Supporting Information

Similar documents
Supporting Information

Bioactive Pentacyclic Triterpenoids from the Leaves of Cleistocalyx operculatus

SUPPORTING INFORMATION

LC-MS-Guided Isolation of Insulin Secretion-promoting. Monoterpenoid Carbazole Alkaloids from Murraya

Fortunoids A C, Three Sesquiterpenoid Dimers with. Different Carbon Skeletons from Chloranthus fortunei

Supporting information

Hawaiienols A D, Highly Oxygenated p-terphenyls from an. Insect-Associated Fungus Paraconiothyrium hawaiiense

Metabolomics-driven Discovery of Meroterpenoids from a Musselderived. Penicillium ubiquetum

Lipid Peroxidation and Cyclooxygenase Enzyme Inhibitory Compounds

Bafilomycins and Odoriferous Sesquiterpenoids from Streptomyces albolongus Isolated from Elephas maximus Feces

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

Supporting information. Random Structural Modification of a Low Band Gap BODIPY-Based Polymer

Supplementary Materials: Bioactive Polycyclic Quinones from Marine Streptomyces sp. 182SMLY

Joo Tae Hwang, Yesol Kim, Hyun-Jae Jang, Hyun-Mee Oh, Chi-Hwan Lim, Seung Woong Lee and Mun-Chual Rho

Supplementary Information

Formation of Nudicaulins In Vivo and In Vitro and the Biomimetic Synthesis and Bioactivity of O-Methylated Nudicaulin Derivatives

Marine AChE inhibitors isolated from Geodia baretti: Natural compounds and their synthetic analogs

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

SUPPLEMENTARY MATERIAL TO Solvatochromism of isatin based Schiff bases: An LSER and LFER study

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

General Information. Department of Physics, Kansas State University, 116 Cardwell Hall Manhattan, KS 66506, USA. Education

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Section 4.2. Travelling Waves

Real-time Analysis of Industrial Gases with Online Near- Infrared Spectroscopy

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

Study on Water Hammer Prevention in Pumping Water Supply Systems by Multi-valves

Supporting Information

User guide for the NMR spectrometer AVA400Stud

Fast method for Ginseng Analyses using Agilent Poroshell 120 Columns Scaled from a Traditional Method

Carbon Dioxide Flooding. Dr. Helmy Sayyouh Petroleum Engineering Cairo University

Supporting information. for. The Solvent-free Michaelis-Arbuzov Rearrangement under Flow Conditions

Journal of Chemical and Pharmaceutical Research, 2014, 6(3): Research Article

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Typically NMR Sample Configuration

EXPERIMENT XI. Careful!! Improper handling of the vacuum line may result in the release of SO 2 which is an irritating and suffocating gas.

Supplementary Information

Support Information. Diketopiperazines as cross communication quorum-sensing signals between Cronobacter sakazakii and Bacillus cereus

A New Inhibitor Targeting Signal Transducer and Activator of. Transcription 5 (STAT5) Signaling in Myeloid Leukemias

CHEM254 #4 The Synthesis of a Tertiary Alcohol Using a Pre-Made Grignard Reagent 1

Purpose and Scope: Responsibilities: Warnings and precautions: Background Beers law

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Evgeny A. Katayev and Markus B. Schmid

Supporting Information

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

state asymmetric supercapacitors

Supporting Information

Supplementary Material

Three-Dimensional Plasmonic Hydrogel Architecture: Facile Synthesis and Its Macro Scale Effective Space

FOURIER TRANSFORM INFRARED SPECTROSCOPY

Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline Kun Huang 1,a Yan Xian 2,b Kunrong Shen 3,c

Numerical Simulations of a Three-Lane Traffic Model Using Cellular Automata. A. Karim Daoudia and Najem Moussa

Vertical in situ profiles of nitrate and oxygen in the northern Japan Sea

A Coal Mine Multi-Point Fiber Ethylene Gas Concentration Sensor

Developing an Effective Quantification Method of Tongue Deviation Angle to Assess Stroke Patients

Supporting information

IJPAR Vol.6 Issue 1 Jan - Mar Journal Home page:

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Biphenyls from the Twigs of Garcinia multiflora and their Anti- Tobacco Mosaic Virus Activities

Things to know before operating an NMR spectrometer André Boltjes, University of Groningen DD NMR Lab v

2017, DIILI Publication. Original Paper PREDICTION OF SOLUBILITY OF ETODOLAC IN BINARY SOLVENTS USING EXTENDED HILDEBRAND SOLUBILITY APPROACH

Optimization of Separator Train in Oil Industry

Experimental determination of deflagration explosion characteristics of methane air mixture and their verification by advanced numerical simulation

Isotopes and Gases. Isotopes as constraints to air sea gas exchange, gas exchange time scales, the various time scales of carbon (isotope) exchange

Spin Density Distribution after Electron Transfer from Triethylamine to an [Ir(ppy) 2 (bpy)] + Photosensitizer during Photocatalytic Water Reduction

Mechanism Analysis and Optimization of Signalized Intersection Coordinated Control under Oversaturated Status

Chapter 10 Mr. Davis, M.Ed.

CHAPTER 185 SAND TRANSPORT UNDER GROUPING WAVES

Basketball field goal percentage prediction model research and application based on BP neural network

S on equipment and pipelines along with the constant threat to personnel safety justify major investment in H 2

Waves Questions - CfE

(2 pts) Draw the line of best fit through the data and estimate the concentration of Fe in your sample solution.

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

JASCO 810 CD SPECTROPLOARIMETER STANDARD OPERATING PROCEDURE

Supporting Information

A variable-pressure constant-volume method was employed to determine the gas permeation

Electronic Supplementary Information (ESI)

New low temperature technologies of natural gas processing

Phytochemical Investigations on Tribulus longipetalus

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Modeling Approaches to Increase the Efficiency of Clear-Point- Based Solubility Characterization


Flexible porous coordination polymers constructed by 1,2-bis(4-pyridyl)hydrazine via solvothermal in situ reduction of 4,4 -Azopyridine

The Nature of Light. Light behaves like a special kind of wave, called an electromagnetic wave.

Zhao Bao Tai Chi Kung Fu (English/Chinese Edition) (English And Chinese Edition) By Wayne Peng

Coupling and Analysis of 981 Deep Water Semi-submersible. Drilling Platform and the Mooring System

User guide for the NMR spectrometer AVA300

2014. Multistage throttling characteristics of reverse direction impact of pilot operated check valve

CHAPTER 68. RANDOM BREAKING WAVES HORIZONTAL SEABED 2 HANS PETER RIEDEl. & ANTHONY PAUL BYRNE

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

noble-metal-free hetero-structural photocatalyst for efficient H 2

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Thermo Scientific Model 146i Principle of Operation

Heat Transfer Research on a Special Cryogenic Heat Exchanger-a Neutron Moderator Cell (NMC)

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Supporting Information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2013 Australian open women s singles champion and runner-up technical and tactics features research based on mathematical statistic analysis

Supporting Information

Transcription:

Supporting Information Bioassay-Guided Isolation of Prenylated Xanthone derivatives from the Leaves of Garcinia oligantha Yue-Xun Tang,,, Wen-Wei Fu,,, Rong Wu,, Hong-Sheng Tan,, Zhen-Wu Shen, and Hong-Xi Xu *,, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 00, Shanghai 00, People s Republic of China Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Cai Lun Lu 00, Shanghai 00, People's Republic of China Correspondence: Prof. Hong-Xi Xu, PhD, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 00, Shanghai 00, China. E-mail: xuhongxi88@gmail.com Tel: 86 08 Fax: 86 08

List of Supporting Information Part Experimental Section. Computational details Part Results and HRESIMS, ECD, IR, and NMR spectra of compounds Table S. Cytotoxic IC 0 values of crude extracts and key fractions against cancer cell lines Figure CS. ptimized geometries of predominant conformers for (R)- (a h) Table CS. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized compound at BLYP/6-G(d, p) level in gas phase Figure CS. ptimized geometries of predominant conformers for (R, 7R, as, S)- (a g) at the BLYP/6-G(d, p) level in gas phase Table CS. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized compound at BLYP/6-G(d, p) level in gas phase Figure CS. ptimized geometries of predominant conformers for (R, 6R, 8S)-6 (a-h) at the BLYP/6-G(d, p) level in gas phase Table CS. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized compound 6 at BLYP/6-G(d, p) level in gas phase Figure CS. ptimized geometries of predominant conformers for (8S)-7 (a-i) at the BLYP/6- G(d, p) level in gas phase Table CS. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized compound 7 at BLYP/6-G(d, p) level in gas phase Figure S. Structures of gaudichaudione H () and cantleyanone A () Figure S. Key correlations observed in the HMBC and H- H CSY NMR spectra of -

Figure S. Key correlations observed in the HMBC and H- H CSY NMR spectra of compounds 8- Figure S. ECD spectra of compounds, - Figure S6. X-ray crystallographic structure of compound 8 liganthin H () Figure S7. HRESIMS spectrum of Figure S8. Experimental ECD spectrum of Figure S. UV spectrum of spectrum of Figure S. IR (KBr, disc) spectrum of Figure S. H NMR spectrum (pyridine-d, 600 MH Z ) of Figure S. C NMR spectrum (pyridine-d, 0 MH Z ) of Figure S. DEPT NMR spectrum (pyridine-d, 0 MH Z ) of Figure S. HSQC NMR spectrum (pyridine-d, 600 MH Z, 0 MH Z ) of Figure S. HMBC NMR spectrum (pyridine-d, 600 MH Z, 0 MH Z ) of Figure S6. H- H CSY spectrum (pyridine-d, 600 MHz) of Figure S7. NSEY NMR spectrum (pyridine-d, 600 MH Z ) of liganthin I () Figure S8. HRESIMS spectrum of Figure S. UV spectrum of Figure S0. IR (KBr, disc) spectrum of Figure S. H NMR spectrum (pyridine-d, 600 MH Z ) of

Figure S. C NMR spectrum (pyridine-d, 0 MH Z ) of Figure S. DEPT NMR spectrum (pyridine-d, 0 MH Z ) of Figure S. HSQC NMR spectrum (pyridine-d, 600 MH Z, 0 MH Z ) of Figure S. HMBC NMR spectrum (pyridine-d, 600 MH Z, 0 MH Z ) of Figure S6. H- H CSY spectrum (pyridine-d, 600 MH Z ) of liganthin J () Figure S7. HRESIMS spectrum of Figure S8. UV spectrum of Figure S. IR (KBr, disc) spectrum of Figure S0. H NMR spectrum (CDCl, 600 MH Z ) of Figure S. C NMR spectrum (CDCl, 0 MH Z ) of Figure S. DEPT NMR spectrum (CDCl, 0 MH Z ) of Figure S. HSQC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of Figure S. HMBC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of Figure S. H- H CSY spectrum (CDCl, 600 MH Z ) of liganthin K (): Figure S6. HRESIMS spectrum of Figure S7. UV spectrum of Figure S8. IR (KBr, disc) spectrum of Figure S. H NMR spectrum (CDCl, 600 MH Z ) of Figure S0. C NMR spectrum (CDCl, 0 MH Z ) of

Figure S. DEPT NMR spectrum (CDCl, 0 MH Z ) of Figure S. HSQC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of Figure S. HMBC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of Figure S. H- H CSY NMR spectrum (CDCl, 600 MH Z ) of liganthone B (): Figure S. HRESIMS spectrum of Figure S6. Experimental ECD spectrum of Figure S7. UV spectrum of Figure S8. IR (KBr, disc) spectrum of Figure S. H NMR spectrum (CDCl, 600 MH Z ) of Figure S0. C NMR spectrum (CDCl, 0 MH Z ) of Figure S. DEPT NMR spectrum (CDCl, 0 MH Z ) of Figure S. HSQC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of Figure S. HMBC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of Figure S. H- H CSY NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of Figure S. NSEY NMR spectrum (CDCl, 600 MH Z ) of liganthic Acid A (6): Figure S6. HRESIMS spectrum of 6 Figure S7. Experimental ECD spectrum of 6 Figure S8. UV spectrum of 6 Figure S. IR (KBr, disc) spectrum of 6

Figure S60. H NMR spectrum (CDCl, 600 MH Z ) of 6 Figure S6. C NMR spectrum (CDCl, 0 MH Z ) of 6 Figure S6. DEPT NMR spectrum (CDCl, 0 MH Z ) of 6 Figure S6. HSQC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 6 Figure S6. HMBC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 6 Figure S6. TCSY NMR spectrum (CDCl, 600 MH Z ) of 6 Figure S66. NSEY NMR spectrum (CDCl, 600 MH Z ) of 6 liganthic Acid B (7): Figure S67. HRESIMS spectrum of 7 Figure S68. Experimental ECD spectrum of 7 Figure S6. UV spectrum of 7 Figure S70. IR (KBr, disc) spectrum of 7 Figure S7. H NMR spectrum (DMS-d 6, 600 MH Z ) of 7 Figure S7. C NMR spectrum (DMS-d 6, 0 MH Z ) of 7 Figure S7. DEPT NMR spectrum (DMS-d 6, 0 MH Z ) of 7 Figure S7. HSQC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of 7 Figure S7. HMBC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of 7 Figure S76. TCSY NMR spectrum (DMS-d 6, 600 MH Z ) of 7 Figure S77. NSEY NMR spectrum (DMS-d 6, 600 MH Z ) of 7 liganthic Acid C (8): Figure S78. HRESIMS spectrum of 8 6

Figure S7. Experimental ECD spectrum of 8 Figure S80. UV spectrum of 8 Figure S8. IR (KBr, disc) spectrum of 8 Figure S8. H NMR spectrum (CDCl, 600 MH Z ) of 8 Figure S8. C NMR spectrum (CDCl, 0 MH Z ) of 8 Figure S8. DEPT NMR spectrum (CDCl, 0 MH Z ) of 8 Figure S8. HSQC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 8 Figure S86. HMBC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 8 Figure S87. TCSY NMR spectrum (CDCl, 600 MH Z ) of 8 Figure S88. NSEY NMR spectrum (CDCl, 600 MH Z ) of 8 liganthaxthanone A (): Figure S8. HRESIMS spectrum of Figure S0. UV spectrum of Figure S. IR (KBr, disc) spectrum of Figure S. H NMR spectrum (DMS-d 6, 600 MH Z ) of Figure S. C NMR spectrum (DMS-d 6, 0 MH Z ) of Figure S. DEPT NMR spectrum (DMS-d 6, 0 MH Z ) of Figure S. HSQC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of Figure S6. HMBC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of Figure S7. H- H CSY NMR spectrum (DMS-d 6, 600 MH Z ) of liganthaxthanone B (): 7

Figure S8. HRESIMS spectrum of Figure S. UV spectrum of Figure S0. IR (KBr, disc) spectrum of Figure S. H NMR spectrum (DMS-d 6, 600 MH Z ) of Figure S. C NMR spectrum (DMS-d 6, 0 MH Z ) of Figure S. DEPT NMR spectrum (DMS-d 6, 0 MH Z ) of Figure S. HSQC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of Figure S. HMBC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of Figure S6. H- H CSY NMR spectrum (DMS-d 6, 600 MH Z ) of 8

Supporting Information Available Part Experimental section. Computational details The theoretical calculations for compounds and -7 were performed using Gaussian 0. Conformational analysis was initially carried out using Maestro in Schrödinger 0 conformational searching together with the PLS_00 molecular mechanics methods. The optimized conformation geometries and thermodynamic parameters of all conformations were provided. The top twenty lowest-energy conformers of the PLS_00 conformers were optimized further at the BLYP/6-G (d, p) level. The minimum nature of the structure was confirmed by frequency calculations at the same computational level. The theoretical calculation of ECD was performed using time-dependent density functional theory (TDDFT) at the BLYP/6-G (d, p) level in MeH with PCM model. The calculated ECD curves were generated using SpecDis.6. References: () Gaussian 0, Revision E.0,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. gliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. chterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,. Farkas, J. B. Foresman, J. V. rtiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 0.

() T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Bringmann, SpecDis version.6, University of Wuerzburg, Germany, 0. Part Results and HRESIMS, IR, NMR, and ECD spectra of compounds Table S. Cytotoxic tests of the key fractions Table S. Cytotoxic IC 0 Values of Crude Extracts and Key Fractions against Cancer Cell Lines a Fraction PC- A.0 B. B >0 Paclitaxel 0.0 a.results are expressed as mean IC 0 values in µg/ml (extracts) or µm (paclitaxel). A: Petroleum ether extracts from the leaves of G. oligantha; B: EtAc-soluble portion of the 0% EtH extract from the leaves of G. oligantha; B: H -soluble portion of the 0% EtH extract from the leaves of G. oligantha. Figure CS ptimized geometries of predominant conformers for (R)- (a h) ptimized geometries of predominant conformers for (a h) at the BLYP/6-G (d, p) level in the gas phase.

Table CS. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized at BLYP/6-G (d, p) level in the gas phase. Calculated Relative Energies (Kcal/mol) and Boltzmann distributions of the optimized at BLYP/6-G (d, p) level in the gas phase. Conformation G ΔE % a -806.87 0. b -806.7 0.077.6 c -806.6 0.07 0. d -806.6 0.08.6 e -806.6 0.7.6 f -806.8 0.87687 6.0 g -806.088.0068.8 h -806.6.8878.6 ΔE: Relative to a; %: Boltzmann distributions, using the relative Gibbs free energies as weighting factors at T = 8. K and atm Figure CS. ptimized geometries of predominant conformers for (R, 7R, as, S)- (a g) at the BLYP/6-G (d, p) level in the gas phase ptimized geometries of predominant conformers for (a g) at the BLYP/6-G (d, p) level in the gas phase

Table CS. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized at BLYP/6-G (d, p) level in the gas phase. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized at BLYP/6-G (d, p) level in the gas phase. Conformation G ΔE % a -60.700 0 7.8 b -60.76 0.7. c -60.68 0.6878. d -60.67 0.708006.6 e -60.6 0.6686 7.70 f -60.68 0.8668 7.67 g -60.76.8078. ΔE: Relative to a; %: Boltzmann distributions, using the relative Gibbs free energies as weighting factors at T = 8. K and atm Figure CS. ptimized geometries of predominant conformers for (R, 6R, 8S)-6 (a h) at the BLYP/6-G (d, p) level in the gas phase ptimized geometries of predominant conformers for 6 (a h) at the BLYP/6-G (d, p) level in the gas phase

Table CS. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized 6 at BLYP/6-G (d, p) level in the gas phase Table CS. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized 6 at BLYP/6-G (d, p) level in the gas phase. Conformation G ΔE % 6a -76. 0. 6b -76.7 0.867877.0 6c -76. 0.886.07 6d -76.6.87 7.6 6e -76..70.8 6f -76...88 6g -76.8.78.76 ΔE: Relative to a; %: Boltzmann distributions, using the relative Gibbs free energies as weighting factors at T = 8. K and atm Figure CS. ptimized geometries of predominant conformers for (8S)-7 (a i) at the BLYP/6-G (d, p) level in the gas phase ptimized geometries of predominant conformers for 7 (a i) at the BLYP/6-G (d, p) level in the gas phase

Table CS. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized 7 at BLYP/6-G (d, p) level in the gas phase Table CS. Calculated relative energies (Kcal/mol) and Boltzmann distributions of the optimized 7 at BLYP/6-G (d, p) level in the gas phase. Conformation G ΔE % 7a -768.87 0 6.7 7b -768.6 0.807 8.6 7c -768. 0.7706.6 7d -768. 0.767. 7e -768.87 0.60.70 7f -768.6 0.880 6.0 7g -768.8.088. 7h -768.068.87.7 7i -768.00.7688. ΔE: Relative to a; %: Boltzmann distributions, using the relative Gibbs free energies as weighting factors at T = 8. K and atm Figure S. Structures of gaudichaudione H () and cantleyanone A (). H H Me H Me H gaudichaudione H cantleyanone A Figure S. Key correlations observed in the HMBC and H- H CSY NMR spectra of - H H H H H H H H H H C HMBC H-H CSY

Figure S. Key correlations observed in the HMBC and H- H CSY NMR spectra of 8-. H CH H H H H H H H C HMBC H-H CSY 8 Figure S. ECD spectra of compounds, - ECD spectra of compounds oliganthone B (), gaudichaudione H () and cantleyanone ()

Figure S6. X-ray crystallographic structure of compound 8 Crystal structure of (±) oliganthic acid C. (a) Crystal packing of 8 showing the nonsuperimposition of (8S)-8 and (8R)-8. (b) RTEP diagram of 8S-oliganthic acid C ((8S)-8) 6

Figure S7. HRESIMS spectrum of Figure S8. Experimental ECD spectrum of 7

Figure S. UV spectrum of spectrum of Figure S. IR (KBr, disc) spectrum of 8

Figure S. H NMR spectrum (pyridine-d, 600 MH Z ) of.0.7.00...6.8....0.0.0.8.0.08.0..0 8.7 Pyridine-d 7.08 7.06 6.6.8.6.....8.7......0.0.8.8.88.86..8.7.6.....0.8.88.8.8.80.7.7.67.6...0.0.8 H H H...... 8. 7. 6...... 0. -0. Figure S. C NMR spectrum (pyridine-d, 0 MH Z ) of 80.6 6. 60.0 7.7.8 0.6 0. Pyridine-d.8 8.0.6.7 7.8. 0..7.8.7 6..00 0. 78.. 0. 8. 8. 8.60 8.7 7.0 6.7 6. 8.6 8.0 6. 00 0 80 70 60 0 0 0 0 0 0 80 70 60 0 0 0 0 0

Figure S. DEPT NMR spectrum (pyridine-d, 0 MH Z ) of Figure S. HSQC NMR spectrum (pyridine- d, 600 MH Z, 0 MH Z ) of 0 0 0 60 80 0 0 {8.7,0.}Pyridine-d 0 60 80 00 0 6 8 7 6 f (ppm) 0 - - - 0

Figure S. HMBC NMR spectrum (pyridine-d, 600 MH Z, 0 MH Z ) of 0 0 0 60 80 0 0 {8.7,0.}Pyridine-d 0 60 80 00 0 8 7 f (ppm) 6 Figure S6. H- H CSY spectrum (pyridine-d, 600MHz) of {8.7,8.7}Pyridine-d 6 7 8 8 7 f (ppm) 6

Figure S7. NESY spectrum (pyridine-d, 600MHz) of Figure S8. HRESIMS spectrum of Figure S. UV spectrum of 0. Absorbance (AU) 0. 0. 0. 80 0. 0.0 0 0 60 80 00 0 0 60 Wavelength (nm)

Figure S0. IR (KBr, disc) spectrum of Figure S. H NMR spectrum (pyridine-d, 600 MH Z ) of 0.6..00...6.0 6.0 6.06 6.0.0 8.7 Pyridine-d 7.0 7.0 6.6.6...8.6.0.88.87.86.6....6..8 H H H..0..0..0..0..0..0 8. 8.0 7. 7.0 6. 6.0..0..0..0..0..0 0.

Figure S. C NMR spectrum (pyridine-d, 0 MH Z ) of 80.6 6.0 60.0 7.7.86 0. Pyridine-d 7...0 7.8 0.08..68 6..00 0. 78.. 8.7 8.6 6.8 8.6 0 00 0 80 70 60 0 0 0 0 0 0 80 70 60 0 0 0 0 0 - Figure S. DEPT NMR spectrum (pyridine-d, 0 MH Z ) of

Figure S. HSQC NMR spectrum (pyridine-d, 600 MH Z, 0 MH Z ) of 0 0 0 60 80 0 0 {8.7,0.}Pyridine-d 0 60 80 00 0 6 8 7 6 f (ppm) 0 - - - Figure S. HMBC NMR spectrum (pyridine-d, 600 MH Z, 0 MH Z ) of 0 0 0 60 80 0 0 {8.7,0.}Pyridine-d 0 60 80 00 0 8 7 f (ppm) 6

Figure S6. H- H CSY NMR spectrum (pyridine-d, 600 MH Z ) of {8.7,8.7}Pyridine-d 6 7 8 8 7 f (ppm) 6 Figure S7. HRESIMS spectrum of 6

Figure S8. UV spectrum of Figure S. IR (KBr, disc) spectrum of 7

Figure S0. H NMR spectrum (CDCl, 600 MH Z ) of Figure S C NMR spectrum (CDCl, 0 MH Z ) of 00. 7. 6. 6.87.66 6.8.06.0.7.0.8. 8.07 7..6.0.66 77.6 CDCl. 7.80..76.6 8. 8.0 00 0 80 70 60 0 0 0 0 0 0 80 70 60 0 0 0 0 0 8

Figure S. DEPT NMR spectrum (CDCl, 0 MH Z ) of Figure S. HSQC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 0 0 0 {7.6,77.6}CDCl 60 80 0 0 0 60 80 00 8 7 6 f (ppm) 0

Figure S. HMBC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 0 0 0 {7.6,77.6}CDCl 60 80 0 0 0 60 80 00 0 8 7 6 f (ppm) 0 - Figure S. H- H CSY spectrum (CDCl, 600 MH Z ) of 6 {7.6,7.6}CDCl 7 8.0..0 8. 8.0 7. 7.0 6. 6.0..0 f (ppm)..0..0..0..0 0

Figure S6. HRESIMS spectrum of Figure S7. UV spectrum of 0.8 0.7 Absorbance (AU) 0.6 0. 0. 0. 0. 0. 0 0 60 80 00 0 0 60 0 8 Wavelength (nm) Figure S8. IR (KBr, disc) spectrum of

Figure S. H NMR spectrum (CDCl, 600 MH Z ) of 0. 0.8.00 0.86.07.0.0..08.07.08.. 7.6 CDCl 6. 6. 6...0.8.66.6.6..0.6....8.8.7.77.87.78..8 H H H..0..0..0..0..0 8. 8.0 7. 7.0 6. 6.0..0..0..0..0..0 0. 0.0 Figure S0. C NMR spectrum (CDCl, 0 MH Z ) of 0.8 7.80 60. 60.8.7..87.6. 7.8 6.60 8.8..6.8 77.6 CDCl 6.0 8.0.6.8.0 8. 8.0 00 0 80 70 60 0 0 0 0 0 0 80 70 60 0 0 0 0 0

Figure S. DEPT NMR spectrum (CDCl, 0 MH Z ) of Figure S. HSQC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 0 0 0 0 60 {7.6,77.6}CDCl 70 80 0 0 0 0 0 0 60 70 80 0 8 7 6 f (ppm)

Figure S. HMBC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of {7.6,77.6}CDCl 0 0 0 0 60 70 80 0 0 0 0 0 0 60 70 80 0 00 8 7 6 f (ppm) 0 Figure S. H- H CSY NMR spectrum (CDCl, 600 MH Z ) of {7.6,7.6}CDCl 6 7 8 8 7 6 f (ppm)

Figure S. HRESIMS spectrum of Figure S6. Experimental ECD spectrum of

Figure S7. UV spectrum of Figure S8. IR (KBr, disc) spectrum of 6

Figure S. H NMR spectrum (CDCl, 600 MH Z ) of 0..0..00...00...0.7.08.07.07.06.08.0. 7.0 7.0 7.6 CDCl 6.6 6.6 6.0.7..8.6..6..8.7.7.6..7..6...8..0 H..0..0..0..0..0 8. 8.0 7. 7.0 6. 6.0..0..0..0..0..0 0. 0.0-0. Figure S0. C NMR spectrum (CDCl, 0 MH Z ) of 0.67 78.7 6. 6.0.0.6.6.0 7.7 7.6.8.8. 8. 8.6 8. 8. 8.7 78.7 77.6 CDCl..8 0.6 0.0.8.6 8.7 8..7 6.7 00 0 80 70 60 0 0 0 0 0 0 80 70 60 0 0 0 0 0 7

Figure S. DEPT NMR spectrum (CDCl, 0 MH Z ) of Figure S. HSQC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of {7.6,77.6}CDCl 0 0 0 0 60 70 80 0 0 0 0 0 0 60 70 80 0 00 8 7 6 f (ppm) 8

Figure S. HMBC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of {7.6,77.6}CDCl 0 0 0 0 60 70 80 0 0 0 0 0 0 60 70 80 0 00 8 7 6 f (ppm) Figure S. H- H CSY spectrum (CDCl, 600 MH Z ) of

Figure S. NESY NMR spectrum (CDCl, 600 MH Z ) of {7.6,7.6}CDCl 6 7 8 8 7 6 f (ppm) Figure S6. HRESIMS spectrum of 6 0

Figure S7. Experimental ECD spectrum of 6 Figure S8. UV spectrum of 6

Figure S. IR (KBr, disc) spectrum of 6 Figure S60. H NMR spectrum (CDCl, 600 MH Z ) of 6 0.6.00.0.0 0..07.0.0.0.07.0.08.8.0..6.0.0..8.0.0. 7.6 CDCl 6.....0....8.8.8.......8.6.......8.80.7.78.70.70.68.66.66...0....8.8.7.6.. H H H H..0..0..0..0 8. 8.0 7. 7.0 6. 6.0..0..0..0..0..0 0. 0.0

Figure S6. C NMR spectrum (CDCl, 0 MH Z ) of 6 8. 7. 66. 6..8..0 0...7.0.6 7.8 6.0.67.7.7 0. 77.6 CDCl 6...8 0.07.7.8 6.7.88.7.80.87 8.07 7.78 6.6 0 80 70 60 0 0 0 0 0 0 80 70 60 0 0 0 0 0 Figure S6. DEPT NMR spectrum (CDCl, 0 MH Z ) of 6

Figure S6. HSQC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 6 0 0 0 {7.6,77.6}CDCl 60 80 0 0 0 60 80 00 0 8 7 6 f (ppm) 0 Figure S6. HMBC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 6 {0.00,-0.00} 0 0 0 60 80 0 0 0 60 80 00 0 8 7 6 f (ppm) 0 -

Figure S6. TCSY NMR spectrum (CDCl, 600 MH Z ) of 6 {7.6,7.6}CDCl 6 7 8 8 7 6 f (ppm) Figure S66. NESY NMR spectrum (CDCl, 600 MH Z ) of 6 0 {7.6,7.6}CDCl 6 7 8 8 7 6 0 f (ppm)

Figure S67. HRESIMS spectrum of 7 Figure S68. Experimental ECD spectrum of 7 6

Figure S6. UV spectrum of 7 Figure S70. IR (KBr, disc) spectrum of 7 7

Figure S7. H NMR spectrum (DMS-d 6, 600 MH Z ) of 7.00.08..7...0..0.08 6....00.08. 6....0.0.0.00.87...6.6..7.0 DMS-d6...77.... H H H.0..0..0..0..0 8. 8.0 7. 7.0 6. 6.0..0..0..0..0..0 0. 0.0 Figure S7. C NMR spectrum (DMS-d 6, 0 MH Z ) of 7 8

Figure S7. DEPT NMR spectrum (DMS-d 6, 0 MH Z ) of 7 Figure S7. HSQC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of 7 0 {.0,.}DMS-d6 0 0 0 60 70 80 0 0 0 0 0 0 60 70 80 0 8 7 6 f (ppm)

Figure S7. HMBC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of 7 0 {.0,.}Dimethyl Sulfoxide-d6 0 0 0 60 70 80 0 0 0 0 0 0 60 70 80 0.0..0..0..0 8. 8.0 7. 7.0 6. 6.0..0..0..0..0..0 f (ppm) Figure S76. TCSY NMR spectrum (DMS-d 6, 600 MH Z ) of 7 {.0,.0}DMS-d6 6 7 8 8 7 f (ppm) 6 0

Figure S77. NESY NMR spectrum (DMS-d 6, 600 MH Z ) of 7 {.0,.0}DMS-d6 6 7 8 8 7 6 f (ppm) Figure S78. HRESIMS spectrum of 8

Figure S7. Experimental ECD spectrum of 8 Figure S80. UV spectrum of 8 0. Absorbance (AU) 0. 0. 86 0. 0. 0 0 60 80 00 0 0 60 Wavelength (nm)

Figure S8. IR (KBr, disc) spectrum of 8 Figure S8. H NMR spectrum (CDCl, 600 MH Z ) of 8.0.00.07.08..6.0.06.0 6.8.8 7.6 CDCl 6.8 6.8 6..7..0..0..7.7.7..8... H H 8 7 6 0

Figure S8. C NMR spectrum (CDCl, 0 MH Z ) of 8 8.7 8. 7. 6. 60.7.... 7.70 7..67 0.. 6.6.68 0. 78.67 77.6 CDCl 8. 6..0 8. 8. 6.0..7 7.8 00 0 80 70 60 0 0 0 0 0 0 80 70 60 0 0 0 0 0 Figure S8. DEPT NMR spectrum (CDCl, 0 MH Z ) of 8

Figure S8. HSQC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 8 B-q 0 0 0 {7.6,77.}cdcl 60 80 0 0 0 60 80 00 8.0 7. 7.0 6. 6.0..0..0..0..0..0 0. 0.0 f (ppm) Figure S86. HMBC NMR spectrum (CDCl, 600 MH Z, 0 MH Z ) of 8 {-0.00,0.00} 0 0 0 60 80 0 0 0 60 80 8.0 7. 7.0 6. 6.0..0..0. f (ppm).0..0..0 0. 0.0-0.

Figure S87. TCSY NMR spectrum (CDCl, 600 MH Z ) of 8 Figure S88. NESY NMR spectrum (CDCl, 600 MH Z ) of 8 6

Figure S8. HRESIMS spectrum of Figure S0. UV spectrum of 8 0. 0. Absorbance (AU) 0. 0. 6 0. 0 0 60 80 00 0 0 60 Wavelength (nm) Figure S. IR (KBr, disc) spectrum of 7

Figure S. H NMR spectrum (DMS-d 6, 600 MH Z ) of.0.00.0..6.8.8.. 6.0..8 7. 7. 7.0 6.8.7.7....8.88....0 DMS-d6.7.67... H H.0..0..0..0..0..0 8. 8.0 7. 7.0 6. 6.0..0..0..0..0..0 0. 0.0-0. Figure S. C NMR spectrum (DMS-d 6, 0 MH Z ) of 8.78 6..7 0.7 6.8.6.6..7.0 6.8.8..76.. 0. 8.0 78.. DMS-d6. 7.88 7.07..07 7. 00 0 80 70 60 0 0 0 0 0 0 80 70 60 0 0 0 0 0 8

Figure S. DEPT NMR spectrum (DMS-d 6, 0 MH Z ) of Figure S. HSQC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of 0 {.0,.}DMS-d6 0 0 60 80 0 0 0 60 80 00 0.0 8. 8.0 7. 7.0 6. 6.0..0..0..0..0..0 0. 0.0-0. -.0 f (ppm)

Figure S6. HMBC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of 0 {.0,.}Dimethyl Sulfoxide-d6 0 0 0 60 70 80 0 0 0 0 0 0 60 70 80 0 7.0 6. 6.0..0..0 f (ppm)..0..0..0 Figure S7. H- H CSY NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of 0 {.0,.0}DMS-d6 6 7 7. 7.0 6. 6.0..0..0. f (ppm).0..0..0 0. 0.0 60

Figure S8. HRESIMS spectrum of Figure S. UV spectrum of 6

Figure S0. IR (KBr, disc) spectrum of Figure S. H NMR spectrum (DMS-d 6, 600 MH Z ) of 0.80 0. 0..06.00...86 6.. H H H.0 Dimethyl Sulfoxide-d6.7.60 H.86 7.6 7..7.7.6.6. 6..0..0..0..0..0..0 8. 8.0 7. 7.0 6. 6.0..0..0..0..0..0 0. 0.0 6

Figure S. C NMR spectrum (DMS-d 6, 0 MH Z ) of 8. 6. 8. 0.... 0.6. 6.7. 8.7..7. 0.7 7.8 77.8. Dimethyl Sulfoxide-d6 7.7.6.7 8.0 0 80 70 60 0 0 0 0 0 0 80 70 60 0 0 0 0 Figure S. DEPT NMR spectrum (DMS-d 6, 0 MH Z ) of 6

Figure S. HSQC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of 0 {.0,.}DMS-d6 0 0 0 60 70 80 0 0 0 0 0 0 60 70 80 0 8 7 f (ppm) 6 Figure S. HMBC NMR spectrum (DMS-d 6, 600 MH Z, 0 MH Z ) of {.0,.}DMS-d6 0 0 0 0 60 70 80 0 0 0 0 0 0 60 70 80 8 7 f (ppm) 6 6

Figure S6. H- H CSY NMR spectrum (DMS-d 6, 600 MH Z ) of {.0,.0}DMS-d6 6 7 8 8 7 f (ppm) 6 6