3100 ml 7. expiratory reserve volume exhaled air above and beyond tidal volume 1200 ml 8. residual volume 1200 ml that cannot be expired due to incollapsible structures in the respiratory system 9. vital capacity 4800 ml inspiratory reserve + tidal volume + expiratory reserve 10. total lung capacity sum of all volumes 6000 ml including residual volume C. Exchange of Oxygen and Carbon Dioxide 1. Gas Laws a. Dalton s Law i. each gas in a mixture exerts pressure as if all other gases not present partial pressure ii. gas diffuses from an area where partial pressure is higher to where its partial pressure is lower

b. Henry s Law i. the quantity of a gas that will dissolve in a liquid is proportional to the partial pressure of the gas and its solubility coefficient (physical or chemical attraction for water) ii. decompression sickness nitrogen comes out of solution in tissues 2. Respiration a. external respiration i. exchange of oxygen and carbon dioxide at the alveoli ii. high altitude sickness total air pressure drops, percentage of oxygen is same, but less abundant due to drop in pressure b. rate depends on i. partial pressure difference of gases ii. surface area for gas exchange iii. diffusion distance iv. solubility and molecular weight of the gases c. internal respiration i. systemic circulation D. Transport of Oxygen and Carbon Dioxide 1. Oxygen a. 98.5% of oxygen transported by hemoglobin b. only dissolved oxygen gets sent to tissue cells, bond with hemoglobin must break c. hemoglobin and oxygen partial pressure i. PO 2 determines how much oxygen binds to hemoglobin greater PO 2 = higher saturation of hemoglobin d. other factors that affect the saturation of hemoglobin i. ph Bohr effect as ph decreases, affinity for O 2 decreases, O 2 dissociates due to hydrogen ions binding to amino acids and altering structure ii. partial pressure of CO 2 high CO 2 causes low ph due to formation of carbonic acid (skeletal muscle has lactic acid production that lowers ph and decreases affinity for oxygen) iii. temperature T increases, O 2 released from hemoglobin iv. 2, 3 bisphosphoglycerate BPG formed during glycolysis decreases affinity for oxygen binds to hemoglobin e. fetal hemoglobin i. greater affinity for oxygen ii. binds BPG less strongly iii. important because maternal blood oxygen levels are very low in placenta f. carbon monoxide poisoning i. binds more strongly than oxygen ii. even small concentrations of CO will reduce oxygen carrying ability

2. Carbon Dioxide Transport a. 3 forms of carbon dioxide i. dissolved CO 2 in plasma 7% ii. bound to hemoglobin 23% iii. bicarbonate ions in plasma 70% - H 2 CO 3 H + + HCO 3 -, H + combines with hemoglobin, oxygen dissociates, HCO 3 - accumulates in RBC and diffuses down concentration gradient to plasma Cl - ions replace as they diffuse into RBC maintains electrical balance between plasma and RBC chloride shift 3. Haldane Effect a. the more oxygen bound, the less carbon dioxide b. deoxyhemoglobin buffers more hydrogen ions, thereby removing hydrogen ions from solution and promoting the conversion of carbon dioxide to bicarbonateions E. Control of Respiration 1. Neural Control a. Respiratory center medulla oblongata and pons i. Medullary rhythmicity center autorhythmic neurons begin inspirations and inspiratory area becomes active after 3 sec due to impulses from autorhythmic neurons expiratory area normally not active unless forceful ventilation occurs ii. Pneumotaxic area inhibits inspiratory area limits iii. duration of inspiration Apneustic area stimulates inspiratory area prolong inspiration pneumotaxic overrides 2. Chemical Regulation a. chemoreceptors respond to pco 2 and H + changes if these chemicals increase, inspiratory area is stimulated i. hypercapnia increase in blood pco 2 level ii. hypocapnia decrease in blood pco 2 level 3. Inflation Reflex Hering Breuer reflex a. baroreceptors in bronchi and bronchioles b. when stretched, inhibit inspiratory and apneustic areas prevents excessive inflation F. Disease Conditions 1. Emphysema COPD (chronic obstructive pulmonary disease) a. alveolar walls degenerate 2. Asthma COPD a. chronic inflammatory disorder b. airways hyperreactive to stimuli 3. Tuberculosis a. bacteria destroy lung tissue replace by fibrous connective tissue