Spring 1999 Hyperbaric Medicine Newsletter. Fellows Presentations. Saturation Diving

Similar documents
Unit 3: The Physiology of Diving and Nitrox

SCUBA - self contained underwater breathing apparatus. 5 million sport scuba divers in U.S. 250, ,000 new certifications annually in U.S.

Introduction. U.S. Navy Diving Manual (Mar-1970)

Ascent to Altitude After Diving

Decompression Sickness

Medical Aspects of Diving in the Offshore Oil Industry

HYPERBARIC INTERVENTION IN SUBMARINE RESCUE SUT June 8 th Doug Austin Director, Asia Pacific

10. TDI Advanced Trimix Instructor Course

4/18/2012. Northern Fur Seal Three Foraging Patterns. Thermocline. Diving Physiology and Behavior

Diving Medicine USN Diver/SEAL Submarine Overview / Tom Kersch, CAPT, MC!!

DECOMPRESSION PHYSIOLOGY and SUSCEPTIBILITY

CHAPTER 9 $LU'HFRPSUHVVLRQ

Decompression Planning for TMX Dives between m

Diving Physiology and Behavior

12. Trimix Instructor

Lung Volumes and Capacities

Rebreather Training Council Standard

8. TDI Trimix Diver Course

Home ( Articles ( Oxygen Toxicity and CCR/Rebreather Diving

Working safely under pressure: Field experience in occupational medicine

1. Unlimited, so long as adequate facility, supplies and time are provided to ensure comprehensive and complete training of subject matter

Technical Diving Software for. User Manual

Free Diving. During Constant Buoyancy Control Diving the athlete reaches the maximum depth and returns to the surface just by muscular strength.

COMPETENCIES FOR SPECIFIC TASK AREAS UNDER THE SCIENTIFIC AND ARCHAEOLOGICAL DIVING ACoP

Counterdiffusion Diving: Using Isobaric Mix Switching To Reduce Decompression Time

Decompression Illness in CA workers

13. Advanced Trimix Diver

Diving at Altitude. Part One: Starting with Residual Nitrogen. By John Adsit January 30, 2018

UNDERSTANDING A DIVE COMPUTER. by S. Angelini, Ph.D. Mares S.p.A.

9. Extended Range Instructor

CHAPTER 16 %UHDWKLQJ*DV0L[LQJ3URFHGXUHV

1 out of every 5,555 of drivers dies in car accidents 1 out of every 7692 pregnant women die from complications 1 out of every 116,666 skydives ended

suunto_halfa4_viewing 16/6/2003 8:14 AM Page 1 Suunto Reduced Gradient Bubble Model

High Altitude Concerns

Ratio Deco. Overview. Global Perspective

Surface Supplied Mixed Gas Diving Operations

Demystification of Nitrox, Understanding Mixtures

b. Provide consultation service to physicians referring patients. c. Participate in weekly wound care clinic and biweekly diving medicine clinic.

Instruction Guide for using Dive Tables (draft)

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy. A Law for Scuba Divers

9. Extended Range Diver

1. TDI Helitrox Diver Course

Planning Decompression Diving Gas Requirements in Open Water

Fundamentals of Decompression

Any active TDI Helitrox Instructor who has been approved by TDI Headquarters Training Department

DECOMPRESSION THEORY - NEO-HALDANE MODELS

. Vann, Ph.D. P.B. Bennett, Ph.D., D.Sz. ,frice o, Naval Research Contract N C-01.O; February 13, S",i., i " ;, c,,a ppzoved

4. TDI Advanced Nitrox Diver Course

DIVING HABITS AND PRACTICES:

1/21/2014. Diving Physics. Introduction

GUIDELINES FOR THE DIVER ** EXAMINATION

The Diving Medical Advisory Committee

DIY DECOMPRESSION. By Stuart Morrison. (c) 2000 Stuart Morrison/Liquid Technology

Instructions For Use. Recreational Dive Planner DISTRIBUTED BY PADI AMERICAS, INC.

19. TDI Mixed Gas Closed Circuit Rebreather, Unit Specific, Ambient Pressure Inspiration & Evolution, Diver Course

DCI Demystified By Eric Hexdall, RN, CHRN Duke Dive Medicine

20. TDI Advanced Mixed Gas Closed Circuit Rebreather, Unit Specific, Ambient Pressure Inspiration & Evolution, Diver Course

12m. Instructions For Use. 14m. 16m. 18m. Recreational Dive Planner. 20m DISTRIBUTED BY PADI AMERICAS, INC.

CHAPTER 13 0L[HG*DV2SHUDWLRQDO3ODQQLQJ

CHAPTER 3: The respiratory system

Mix and Flow of Matter Unit Test. For each of the following hazardous products match the correct WHMIS symbol

3) Water dissipates body heat about times faster than air. a) 4 b) 7 c) 20 d) 200

ENT & diving pathology: IE Decompression Sickness vs IE Barotrauma

NOBENDEM. Advanced Decompression Tables

Defense Technical Information Center Compilation Part Notice

Computers and Dive Tables. Revised September 17, 2017

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

CHAPTER 3: The cardio-respiratory system

SPQ Module 9 Breathing at Altitude

Techniques for Deeper Diving

EVALUATION OF DIVE COMPUTER OPTIONS FOR POTENTIAL USE IN 300 FSW HELIOX/TRIMIX SURFACE SUPPLIED SCIENTIFIC DIVING

NOAA DIVING PROGRAM MINIMUM STANDARD FOR DECOMPRESSION DIVING USING OPEN-CIRCUIT SCUBA EQUIPMENT

CHEM1901/3 Worksheet 8: The Ideal Gas Law: PV = nrt

PHYSICS. Light: Sound:

MATHEMATICAL EVALUATION OF MULTI-LEVEL DIVING

Aladin SPORT User manual

SUBMARINE BASE, GROTON, CONN. REPORT NUMBER 855

7. Advanced Nitrox Diver

The Pathophysiology of Saturation Diving

Why Argon? Copyright by Eric Maiken

Pulmonary (cont.) and Decompression

EXECUTIVE SUMMARY USN DIVE MANUAL REVISION 7 Change A

Nitrogen and Cognitive Impairment

Newsletter of Jointing, Welding & Cold-Formed Steel Group, HKISC UNDERWATER WELDING. Ir Dr Chan Wai Tai. Chairman of Welding Group, HKISC

Understanding CCR - In Depth

RESA Standards V1.0 16/08/18

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Decompression sickness cases treated with recompression therapy between 1963 and 1998 in Turkey: Review of 179 cases

RESA STANDARDS V2.0 15/12/2018

Aerospace Physiology. Lecture #11 Oct. 7, 2014 Cardiopulmonary physiology. Musculoskeletal Vestibular Neurological Environmental Effects MARYLAND

Basic Standards for Fellowship Training in Undersea and Hyperbaric Medicine

US NAVY DIVING PROGRAM: DIVING TO 300 FT DEPTHS USING SURFACE-SUPPLIED AND SATURATION FLY-AWAY DIVING SYSTEMS. Introduction

Chapter 5. Pressure. Atmospheric Pressure. Gases. Force Pressure = Area

4. Advanced Adventure Diver

SCUBA DIVING ASSISTANT Version: :21.00

Rebreather Training Council Standard

1. Once you have completed the NAUI Scuba course, you will be qualified to

European Diving Technology Committee EDTC

Ten Fathoms Under the Sea

BP OIL -- TOLEDO REFINERY

Transcription:

Spring 1999 Hyperbaric Medicine Newsletter Fellows Presentations Saturation Diving The challenge of diving ever deeper is a goal that intrigues man. The technological advances of the last century have made it possible for humans to descend to depths that were unheard of in earlier times. Yet as new technology becomes available, the physiological problems of making deep dives seem to multiply in kind. In this article we will consider some of the physiologic challenges to deep diving and explore how saturation diving can be used to overcome some of the limitations of diving to deeper depths. One of the most remarkable early dives was that of Frank Crilley in the salvage of the US submarine F-4 which sank in 304 feet of water off Hawaii in 1915. Using only air as a breathing gas, Crilley spent 11 minutes on the bottom attaching a line to the submarine, and surfaced without ill effect within two hours. For his efforts he was awarded the Medal of Honor. A hypothetical example of the decompression for his dive is given below: From this illustration one can see that the bulk of time in diving to 304 fsw is spent decompressing. This is not ideal for accomplishing work at depth since most of the time is non-productive spent decompressing rather than working at depth. As one goes deeper the decompression obligation grows logarithmically so that for a 10 minute dive to 1000 fsw, one would theoretically need more than 40 hours of decompression. Clearly something different needed to be done to allow divers to work deeper than 150 fsw. Saturation Diving Page 1 of 8

The solution to being able to work at depth is saturation diving. Once the diver has reached the working depth and the tissue compartments are saturated with the breathing gas, no further decompression obligation occurs. It is impossible to supersaturate the tissues. If one can remain at depth and work, rest, eat, etc. a great deal of useful working time is gained. Once this principle was appreciated, saturation dives of a month or more became possible. Then only one decompression period is needed at the end of the dive. Air MW 32 ubiquitous N 2 narcosis O 2 toxicity limited depth One of the first challenges is to find a suitable gas to breathe at depth. Since the 1930s it has been recognized that air as a breathing gas has serious limitations at depth. At depths below 150 feet the nitrogen content of air causes nitrogen narcosis or the rapture of the deep. The partial pressure of nitrogen in air at 150 feet of seawater (fsw) is 4.38 atmospheres absolute (ATAs). Any time the partial pressure of nitrogen surpasses 4.5 ATAs, nitrogen narcosis can be expected. The condition is characterized by hilarity, inattention to detail, talkativeness, feelings of invulnerability, and eventually inability to follow commands and carry out tasks. For a diver this is a dangerous condition and unfortunately has led to loss of life. Nitrogen MW 28 narcotic hard to unload density significant at depth If nitrogen in air is too dangerous over 150 feet, why not reduce its concentration in air and replace it with another gas? This is key to diving at depth and we will have to consider the properties of the various breathable gases in order to utilize them effectively. Most of the Saturation Diving Page 2 of 8

breathable gasses have properties, which might make them desirable in some situations at depth. Oxygen is a logical candidate for a diving gas. Easily available and relatively cheap, oxygen has some desirable properties for diving. Since it is required for breathing, it is possible increase the concentration of oxygen in the breathing mix and eliminate some of the problems due to nitrogen. It is the gas of choice at shallow depths for rapid decompression of tissue compartments. If the breathing gas is replaced with 100% oxygen a diffusion gradient is established encouraging the off gassing of nitrogen or other gases which have accumulated in the tissues at depth. Divers take advantage of this situation and may switch to 100% oxygen as a breathing gas at shallow depths, say 20 fsw, in order to shorten the time required for decompression. In treating decompression sickness, oxygen is used to establish adequate tissue oxygenation in tissues in which the circulation is compromised by bubble formation. Oxygen MW 32 soluble in water & fat slightly narcotic DCS possible toxic at depth The main limitation of oxygen in deep diving is its central nervous system toxicity. CNS toxicity is characterized by prodromal symptoms of visual disturbance, tinnitus, twitching, nausea, tingling, irritability, and convulsion. The symptoms are extremely variable and the first symptom may be the convulsion, which has led to several unfortunate diving deaths. Some guidelines exist for oxygen partial pressures which should not be exceeded in order to avoid the risk of oxygen toxicity. These are intended as guidelines and not predictors of oxygen toxicity, because of the immense variability in individual susceptibility to oxygen toxicity. The recommended oxygen limits for several sources are illustrated in the graph below: Saturation Diving Page 3 of 8

If one stays below the recommended limits, one should be safe. The O 2 concentration should be kept between 0.21 (normoxic) and 0.48 ATAs. As one goes deeper the difference between hypoxia, normoxia, and oxygen toxicity becomes very small. It is a technical challenge to carefully monitor the oxygen content of the breathing gas and maintain it at the required level. The table below shows the values for desired concentrations: FSW ATA Normoxic O2 % 0 1.0 21.00 33 2.0 10.50 66 3.0 7.00 99 4.0 5.25 165 6.0 3.50 300 10.1 2.08 500 16.2 1.30 1000 31.3 0.67 1500 46.5 0.45 2000 61.6 0.34 2500 76.8 0.27 Saturation Diving Page 4 of 8

As one can see from the table above, a concentration of 0.67% O 2 is needed at 1000 fsw to provide a normoxic O 2 level or the partial pressure of O 2 available at the surface. A partial pressure of.1 ATA of O 2 would cause unconsciousness in less than a minute and this would be equivalent to.30% O 2 at 1000 fsw. And a partial pressure of 3 ATA of O 2, or 10% O 2 at 1000 fsw, could cause an oxygen seizure in 30 minutes. Therefore the operational limits of breathable O 2 at 1000 fsw lie well within 0.1 and 10% O 2. In actuality the limits must be much narrower to prevent pulmonary O 2 toxicity, which is seen with O 2 partial pressures greater than.5 ATA when oxygen is breathed more than 24 hours. For saturation diving the limits would need to lie well within 0.1 and 1.34% O 2. The recommended operational range for O 2 concentration is 0.67 to 1.5 % O 2 at 1000 fsw which provides a partial pressure of 0.21 to 0.48 ATA. With such a narrow range of permissible O 2 at depth, accurate monitoring of oxygen levels is of paramount importance. Helium MW 4 no narcosis low density - easy to breath relatively insoluble faster take-up than N 2 Because of the unacceptable narcotic properties of nitrogen, helium has been used as the inert gas below 150 fsw. With a molecular weight of 4 helium is easy to breathe at depth and has the advantage of producing no narcosis. It is relatively insoluble and crosses tissue barriers more rapidly than nitrogen with a faster uptake. When switching from nitrogen as an inert gas to helium, the helium will rapidly move into the tissues before the nitrogen can be off-gassed. A condition known as isobaric counterdiffusion can be created where the total gas pressure of tissue compartments reaches supersaturation because the nitrogen has not left the tissue and the helium has moved into the tissue. As a result of this elevated gas pressure bubbles may form typically causing skin and inner ear symptoms. The tissue half times for helium and nitrogen for four theoretical compartments are illustrated here: Cmpt t 1/2 N 2 t 1/2 He a 25 20 min b 145 80 c 385 160 d 670 240 By slowly switching to helium counterdiffusion problems can be avoided. Saturation Diving Page 5 of 8

When helium was first employed it was possible to dive to depths deeper than ever before achieved. When divers under the direction of Dr. peter Bennett at Duke reached the equivalent of 2000 fsw in a dry or chamber dive breathing a mixture of helium and oxygen (heliox), bizarre neurologic symptoms were noted. These included nausea, vomiting, headache, tremors, prostration, and seizure-like activity. This was dubbed high pressure nervous syndrome (HPNS). The symptoms were severely limiting and thought to be due to the pressure or a direct effect of helium. Now we think that the helium allows for an unmasking of the normal sedating effect of nitrogen when nitrogen is excluded from the breathing mix. The pathophysiology is not fully understood and nerve cell membrane or synaptic membrane changes and ion fluxes have been implicated. By slowing the descent rate to 8 fsw/hr or less HPNS can be minimized. There is also some recovery at depth, so by allowing for long compression stages divers can have time to adapt to some of the HPNS symptoms. Adding 5% nitrogen to the breathing mix helps, or alternatively hydrogen can be added. There is also some individual susceptibility to HPNS with some divers being much more susceptible than others. Diver selection can also aid in reducing the incidence of HPNS. Hydrogen has some characteristics that offer benefits to deep divers. Because of it s low molecular weight of 2 it is easier to breathe at depth than helium. Unfortunately hydrogen has more narcotic effect than nitrogen and so can t be used as the main inert gas at depth. Hydrogen s narcotic effect can be used to advantage to counteract the HPNS effects of helium. A typical gas mix would be 49% hydrogen, oxygen to provide 0.48ATA at depth, and the remainder of the gas as helium. Using a H 2 -He-O 2 mix depths of 2300 fsw have been reached. Hydrogen diffuses slower than helium so the decompression times are longer for Hydrogen MW 2 inert for breathing easiest to breath counteracts HPNS more narcotic than N 2 slower take up than He this gas. Now that appropriate gas mixtures can be selected for saturation diving, the diver needs an underwater habitat. The saturation diving system has three components; 1) a deck decompression chamber (DDC), 2) a personnel transfer chamber (PTC), and 3) the underwater habitat. The diver is compressed to depth in the deck decompression chamber. This warm and dry environment allows for hot meals, personal amenities such as toilets and showers, and medical help is readily available if needed. Once the diving depth has been reached in the DDC, the divers transfer to the personnel transfer chamber (PTC) for the descent to depth. The PTC is locked onto the habitat and the divers enter the habitat. From Saturation Diving Page 6 of 8

the habitat the divers can make limited excursions avoiding a decompression obligation. Divers may stay in the surface supplied habitat for weeks, making daily excursions of eight hours or more to accomplish their underwater tasks maximizing the use of resources. From the habitat the divers can make no-decompression excursions. Theoretically it would be possible to ascend or descend to any depth from the habitat and decompress accordingly. For practical reasons and because of a lack of reliable decompression tables at deeper depths, this is usually not done. Given a known depth and breathing mixture, a safe upward Saturation Depth Downward Excursion 0 29 30 40 29 60 48 37 100 58 47 200 77 65 300 92 80 500 116 104 Upward Excusrsion Examples of No- Decompression Saturation Diving Limits from US Navy Tables and downward excursion with no decompression stops can be made using published or proprietary tables. Saturation Diving Page 7 of 8

When a diver needs to surface, it is done in the PTC compressed to depth. The PTC is then locked onto the DDC and the diver can spend several days decompressing in the safety of the DDC. If the dive work has been completed, the ship can be underway whilst the divers decompress a process that can take several days. Decompression rates are very slow, approximately one hour for every meter of saturation depth. A 2000 fsw dive might require nearly a month for decompression! By increasing the inhaled O 2 content to 0.5 ATA some time can be eliminated from the decompression obligation, but it is still a lengthy process. Saturation diving operations are very expensive and it is important to maximize the working time for divers on the bottom. When it is necessary to use more than one crew at depth the divers can use the PTC to shuttle back and forth between the habitat and the DDC. After the first crew is in the habitat, the second crew can be compressing in the DDC. The second crew then enters the habitat and the first crew ascends to the DDC for decompression. In this way the time spent productively on the bottom is maximized. From this discussion it can be seen that saturation diving is limited by human physiology. When taken into account the saturation dive is a lengthy expensive process in which the body is stressed to its limit. Because of the limitations of the breathing gases available, it is likely that submersibles and robots will be used for depths deeper than 2000 fsw for some time to come. For further reading: Diving Medicine, 3 rd Edition, Alfred A. Bove, W. B. Saunders, Company, Philadelphia, 1997 The Bends. Compressed Air in the History of Science, Diving, and Engineering. John L. Phillips, Yale University Press, New Haven, 1998 U.S. Navy Diving Manual, Revision 4, 1999 James K Wright, MD, FACS Hyperbaric Medicine Fellow Saturation Diving Page 8 of 8